

No. 2017-2

An approximation algorithm for
the partial covering 0-1 interger program

Yotaro Takazawa, Shinji Mizuno, Tomonari Kitahara

February 2017

 Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, JAPAN
http://educ.titech.ac.jp/iee/

Department of Industrial Engineering and Economics

WWWooorrrkkkiiinnnggg PPPaaapppeeerrr

An approximation algorithm for
the partial covering 0–1 integer program

Yotaro Takazawa ∗　, Shinji Mizuno † Tomonari Kitahara ‡

February, 2017

Abstract

The partial covering 0–1 integer program (PCIP) is a relaxed problem of
the covering 0–1 integer program (CIP) such that some fixed number of con-
straints may not be satisfied. This type of relaxation is also discussed in the
partial set multi-cover problem (PSMCP) and the partial set cover problem
(PSCP). In this paper, we propose an approximation algorithm for PCIP by
extending an approximation algorithm for PSCP by Gandhi et al. [5].

keywords: Approximation algorithms, Partial covering 0–1 integer program, Primal-
dual method.

1 Introduction
The covering 0–1 integer program (CIP) is a well-known combinatorial optimiza-
tion problem and formulated as

CIP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
min

∑
j∈N

c jx j

s.t.
∑
j∈N

ui jx j ≥ di, ∀i ∈ M,

x j ∈ {0, 1}, ∀ j ∈ N,

(1)

where M = {1, . . . ,m}, N = {1, . . . , n}, c j ≥ 0 (j ∈ N), ui j ≥ 0 (i ∈ M, j ∈ N)
and di > 0 (i ∈ M) are given data and x j (j ∈ N) are 0–1 variables. When the

∗Department of Industrial Engineering and Management, Tokyo Institute of Technology
†Department of Industrial Engineering and Economics, Tokyo Institute of Technology
‡Department of Industrial Engineering and Economics, Tokyo Institute of Technology

1

problem is relaxed such that some fixed number p ∈ {0, 1, . . . ,m} of constraints∑
j∈N ui jx j ≥ di (i ∈ M) may not be satisfied, the resulting problem is called the

partial covering 0–1 integer program, whihc is formulated as

PCIP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
∑
j∈N

c jx j

s.t.
∑
j∈N

ui jx j + diti ≥ di, ∀i ∈ M,∑
i∈M

ti ≤ p,

x j ∈ {0, 1}, ∀ j ∈ N,
ti ∈ {0, 1}, ∀i ∈ M.

(2)

For a given minimization problem having an optimal solution, an algorithm is
called an α-approximation algorithm if it runs in polynomial time and produces a
feasible solution whose objective value is less than or equal to α times the optimal
value.

PCIP generalizes some important problems for which approximation algo-
rithms are proposed as shown in Table1, where

f = maxi∈M |{ j ∈ N | ui j > 0}|,
∆ = maxi∈N |{i ∈ M | ui j > 0}|,

H(∆) = 1 + 1
2 + · · · +

1
∆
,

dmax = maxi∈M di,
dmin = mini∈M di,

η = ∆
max j∈N c j

min j∈N c j

dmax
dmin
,

γ = m
m−pη ,

g = max
{
∆

m−p

(
1

f−dmax
+ dmax

dmin

)
, f

dmin
+
(
1 − 1

dmax

)
p, p + 1

}
.

(3)

Table 1: Special cases in PCIP

Problems Restrictions in PCIP Approximation ratios
PCIP - · max{ f , p + 1} (this paper)
Covering 0–1 integer program (CIP) p = 0 · f [3, 4, 7]

· O(log m) [6]
Partial set multi-cover problem (PSMCP) ui j ∈ {0, 1}, · γH(∆) [10]

di is a positive integer · g [9]
Partial set cover problem (PSCP) ui j ∈ {0, 1}, · f [1, 5]

di = 1 · f∆
f+∆−1 [4]

CIP is a widely studied NP-hard problem since it includes fundamental com-
binatorial optimization problems such as the vertex cover problem, the set cover

2

problem, or the minimum knapsack problem. There are some approximation al-
gorithms for CIP, see Table 1 and Koufogiannakis and Young [7].

The partial set multi-cover problem (PSMCP) is a special case of PCIP where
ui j ∈ {0, 1} and di is a positive integer for i ∈ M and j ∈ N. There are a lot of
applications of PSMCP such as analysis of influence in social network [9, 10] and
protein identification [8]. Ran et al. [10] give an approximation algorithm with
performance ratio γH(∆) under the assumption that m − p > (1 − 1

η
)m and c j > 0

(j ∈ N). Ran et al. [9] propose an approximation algorithm with performance
ratio g defined in (3).

The partial set cover problem (PSCP) is a special case of PSMCP where di = 1
for i ∈ M. Some approximation algorithms for PSCP are known as shown in
Table 1.

Contribution
We present an α-approximation algorithm for PCIP, where

α = max{ f , p + 1}. (4)

Our algorithm is based on an f -approximation algorithm for PSCP by Gandhi et
al. [5]. Their algorithm uses a primal-dual method as a subroutine. In our al-
gorithm, we use a primal-dual algorithm based on Carnes and Shmoys [2] for the
minimum knapsack problem and its extension to CIP by Takazawa and Mizuno [11].

Ran et al. [9] raised a question of whether an f -approximation algorithm for
PSMCP exists or not. Note that such an algorithm exists for CIP and PSCP as in
Table 1. Our algorithm achieves the performance ratio f when f ≥ p + 1, and
therefore we partially answer this question.

Assumption and Notation
Without loss of generality, we assume that

• (2) is feasible, and therefore it has an optimal solution,

• c1 ≤ · · · ≤ cn,

• di ≥ ui j (i ∈ M, j ∈ N),

• f ≥ 2.

Let I = (m, n,U ,d, c, p) be a data of (2), where U is the matrix of ui j. We
call I an instance of PCIP. Let PCIP(I) be the problem for instance I and OPT (I)

3

be the optimal value of PCIP(I). For any subset S ⊆ N, we define the solution
(x(S), t(S)) as follows:

x j(S) =
{

1 if j ∈ S
0 if j < S for any j ∈ N (5)

and

ti(S) =
{

1 if
∑

j∈S ui j < di

0 if
∑

j∈S ui j ≥ di.
for any j ∈ M. (6)

This solution always satisfies the constraints in (2) except for
∑

i∈M ti ≤ p. Hence
(x(S), t(S)) is feasible to (2) if and only if

∑
i∈M ti(S) ≤ p.

2 Main-algorithm
Our algorithm is an extension of an f -approximation algorithm for PSCP by
Gandhi et al. [5] and consists of two algorithms: Main-algorithm and Sub-algorithm.
Sub-algorithm is presented in Section 3. This section is organized as follows:

1. We show a property (Lemma 1) of the solution generated by Sub-algorithm.

2. We explain that we can get an α-approximation solution by using Sub-
algorithm if we know partial information about an optimal solution.

3. We introduce Main-algorithm which gives an α-approximation without in-
formation about an optimal solution.

For any problem PCIP(I), Sub-algorithm checks whether it is feasible or not.
If it is feasible, then the algorithm outputs S̃ ⊆ N such that (x(S̃), t(S̃)) is feasible
and has the following property in Lemma 1. The algorithm and the proof of
Lemma 1 are shown in Section 3.

Lemma 1. Sub-algorithm presented in Section3 outputs S̃ ⊆ N such that the
solution (x(S̃), t(S̃)) defined by (5) and (6) is feasible to PCIP(I) and satisfies∑

j∈N
c jx j(S̃) ≤ αOPT (I) + cn.

The running time of Sub-algorithm is O(mn2).

For an instance I = (m, n,U ,d, c, p) and h ∈ {2, . . . , n}, we consider a sub-
problem of PCIP(I), where we add the following constraints to PCIP(I):

x j = 0 if j ≥ h + 1,
x j = 1 if j = h.

4

This sub-problem can be expressed as:

min
∑

j∈{1,...,h−1}
c jx j

s.t.
∑

j∈{1,...,h−1}
ui jx j + diti ≥ di − uih, ∀i ∈ M = {1, . . . ,m},∑

i∈M

ti ≤ p,

x j ∈ {0, 1}, ∀ j ∈ {1, . . . , h − 1},
ti ∈ {0, 1}, ∀i ∈ M.

(7)

Hence the instance of this sub-problem can be expressed as follows:

I(h) = (m, h − 1,U (h),d(h), c(h), p), (8)

where
U (h) = (u1, . . . ,uh−1),
d(h) = d − uh = (d1 − u1h, . . . , dm − umh)T ,
c(h) = (c1, . . . , ch−1)T .

Let S ∗ be the subset of N such that (x(S ∗), t(S ∗)) is an optimal solution of
PCIP(I). Define

h∗ = max{ j ∈ N | x j(S ∗) = 1}.
Without loss of generality, assume that h∗ ≥ 2 since an optimal solution is obvious
when h∗ = 0 or h∗ = 1. We can get an α-approximation solution for PCIP(I) by
using Sub-algorithm if we know h∗.

Lemma 2. Let S̃ (h) be the output by Sub-algorithm for the sub-problem PCIP(I(h))
which is defined by (7). Define S (h) = S̃ (h) ∪ {h}. If h = h∗, S (h∗) gives an α-
approxiamtion feasible solution for PCIP(I), that is, (x(S (h∗)), t(S (h∗))) is feasi-
ble to PCIP(I) and the following inequality holds:∑

j∈N
c jx j(S (h∗)) ≤ αOPT (I).

Proof. (x(S (h∗)), t(S (h∗))) is feasible to PCIP(I) since (x(S̃ (h∗)), t(S̃ (h∗))) is fea-
sible to PCIP(I(h∗)) from Lemma 1.

From Lemma 1, ch∗ ≥ ch∗−1 and α ≥ 2, we have that∑
j∈N

c jx j(S (h∗))) =
∑

j∈S̃ (h∗)

c j + ch∗

≤ αOPT (I(h∗)) + ch∗−1 + ch∗

≤ α(OPT (I(h∗)) + ch∗)
= αOPT (I).

□

5

Even though Lemma 2 requires the information about h∗, we don’t need it in
advance if we execute Sub-algorithm for all PCIP(I(h)) (h ∈ {2, . . . , n}). Main-
algorithm is presented as follows:

Main-algorithm

Input: I = (m, n,U ,d, c, p).

Step 1: For h ∈ {2, . . . , n}, set S (h) = ∅ and COS T (h) = +∞ and do the fol-
lowing process: Let I(h) be the data defined by (8). Execute Sub-algorithm
for PCIP(I(h)). If the problem is feasible, the algorithm outputs S̃ (h) ⊆
{1, . . . , h−1}. In this case, set S (h) = S̃ (h)∪{h} and COS T (h) =

∑
j∈N c jx j(S (h)).

Step 2: Set ĥ = arg min
h∈N

COS T (h) and output (x(S (ĥ)), t(S (ĥ)))

Theorem 1. Main-algorithm is an α-approximation algorithm for PCIP.

Proof. The running time of the algorithm is O(mn3) since Sub-algorithm runs in
O(mn2) from Lemma 1 and Main-algorithm executes Sub-algorithm at most n
times. Therefore Main-algorithm is a polynomial time algorithm.

(x(S (ĥ)), t(S (ĥ))) is clearly feasible to PCIP(I) and from Lemma 2 we obtain
that ∑

j∈N
c jx j(S (ĥ)) ≤

∑
j∈N

c jx j(S (h∗)) ≤ αOPT (I).

□

3 Sub-algorithm
In this section, we show Sub-algorithm and prove Lemma 1. Sub-algorithm is
based on a 2-approximation algorithm for the minimum knapsack problem by
Carnes and Shmoys [2] and its extension to CIP by Takazawa and Mizuno [11].
Both of the algorithms use an LP relaxation of CIP proposed by Carr et al. [3].
We apply this relaxation to PCIP and we have the following problem:

min
∑
j∈N

c jx j

s.t.
∑

j∈N\A
ui j(A)x j + di(A)ti ≥ di(A), ∀i ∈ M,∀A ⊆ N∑

i∈M

ti ≤ p,

x j ≥ 0, ∀ j ∈ N,
ti ≥ 0, ∀i ∈ M,

(9)

6

where
di(A) = max{0, di −

∑
j∈A ui j}, ∀i ∈ M,∀A ⊆ N,

ui j(A) = min{ui j, di(A)}, ∀i ∈ M,∀A ⊆ N,∀ j ∈ N\A. (10)

Carr et al. [3] show the following result.

Lemma 3. (9) is a relaxation problem of PCIP, that is, any feasible solution (x, t)
for PCIP is feasible to (9).

The dual of (9) is expressed as

max
∑
i∈M

∑
A⊆N

di(A)yi(A) − pz

s.t.
∑
i∈M

∑
A⊆N: j<A

ui j(A)yi(A) ≤ c j, ∀ j ∈ N,∑
A⊆N

di(A)yi(A) ≤ z, ∀i ∈ M,

yi(A) ≥ 0, ∀A ⊆ N, ∀i ∈ M,
z ≥ 0.

(11)

Now, we introduce a useful result for later discussion.

Lemma 4. Let S be a subset of N such that (x(S), t(S)) is infeasible to PCIP(I),
(y, z) be a feasible solution to (11). Define M1(S) = {i ∈ M | ti(S) = 1}. If

(a-1) ∀ j ∈ N, x j(S) = 1⇒ ∑i∈M
∑

A⊆N: j<A ui j(A)yi(A) = c j,
(a-2) i ∈ M1(S)⇒ ∑A⊆N di(A)yi(A) = z,
(b) ∀i ∈ M1(S), ∀A ⊆ N, yi(A) > 0⇒ ∑ j∈S \A ui j(A) ≤ di(A),

then the following inequalities hold:∑
j∈N

c jx j(S) ≤ α
∑

i∈M

∑
A⊆N

di(A)yi(A) − pz

 ≤ αOPT (I). (12)

Proof. For any A ⊆ N and i ∈ M, we have that∑
j∈S \A

ui j(A) ≤ αdi(A) (13)

by (4) and (10). Since (x(S), t(S)) is infeasible, the following inequality holds:

|M1(S)| ≥ p + 1. (14)

From (a-1), the objective function value of (x(S), t(S)) is∑
j∈N

c jx j(S) =
∑
j∈S

c j =
∑
j∈S

∑
i∈M

∑
A⊆N: j<A

ui j(A)yi(A). (15)

7

We introduce the following symbol for convenience:

u′i j(A) =
{

ui j(A) if j < A
0 if j ∈ A.

By using u′i j(A), we can express the right-hand side on (15) as follows:∑
j∈S

∑
i∈M

∑
A⊆N

u′i j(A)yi(A) =
∑
i∈M

∑
A⊆N

∑
j∈S

u′i j(A)yi(A) =
∑
i∈M

∑
A⊆N

∑
j∈S \A

ui j(A)yi(A).

Define M0(S) = M\M1(S) and we obtain that∑
i∈M

∑
A⊆N

∑
j∈S \A

ui j(A)yi(A)

=
∑

i∈M0(S)

∑
A⊆N

∑
j∈S \A

ui j(A)yi(A) +
∑

i∈M1(S)

∑
A⊆N

∑
j∈S \A

ui j(A)yi(A)

=
∑

i∈M0(S)

∑
A⊆N

yi(A)
∑
j∈S \A

ui j(A) +
∑

i∈M1(S)

∑
A⊆N

yi(A)
∑
j∈S \A

ui j(A)

≤ α
∑

i∈M0(S)

∑
A⊆N

di(A)yi(A) +
∑

i∈M1(S)

∑
A⊆N

di(A)yi(A),

where the last inequality holds from (13) and (b). Hence we have that∑
j∈N

c jx j(S) ≤ α
∑

i∈M0(S)

∑
A⊆N

di(A)yi(A) +
∑

i∈M1(S)

∑
A⊆N

di(A)yi(A).

Taking the difference between two values in (12),

α

∑
i∈M

∑
A⊆N

di(A)yi(A) − pz

 −∑
j∈N

c jx j(S)

≥ (α − 1)
∑

i∈M1(S)

∑
A⊆N

di(A)yi(A) − αpz

= (α − 1)|M1(S)|z − αpz (16)
≥ (α − (p + 1))z ≥ 0, (17)

where the equality (16) follows from (a-2) and inequalities (17) follow from (14)
and (4). Since (y, z) is feasible to (11), the objective value of (y, z) is less than or
equal to the optimal value of (9), which is less than or equal to OPT(I). Thus we
have that

α

∑
i∈M

∑
A⊆N

di(A)yi(A) − pz

 ≤ αOPT (I). (18)

□

8

Sub-algorithm is presented below. Solutions generated by the algorithm, ex-
cept for the final solution, satisfy all the conditions in Lemma 4. In Sub-algorithm,
we use the following symbols:

• a set S ⊆ N.

• a solution (y, z) for (11).

• M1(S) = {i ∈ M|∑ j∈S ui j < di}.

• N′(S) = { j ∈ N\S |∑i∈M1(S) ui j(S) > 0}.

• ∀ j ∈ N, c̄ j = c j −
∑

i∈M
∑

A⊆N: j<A ui j(A)yi(A).

Sub-algorithm

Input: I = (m, n,U ,d, c, p).

Step 0: Set S = ∅, (y, z) = (0, 0) and c̄ = c. Check whether (x(N), t(N)) is
feasible or not. If it is not feasible, declare INFEASIBLE and stop.

Step 1: Calculate di(S) by (10) for i ∈ M. Update M1(S). If |M1(S)| ≤ p, output
S̃ = S and stop. Otherwise, calculate ui j(S) by (10) for all i ∈ M1(S) and
j ∈ N. Update N′(S).

Step 2: For any i ∈ M1(S), increase all yi(S) at the rate 1/di(S) as much as pos-
sible while maintaining

∑
i∈M1(S) ui j(S)yi(S) ≤ c̄ j for any j ∈ N′(S). That is,

set
yi(S) =

c̄s∑
i′∈M1(S)(ui′s(S)/di′(S))

1
di(S)

,

where
s = arg min

j∈N′(S)

c̄ j∑
i′∈M1(S)(ui′ j(S)/di′(S))

for all i ∈ M1(S). Update c̄ j B c̄ j −
∑

i∈M1(S) ui j(A)yi(S) for all j ∈ N′(S)
and

z B z +
c̄s∑

i′∈M1(S)(ui′s(S)/di′(S))
.

Note that for any i ∈ M we have∑
A⊆N

di(A)yi(A) ≤ z,

where the equality holds if i ∈ M1(S). Update S B S ∪ {s} and go back to
Step 1.

9

We show that solutions generated by Sub-algorithm, except for the final solution,
satisfy all the conditions in Lemma 4.

Lemma 5. Let S̃ be the output by Sub-algorithm and ℓ ∈ N be the index added
to S at the last iteration by Sub-algorithm. Let (y, z) be the dual variable at the
end of the iteration before ℓ is added. S̃ \{ℓ} and (y, z) satisfy the conditions in
Lemma 4.

Proof. Define S = S̃ \{ℓ}.

feasibility: Clearly (x(S), t(S)) is infeasible to PCIP(I). On the other hand,
(y, z) is feasible to the dual (11) since Sub-algorithm starts from the dual
feasible solution (y, z) = (0, 0) and maintains dual feasibility at every itera-
tion.

(a-1) and (a-2): (a-1) and (a-2) are satisfied by the way the algorithm updates S
and z, respectively.

(b): From Step 2, y(A) > 0 implies

A ⊆ S .

Also, i ∈ M1(S) implies ∑
j∈S

ui j < di.

Thus, for all i ∈ M1(S) and A ⊆ N such that yi(A) > 0,∑
j∈S \A

ui j(A) ≤
∑
j∈S \A

ui j =
∑
j∈S

ui j −
∑
j∈A

ui j < di −
∑
j∈A

ui j ≤ di(A),

where the first and last inequalities follow from (10).

□

Now we can easily prove Lemma 1.

Proof of Lemma 1. (x(S̃), t(S̃)) is clearly feasible and from Lemma 4 and Lemma 5,
we have that ∑

j∈N
c jx j(S̃) ≤ αOPT (I) + cℓ ≤ αOPT (I) + cn.

The running time of Sub-algorithm is O(mn2) since one iteration requires O(mn)
operations and the number of iterations is at most n. □

10

4 Conclusion
The partial covering 0–1 integer program (PCIP) is a generalization of the cover-
ing 0–1 integer program (CIP) and the partial set cover problem (PSCP). For PCIP,
we proposed a max{ f , p+1}-approximation algorithm, where f is the largest num-
ber of non-zero coefficients in the constraints and p is the number of constrains
which may not be satisfied. If f ≥ p + 1, the performance ratio of our algorithm
is f and it achieves the best performance ratio for CIP and PSCP. It is an open
question whether an f -approximation algorithm exists without any assumption.

Acknowledgment
This research is supported in part by Grant-in-Aid for Science Research (A) 26242027
of Japan Society for the Promotion of Science and Grant-in-Aid for Young Scien-
tist (B) 15K15941.

References
[1] R. Bar-Yahuda: Using homogeneous weights for approximating the partial

cover problem, in Proceedings 10th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (1999), 71–75.

[2] T. Carnes and D. Shmoys: Primal-dual schema for capacitated covering prob-
lems, Mathematical Programming, 153 (2015), 289–308.

[3] R. D. Carr, L. Fleischer, V. J. Leung and C. A. Phillips: Strengthening in-
tegrality gaps for capacitated network design and covering problems, Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(2000), 106–115.

[4] T. Fujito: On combinatorial approximation of covering 0–1 integer programs
and partial set cover, Journal of combinatorial optimization 8.4 (2004): 439–
452.

[5] R. Gandhi, K. Samir and S. Aravind: Approximation algorithms for partial
covering problems, Journal of Algorithms 53.1 (2004), 55–84.

[6] C. Koufogiannakis and N. E. Young: Tight approximation results for general
covering integer programs, in Proceedings 42nd Annual IEEE Symposium on
Foundations of Computer Science (2001), 522–528.

11

[7] C. Koufogiannakis and N. E. Young: Greedy δ-approximation algorithm for
covering with arbitrary constraints and submodular cost, Algorithmica, 66
(2013), 113–152.

[8] Z. He, C. Yang and W. Yu: A partial set covering model for protein mix-
ture identification using mass spectrometry data, IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 8.2 (2011), 368–380.

[9] Y. Ran, Y. Shi and Z. Zhang: Local ratio method on partial set multi-
cover, Journal of Combinatorial Optimization (2016). doi:10.1007/s10878–
016–0066–0

[10] Y. Ran, Z. Zhang, H. Du and Y. Zhu: Approximation algorithm for partial
positive influence problem in social network, Journal of Combinatorial Opti-
mization (2016). doi:10.1007/s10878–016–0005–0

[11] Y. Takazawa and S. Mizuno: A 2-approximation algorithm for the minimum
knapsack problem with a forcing graph, to appear in Journal of Operations
Research Society of Japan (2017).

Yotaro Takazawa
Department of Industrial Engineering and
Management
Tokyo Institute of Technology
2–12–1 Ohokayama
Meguro-ku Tokyo 152–8552, Japan
E-mail: takazawa.y.ab@m.titech.ac.jp

12

	CoverWP2017-2
	TAK-MIZ-KIT2016

