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The simplex algorithm, Dantzig [1947]

max cT x
s.t. Ax ≤ b

c

Linear programming: Maximize a linear objective function
subject to linear constraints.

The simplex algorithm: Move from vertex to vertex along
edges while improving the objective.

This operation is called a pivot.
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Pivoting rules

A pivoting rule chooses which improving pivot to make.

Random-Edge: Repeatedly use a uniformly random
improving pivot.
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Orientations

The objective function defines an orientation of the edges.

Many pivoting rules only rely on this orientation.

Random-Edge: Perform a random walk until reaching the
sink where all edges are incoming.
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The Random-Facet pivoting rule

Random-Facet: Introduced independently by Kalai [1992]
and by Matoušek, Sharir and Welzl [1992].
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Properties of the orientation

1 The graph is acyclic.

2 The unique sink property: In every face there is a unique
sink (optimal vertex within the face).
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Abstract cubes

Acyclic unique sink orientations (AUSOs) (or abstract
objective functions) are orientations that are

1 acyclic and
2 have the unique sink property.

AUSOs can be defined for arbitrary polytopes. We focus on
the case where the underlying polytope is a hypercube.
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Acyclic unique sink orientations

An algorithm asks an oracle for the orientation of the edges
adjacent to a vertex.

Goal: Find the global sink with as few oracle calls as possible.

Hansen and Zwick Random-Edge is slower than Random-Facet 8/21



Acyclic unique sink orientations

An algorithm asks an oracle for the orientation of the edges
adjacent to a vertex.

Goal: Find the global sink with as few oracle calls as possible.

Hansen and Zwick Random-Edge is slower than Random-Facet 8/21



Acyclic unique sink orientations

An algorithm asks an oracle for the orientation of the edges
adjacent to a vertex.

Goal: Find the global sink with as few oracle calls as possible.

Hansen and Zwick Random-Edge is slower than Random-Facet 8/21



AUSOs and some applications
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Results about Random-Facet

Bounds for the expected number of steps performed by
Random-Facet on n-dimensional AUSOs with m facets.

Kalai [1992] and Matoušek, Sharir and Welzl [1992]:

2O(
√

(m−n) log n)

Gärtner [2002]: 2O(
√
n) for abstract cubes

This is the best known bound for solving AUSOs on cubes.

Matoušek [1994]: 2Ω(
√
n) for abstract cubes (m = 2n)

Friedmann, Hansen, and Zwick [2011]: 2Ω̃( 3√m) for linear
programs
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Results about Random-Edge

Bounds for the expected number of steps performed by
Random-Edge on n-dimensional AUSOs of cubes.

Matoušek and Szabó [2004]: 2Ω( 3√n)

Friedmann, Hansen, and Zwick [2011]: 2Ω( 4√n) for linear
programs (that are cubes)

Gärtner and Kaibel [2007]: O(2n/nlog n)

Hansen, Paterson, and Zwick [2014]: O(1.80n)

We show: 2Ω(
√
n log n)

Thus Random-Edge is slower than Gärtner’s 2O(
√
n) upper

bound for Random-Facet.
Improving the bound further requires significantly new ideas.

Open problem: Is Random-Edge subexponential?
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√
n) upper

bound for Random-Facet.
Improving the bound further requires significantly new ideas.

Open problem: Is Random-Edge subexponential?

Hansen and Zwick Random-Edge is slower than Random-Facet 11/21



Results about Random-Edge

Bounds for the expected number of steps performed by
Random-Edge on n-dimensional AUSOs of cubes.
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Gärtner and Kaibel [2007]: O(2n/nlog n)

Hansen, Paterson, and Zwick [2014]: O(1.80n)

We show: 2Ω(
√
n log n)

Thus Random-Edge is slower than Gärtner’s 2O(
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Gärtner and Kaibel [2007]: O(2n/nlog n)

Hansen, Paterson, and Zwick [2014]: O(1.80n)

We show: 2Ω(
√
n log n)

Thus Random-Edge is slower than Gärtner’s 2O(
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Product of AUSOs [Schurr and Szabó, 2004]

×A B
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Hypersink replacement [Schurr and Szabó, 2004]

Hansen and Zwick Random-Edge is slower than Random-Facet 13/21



Matoušek and Szabó [2004]

Let A be an AUSO for which Random-Edge performs T
steps with high probability.

Goal: Construct a slightly larger AUSO C for which
Random-Edge performs 2T steps with high probability.

Construction: Randomized product C = A×R B.
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Random walk on product AUSO

Every step in A brings us to a previously unvisited copy of B.

Every copy of B has its coordinates randomly permuted.

The hypersink is a randomly translated copy of A: This
corresponds to starting from a uniformly random vertex of A.
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Random walk with reshuffles

Main challenge: Ensure that B does not reach its sink before
A.

Random-Reshufflek : Random walk on B where at least k
edges are always available in A.

A larger k delays progress in B.

Matoušek and Szabó [2004] use many copies of the
Klee-Minty cube to get a large k .

We simplify and improve their analysis by using only two
copies (and therefore k = 2) of a path AUSO.
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Path AUSOs

Every vertex of a hypercube can be identified by a binary
vector.

Path AUSO: The i-th edge is outgoing iff the i-th coordinate
is 0 and all previous coordinates are 1, or the i-th coordinate
is 1 and some previous coordinate is 0.

In/Out : 11100110

A reshuffle permutes the coordinates; the number of 0’s and
1’s remain unchanged.
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Random-Reshuffle2 on a path AUSO

In/Out : 11100110 k = 5, j = 2

Suppose a vertex has k 1’s, j of which are non-leading.

Let r ≥ 2/(j + 3) be the reshuffle probability for
Random-Reshuffle2 on B.

In the next step in B, the number of 1’s increases with
probability:

p = (1− r) · 1

j + 1
+ r ·

k∑
j ′=0

(n−(k−j ′+1)
j ′

)(n
k

) 1

j ′ + 1

Lemma: For 8 ≤ k ≤ n − 9, the number of 1’s increases with
probability at most 5/12.

The process can be analyzed as a biased random walk on
{0, 1, . . . , n − 17}.
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Choosing the size of B

By analyzing the biased random walk on {0, 1, . . . , n} we get:

Lemma

Let Pm be the m-dimensional path AUSO. There are constants
α, β > 0 such that the probability that Random-Reshuffle2

on Pm, starting from a random vertex, performs less than 2αm

steps before reaching the sink is at most 2−βm.

We let A0 = Pm and Ai = Ai−1 ×2
R Pm for i > 1.

We show that the probability that Random-Edge performs
less than 2` steps when started at a random vertex of A`,
where ` < αm, is at most 4 · 2`−βm.

Choosing ` = Θ(m) gives a 2Ω(
√
n) lower bound, where

n = Θ(`m).
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Improving the bound further

We show that Random-Reshuffle2 on the m-dimensional
path AUSO in two steps almost always increases the number
of 1’s with probability at most O(1/

√
m).

The improved analysis gives a 2Ω(
√
n log n) lower bound.

Can we do better?

No:

Any m-dimensional AUSO has a path of length at most m to
its sink from every vertex.
This is true for any choice of B in Ai = Ai−1 ×R B.
Random-Edge on A` follows this path in B with probability
at least 1/nm, where m is the dimension of B and n = m` is
the dimension of A`.

#steps ≤ min{2`, nn/`}poly(n)

It is impossible to get a better ` relative to m, regardless of the
choice of B.
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Concluding remarks

We gave a 2Ω(
√
n log n) lower bound for Random-Edge on

abstract cubes (AUSOs), showing that Random-Edge is
slower than Random-Facet for this problem.

Open problem: Is Random-Edge subexponential? Can the
lower bound be further improved?

Open problem: Improve the 2Ω( 4√n) lower bound for linear
programming by Friedmann, Hansen, and Zwick [2011].

Open problem: Is there an algorithm for AUSOs that is
faster than 2O(

√
n)?

Schurr and Szabó [2004]: Any deterministic algorithm requires
Ω(n2/ log n) queries.

Thank you for listening!
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