No-regret algorithms for online k-submodular maximization

相馬 輔

東京大学大学院 情報理工学系研究科

This talk examines online maximization of k-submodular functions. k-submodular functions are generalizations of submodularity and bisubmodularity, introduced by Huber and Kolmogolov (2012). Formally, k-submodular functions are defined on $(k + 1)^V = \{0, 1, ..., k\}^V$. A function $f : (k + 1)^V \to \mathbb{R}$ is k-submodular if for any $\mathbf{x}, \mathbf{y} \in (k + 1)^V$, $f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} \sqcup \mathbf{y}) + f(\mathbf{x} \sqcap \mathbf{y})$, where \sqcup and \sqcap are generalized "union" and "intersection" in $(k + 1)^V$, respectively. If k = 1, 2, k-submodularity is equivalent to submodularity and bisubmodularity, respectively. Iwata, Tanigawa, and Yoshida (2016) devised a 1/2-approximation algorithm for maximizing k-submodular functions.

Online k-submodular maximization is a two-player game between a player and an adversary (see Figure 1). The performance measure of the player is the α -regret:

$$\operatorname{regret}_{\alpha}(f_1,\ldots,f_T) = \alpha \max_{\mathbf{x}\in\mathcal{C}} \sum_{t\in[T]} f_t(\mathbf{x}) - \sum_{t\in[T]} f_t(\mathbf{x}_t).$$

For $t = 1, \ldots, T$

- A player (randomly) plays $\mathbf{x}_t \in (k+1)^V$.
- An adversary reveals a k-submodular function $f_t : (k+1)^V \to [0,1]$ to the player as a value oracle.
- The player gains reward $f_t(\mathbf{x}_t)$.

Figure 1 The online k-submodular maximization protocol

We show that:

- For online k-submodular maximization, we devise a polynomial-time algorithm whose expected 1/2-regret is bounded by $O(nk\sqrt{T})$, where n = |V|. This result generalizes the previous algorithm of Roughgarden and Wang (2018) for online submodular maximization.
- For online monotone k-submodular maximization, we present a polynomial-time algorithm whose expected $\frac{k}{2k-1}$ -regret is $O(nk\sqrt{T})$.