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Abstract

In this paper, we analyze a bargaining model which extends the model of Rubinstein
(1982) from the viewpoint of the process of how a proposer is decided in each period. In
our model, a player’s probability to be a proposer depends on the history of proposers. We
derive an explicit expression for the subgame perfect equilibrium (SPE) payoffs and how
these SPE payoffs are related to the process in the bilateral model and the n-player model,
respectively. In the bilateral model, we show that there is a unique SPE payoff. In the
n-player model, although SPE payoffs may not be unique, we can see that there exists an
SPE similar to that of the bilateral model.

In this paper, we also analyze the case where the discount factor is sufficiently large.
In this case, we show that if the ratio of opportunities to be a proposer converges to some
value, then players divide the profit according to the ratio of this convergent value. The
main consequence of this result is that although the process used in our model has less
regularity than a Markov process, we can derive the same result as in the model of Markov
process.

JEL classification: C72; C73; C78
Keywords: Non-cooperative bargaining; Subgame perfect equilibrium; Proposal ratio; Limit
payoff

1 Introduction

In this paper, we consider a basic non-cooperative bargaining problem in which players divide
a pie of size 1. We analyze the model which extends the model of Rubinstein (1982) from the
viewpoint of the process of how a proposer is decided in each period. In this model, we derive
the subgame perfect equilibrium (SPE) payoffs and analyze how SPE payoffs are related to the
frequency of proposal.

Recent research on non-cooperative bargaining models based on Rubinstein (1982) have used
alternating offers, constant probabilities across periods or Markov process as the process of how
a proposer is decided in each period (alternating offers and constant probabilities across periods
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can be considered as a special case of Markov process). For example, alternating offers model
is used in Rubinstein (1982), Shaked and Sutton (1984) and Chae and Yang (1990), constant
probabilities process is used in Fershtman and Seidmann (1993), Okada (1996) and Kalandrakis
(2006), Markov process is used in Kalandrakis (2004) and Herings and Predtetchinski (2010).

However, in reality, the bargaining situations drastically change and the same situations
rarely happen. These situations may not fit within the framework of the aforementioned papers
since there are only a finite number of states in these processes. In contrast to these models, we
analyze a more flexible model in the sense that the player’s probability to be a proposer may
depend on the history of proposers. By considering such a model, we can analyze more complex
situations which can have an infinite number of states.

Mao (2017) and Mao and Zhang (2017) analyze the bilateral bargaining models which are
not represented by Markov process to handle complex situations, but their procedures are de-
terministic from the viewpoint of the designer. The model analyzed in our paper extend their
models in the sense that we consider stochastic process.

Although Merlo and Wilson (1995) and Merlo and Wilson (1998) each analyzes an n player
model where the probability depends on the history of proposers, the goals of these studies are
to characterize the set of SPE payoffs as a fixed point of a suitable mapping. Therefore, these
papers do not derive the SPE payoffs explicitly so that one do not know how players actually
divide the pie other than the fact that one such division exists.

In our study, we derive an explicit expression for the SPE payoffs and how players divide
the pie in the bilateral model and the n-player model, respectively. In the bilateral model, we
show that there is a unique SPE payoff and how this SPE payoff is related to the probability
to be a proposer. In the n-player model, although we cannot derive the uniqueness of SPE
payoff, we can see that there exists an SPE which has the same form as the SPE derived in the
bilateral bargaining model. Under this SPE, the relationship between players’ SPE payoffs and
the probability to be a proposer has the same relationship as the bilateral model.

In this paper, we also analyze the case where the discount factor is sufficiently large. This
case is not analyzed in Mao (2017), Mao and Zhang (2017), Merlo and Wilson (1995) and Merlo
and Wilson (1998). In the bilateral model, we show that if the ratio of opportunities to be
a proposer during some periods converges to some specific value in the long run, then players
divide the pie according to the ratio of this convergent value (we use the word “the proposal
ratio” instead of the word “the ratio of opportunities to be a proposer” in the following). In
reality, even if individuals propose the divisions freely in the beginning, the negotiation often
calm down and the proposal ratio often stays in some value in the long run. Our result shows
that the pie is divided according to the ratio of this value. As corollaries of this result, we can
derive the results for models with alternating offers, constant probabilities across periods and
Markov process. The main consequence of this result is that the process used in our model has
less regularity than Markov process, we can derive the same result as in the model of Markov
process. That is, the result that players divide the pie according to the ratio of the convergent
value is “robust” to departures from an exact Markov process. In the n-player model, the same
result is also derived under the SPE which has the same form as the SPE derived in the bilateral
model.

This paper is organized as follows. In section 2, we define the bilateral bargaining model. In
section 3, we show that there exists a unique SPE payoff in the game defined in section 2 and
how SPE payoffs are related to the process of proposer. In section 4, we consider the case where
the discount factor is sufficiently large in the bilateral model. In this section, we show that if
the proposal ratio during some periods converges to some specific value in the long run, then
players divide the pie according to the ratio of this convergent value. In section 5, we analyze
the n-player model. In section 6, we conclude our study.
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2 The bilateral model

We consider the game in which two players, player 1 and 2 divide a pie of size 1. We define
N = {1,2} as a set of players and § € (0,1) as a common discount factor. Also, let S =
{(21,22) | 21 + 29 = 1,21, 22 > 0} as the set of divisions. The game goes on as follows.

At period t € {1,2,...}, nature selects one player as a proposer. When player i € N is
selected as a proposer, then she proposes some division x € S. After it, the responder j(# i)
responds with Yes or No. If the responder player j accepts the opponent’s proposal, then the
game ends and player i receives 6°~lz; and player j receives 5t’1xj. Conversely, if player j
rejects the opponent’s proposal, the game continues to the next period t + 1 and repeat the
above process.

In this model, we assume that the probability to be a proposer depends on the history
of proposers, that is, player’s probability to be a proposer depends on who proposed before
the present period. Since (J,cy Nt=! denotes the set of histories of proposers (N° = (), the
probability that a proposer is chosen in the next period is represented by the function P :
Uien N7 = {(P*, P?) | P* + P? =1, P, P?> > 0} where P* denotes player i’s probability.

Histories are divided into three types Hf, H? and Hf. H? = (N x S x {No})!~! denotes the
set of histories at the beginning of period ¢ (H{ = )), H? = H® x N denotes the set of histories
after nature’s selection and Hf = H} x S denotes the set of histories after the proposer’s offer.
Let o(h$) € N'=! be the history of proposers in h¢ € H{. Then, player i is selected as a proposer
with probability Pi(o(h¢)) after h¢ € HE.

Consider two histories g¢, h¢ € H{ such that o(g¢) = o(h$) € N'~1. Since P(o(gf)) =
P(o(h$)), the subgames corresponding to g¢ and h{ coincide. Therefore, subgames corresponding
to H{ can be characterized by N*~!. Now, we define I'(r) as the subgame corresponding to
7 € Uen N1 (the original game is represented by I'(0)).

3 Uniqueness of SPE payoff in the bilateral model

We examine an SPE of this model. First, we prepare some notation. m,. € N" denotes an

order of proposers during r periods and m,.(k) denotes k-th proposer of the order m,. nf =
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(mp(1),...,m(s)) denotes the proposers of the order m, from the first proposer to s-th pro-
poser. m,.ms denotes an order of proposers in which 7, follows .. Then, we define (7w, 7,.) =
P ()P @) (rrl) ... P () (=1,

To see the meaning of II(w, 7,.), we extract edges of nature’s action from the original game
tree. Figure 2 represents the tree of three periods after the history of proposer m. For example,
if 3 = (1,2,2), (7, 73) = Pl (7)P%(r, 1)P?(m, 1,2) is the probability that the red path occurs.
Therefore, generally, II(7, 7,.) is the probability that the order 7, occurs on condition that the
history of proposer 7 occurred.

By the definition of IL(7, m,.), P*(m)II((x, i), m,) = I(m, (i, 7)) forall m € J,ey N* 1, 7 € N7
and i € N. Also, the following lemma holds.

Lemma 1. For all m € J,cy N*™" and for allr € N, 37y (7, 7,) = 1.

Proof.
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Z (7, m)

TEN
=PY(n) + P%(n) = 1.

For all m € J,en Nt=1 by using the value II(n, 7,.), we define

fi(m) = Do 07 e I, T ) P (1)
v - Ziil §s—1

where II(, ) = 1. Now, the following lemma about f;(7) holds.

Lemma 2. For allm € J;2, N'"! and i € N,

fi(m) = Pi(m) (1 = 0 fj(m, ) + P! (m)d fi(m, 7)
where j # i.
Proof.
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We prove the existence of an SPE by using the above notation.

Theorem 1. Consider the following pair of strategies o = (01,02). Player i € N proposes the
division of the pie (1 — 8f;(o(h$),i),df;(0(h$),i)) to player j(# i) at the history (h¢,i) € H}.
On the other hand, player i accepts player j’s proposal x if xz; > 6fi(o(h%),7) and rejects if
x; < 0fi(o(h$),d) at the history (hi,j,x) € Hf. Then, o = (01,02) is an SPE of the game.

Proof. Since the game is an infinite horizon discounted multi-stage game with observed actions,
we can apply the one-shot deviation principle to prove Theorem 1. That is, o is an SPE if there
is no player who can become better off by deviating from o for just one period (see Fudenberg
and Tirole (1991)).

First, consider the history (h¢,i) € Hf. If o; and o are played after (h¢,4), player i receives
511 = 8 £3(0(h2), ).

Suppose that player i one-shot deviates from ¢; and proposes another division « = (1 -z}, z;)
which satisfies z; > df;(o(h{),i). Then, player j accepts it under o; and player i receives
5711 —x;). However, §'~!(1 —z;) is smaller than §'~*(1— 4§ f;(o(h),4)). Thus, player i cannot
improve her payoff by proposing the division x = (x;, z;) satisfying x; > §f;(o(h$),) after the
history (h%,1).

Next, suppose that player i one-shot deviates from o; and proposes another division z = (1 —
xj,x;) which satisfies z; < 0 f;(o(h{),4). Then, player j rejects the offer under ¢; and the game
continues to the step after the history (h¢,i,2, No) € H{, ;. After the history (h{,i,x, No), player
i is selected as a proposer with probability P?(o(h{),4) and receives §'(1 — 4 f;(o(h$),i,7)) under
o; and o;. On the other hand, player i is selected as a responder with probability P7(o(h{),1)
and receives 671 f;(o(h¢),i,j) under o; and o;. Therefore, player i receives P'(o(h),)5%(1 —
§fj(o(h$),i,i)) + Pi(o(hd),i)0" T fi(o(h$),i,5) = 8" fi(o(h¢),i) (by Lemma 2) after the history
(h¢,i,z, No) under o; and o;. Now, since

871 (L =0 f;(o(h}), ) — 8 fi(o(h{), 1)
=01 [1 = 6(f;(o(hg), ) + fi(o(hg),1))]
=5""1(1-9)
>0,

we can see
8" M1 = o f;(o(h),0)) > &' fi(o(hg), 9).

Therefore, player ¢ cannot improve her payoff by proposing the division & = (z;, ;) satisfying
xj < 0fj(o(h}),) after the history (h{,1).

Subsequently, we consider the subgame after the history (h¢,j,x) € Hf. If player i ac-
cepts the offer, she receives 6!~ 'z;. On the other hand, if she rejects the offer, the game
continues to the step after the history (h¢,j,x,No) € Hf, . Then, player i receives a1 —



§fj(o(h$),j,4)) with probability P'(o(h$),j) and receives 87! f;(o(h¢),j,j) with probability
Pi(o(h),7) under o; and o;. Therefore, player i receives P'(o(h),7)8'(1 — §fj(o(h),j, i) +
Pi(o(h$),5)8 fi(o(h$), j, j) = 6t fi(o(h$), j) (by Lemma 2) after the history (h¢, j, z, No) under
ag; and 0j.

Consider the case z; > ¢ f;(o(h$),j). Suppose that player ¢ one-shot deviates from o; and
rejects the offer z. Then, the game goes to the step after the history (h¢, j, z, No) and player i
receives &' f;(o(h{), j) under o; and o;. In this case, we can confirm that player i cannot improve
her payoff by deviating from o; since §"1z; > &' f;(o(h$), j).

Consider the case z; < df;(o(h{),j). Suppose that player i one-shot deviates from o; and
accepts the offer . Then, player i receives 6' 'xz;. However, she can receive larger payoff
6! f;(o(h$), j) under o; and o;. Therefore, player i cannot improve her payoff by deviating from
g;.

Consequently, Theorem 1 holds since there is no profitable one-shot deviation. O

When the SPE given in Theorem 1 is played, player 1 and 2 receive fi() and f2(0) (by
Lemma 2), respectively. We prove that payoffs which are obtained in the SPE given in Theorem
1 are the unique SPE payoff of the game.

Let M;(m;) and m;(m;) be the supremum and the infimum respectively of player i’s SPE
payoffs of the game I'(7;) in which all payoffs are multiplied by 1/§*. We have already confirmed
that there is an SPE in the game. Therefore, for all i € N and for all 7 € [J;2, N*=!, M;(7) and
m;(m) are well-defined. We derive two inequalities involving the supremum and the infimum of
SPE payoffs.

Lemma 3. For alli € N, for allt € {1,2,...} and for all h} € Hf, the following inequalities
hold.

where m_1 = o(h}).

Proof. Let G(h¢,i) be the subgame after the history (h¢,4) € H? in which all payoffs are mul-
tiplied by 1/8*. Fix ¢« € N and hy € H{. First, we prove (1). Consider the game G(h¢,i).
When player ¢ proposes the division x which satisfies x; < dm;(m_1,1) at the first period of
G(hg,1), player j rejects this proposal in all SPEs since player j can receives a payoff of at least
dm;(me—1,1) at the next period or later. Thus, if player ¢’s proposal is accepted at the first period
in SPE, player i’s payoff is not larger than 1 — dm;(m;—1,4). Also, player i can receive a payoff
of at most 6M;(m—1,%) at the next period or later. Since M;(m;—1,4) + m;(m—1,7) < 1 by the
definitions of M;(m—1,4) and m;(m—1,%), OM;(mi—1,3) < (1 — m;(m—1,1)) < 1 — dm;(m—1,19).
Therefore, player ¢ can receive a payoff of at most 1 — dm;(m—1,4) in the game G(h{,1).

Next, consider the game G(h{,7) (j # i). Let M;(h{,j) be the supremum of player i’s SPE
payoffs in the game G(h{,j). Now, we show M;(h¢,j) < §M;(m_1,7). Suppose M} (h¢,j) >
0M;(m—1,7). Then, there is an SPE o’ = (0j,0}) in which player j proposes the division
(2,1 — ) satistying dM;(me—1,7) < xf < MF(h$,j) and player i accept it at the first period
of G(h¢,7) since player i cannot achieve a payoff larger than 0 M;(m;—1, j) at the next period or
later in all SPEs. Therefore, under o', player j obtains 1 — 2. However, player j can improve
her payoff by proposing the division (zf,1 — z}) where z} satisfies a} > zF > IM;(m—1,J).
This proposal is also accepted by player ¢ who follows the strategy o since player ¢ must accept
all divisions satisfying x; > dM;(m—1,7) in all SPEs. Then, player j receives a payoff 1 — x¥
(> 1 — ). Therefore, for player j, proposing the division (z},1 — ) is not a best response to



o}. This contradicts to the fact that ¢’ is an SPE of the game G(h{, j). Therefore, M (h{,j) <
dM;(mi—1,7) holds, that is, player i can receive a payoff of at most dM;(m—1,7) in the game
G(h. ).

Finally, consider the game I'(m;_1) in which all payoffs are multiplied by 1/6!~1. This game
moves to the subgame G(h¢, i) with probability P!(m;_1) and the game G(h, j) with probability
PJ(m;_1). Therefore, from the above discussion, we can see

Mi(ﬂ't_1) < Pi(ﬂ't_l) (1 — 5mj(77t_1,i)) + Pj(ﬂ't_l)CSMi(ﬂ't_hj).

This inequality coincides with (1).

Next, we prove (2). First, consider the game G(h{,i). Let mf(h¢,i) be the infimum of
player i’s SPE payoffs in the game G(h{,7). We show m}(h{,i) > 1 — dM,(m_1,7). Suppose
m;(h,i) < 1—0Mj(m—1,9). Then, there is an SPE o” = (07, 07) in which player i obtains
some payoff z/ satisfying m} (h?,?) <z} <1 —dM;(m_1,1). However, player i can improve her
payoff by proposing the division (z}*,1 — x}*) at the first period of G(h{,4) where z* satisfies
1—a/ >1—a* > 0M;(m_1,i). This proposal is accepted by player j who follows the strategy
ol since player j must accept all divisions satisfying xz; > §M;(m;—1,4) in all SPEs. Then, player
i receives a payoff z7* (> ). Therefore, o}’ is not a best response to o/. This contradicts to
the fact that ¢’ is an SPE of the game G(h?,¢). Therefore, m}(h¢,i) > 1 — 6M;(m—1,1) holds,
that is, player ¢ can receive a payoff of at least 1 — 0M;(m;_1,4) in the game G(h{,1).

Next, consider the game G(h{,j). For all SPEs, if player j proposes the division x which
satisfies x; < dm;(m:—1,7) at the first period of G(h{, j), player i rejects this proposal since she
can receive a payoff of at least dm;(m;_1,j) at the next period or later. Therefore, for all SPEs,
player i can obtain a payoff of at least dm;(m—1,7) in the game G(h{, 7).

Finally, consider the game I'(m;_1) in which all payoffs are multiplied by 1/6°~!. This game
moves to the subgame G(h¢,i) with probability P?(m;_1) and the subgame G(h¢,j) with prob-
ability P’(m;_1). Therefore, from the above discussion, we can see

mi(me—1) > P'(me_1)(1 = Mj(mi1,4)) + P? (mp—1)dmi(me1, j).
This inequality coincides with (2). O

Before proving the uniqueness of SPE payoff, we provide an alternative formation of f;(m).
Let p(m) be the last responder of the order 7 € (J,cy N*!. For all r € {1,2,...} and for all
7€ Uy N1, we define afy(m) = P*(7) and

al(r)= > U(m,m )PP () sgn(p(r,))
TRrENT

where sgn; (i) = 1 and sgn,(j) = =1 (j # ).

Lemma 4. For all m € |J;2, N'™1,

film) = 6"ai ().
r=0
Proof.
fi(m) :Z:il 0" 3, e M, oy P (mmp1)
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By using Lemma 3 and 4, we prove the uniqueness of SPE payoff.

Theorem 2. For allt € {0,1,...} and m € N*, (fi(m), f2()) are the unique SPE payoffs of
the game T'(m) in which all payoffs are multiplied by 1/8. Specially, (f1(D), f2(D)) are the unique
SPE payoffs of the original game.

Proof. First, we prove that for all i € N and m € {1,2,...},

m—1

M;(m) < ;} 6" ay(m) + 6™ ;Wnﬂ(mﬂm)ul (77 ) sgn; (p(Tm)) 3)

and _ m
Z 0" ay () + 6™ ;Vm (7, T ) p2 (77 ) 5810 (p(7m)) (4)

where m

1 (TT) =

{mj (7T7Tm) (7T7n(m) = i)’
Mi (7T7Tm) (WM(m) j)?
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We prove (3) and (4) by mathematical induction. The case of m = 1 is obvious by Lemma

3. Suppose that (3) and (4) hold for m = k.
Here, we only show the inequality (3). (4) is proved similarly.
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T ENFK m (k)=7

k—1
= 6"ak(m) + 6% D T(m,m) PPUED () s (p())
r=0 TRENFE
+ gkt Z II(m, Wk)[—Pi(’/T’iTk)mj (7, 1) + P () My (7, §)]

TR ENFE

k
=Y dap(m) + Y T man) () seng (p(me)-
r=0

Trt1 ENFkHL

Now, we can see that (3) (and (4)) holds for m = k + 1. Therefore, for all i € N and m €

1,2,...},

m—1

My(m) < Y ap(m) + 6™ Y T, mn) i (wm) sgny (p(mm)

r=0 Tm EN™

and
m—1

mi(m) > 3 67ak(m) 4 5™ S T o (7 s (o)

r=0 Tm EN™

10



hold.
Next, we consider taking the limit as m — oo in (3). Focus on the second term of the right
hand side in (3). Since —1 < py (77,,) sgn, (p(7m)) < 1 by the definition of py,

- =—0" Z (7, )

Tm EN™

<™ Y H(m mn)pa () sgny (p(mm)

T EN™

<5 Z (7, 7m)

T EN™

:6177,
holds. Therefore, by taking the limit of both sides of the inequality,
Tim_ (W S T s () sgm(p(wm))) -0
Tm EN™

As a result, by Lemma 4,
M;(m) <) " 6"ai(m) + lim <5m > (w, m) (77, Sgni(p(ﬂm))>
r=0

m—oo
Tm EN™
)
-3 s
r=0

=fi(m).

Similarly,
mi(m) = fi(r)
holds. Thus, since M;(mw) > m;(7),

M;(m) = mi(m) = fi(m)

holds. This equation means that for all ¢ € {0,1,...} and 7 € N*, (f1(7), f2(n)) are the unique
SPE payoffs of the game I'(r) in which all payoffs are multiplied by 1/§¢. O

Finally, we provide an interpretation of the SPE payoff f;(0). TI(Q,m;_1)P%(7;_1) roughly
represents the probability that the history of proposers (m;_1,4) € N' occurs. Therefore,
D or L eNt-1 (0, 7¢_1)P*(m_1) can be considered as player i’s probability to be a proposer
at period ¢t. Thus, by the first form of f;(#), we can view each component game at period
t involving players dividing a pie of size 4! according to the proposal ratio at period t.
g1 > eni— H(O, mi_1)P*(m;_1) is the value that player i can obtain at period t. The nu-
merator of f;(()) is sum of these values and the denominator denotes the value of whole game.
Therefore, the player with more chances to be a proposer can obtain a higher payoff.

4 The limit of SPE payoffs in the bilateral model

Although it is generally difficult to examine the limit of SPE payoffs in our model, if the process
has some property during a time period of a certain length (which Markov process satisfies), we

11



can give a simple expression of the limit of SPE payoffs. In this section, we define p! as player
i’s probability to be a proposer at period t, that is,

pi= Y, 0w )P (m).

m_1ENt—1

Theorem 3. If there exists some k € N such that lim, . Z?;k(m—l)k-i-l pi converges to some

value V' (limy,— oo Z;r;k(m—l)k-i-l pl converges to k—V ), then limgpy f;(0) = T and limgpy f5(0) =
E—V
=
Since pi is player i’s probability to be a proposer at period ¢, ng(m—nkﬂ p! is sum of these
probabilities during the periods (m — 1)k + 1,...,mk. Theorem 3 means that if the proposal
ratio during a time period of a certain length converges to some value, then players divide the
pie according to this ratio.

Proof. By the assumption, for all € > 0, there exists some N* € N such that

mk
V—-e< Z pi <V+e
t=(m—1)k+1
for m > N*. Therefore, for m > N*,
mk '
5mk—1(V —6) < Z 5t—1p; < 6(m—1)k(v+6). (5)
t=(m—1)k+1
We define
N*—1k ¢t—1 4 o mk—
L((S) —_ g:l : 6t 1pt + Zm,:N*‘(S § 1(V_6)
thl St—1 ) 5t—1
* . N*k—1
D N (V-5
- o0 st—1 ko st—1
Et:l 0 ij ;k
DY A e I Uy Ll
>orog 0L Yy 8t
and

D T LV RTD D L L4 o)

R((S) - o0 + m=N" 3
Do 071 Do 01
lgl*—l)k 5t—1pi (V +e) 5“1"_;”“
== +
oo t—1 koost—1
) s

gl*—nk 6t—1p% N (V+€)§(N*f1)k
Yz 0 Zf:l o=t

12



Now, limgp L(0) = Vk—e and limgpy R(6) = Vz-e
By the definition of L(d), R(4) and (5),

L(6) < fi(0) < R(d)

holds since

* . k _ i
A LD D U i ST L

fi(0) = S b1 oo ot t
Therefore,
V—c¢
k
:%%TllL((S) = hr(rslTllnfL(é)
<liminf f; <l i
< 11(1%1111 fi(0) < H{slTSllle () (6)
<limsup R(§) = lim R(J)
511 0Tl
V+e
=

Since (6) holds for all € > 0,

. B ip p AN 18 iV
lim £3(0) = li inf £:(0) = hrngslup fi(0) = -

Thus

’ . . k-V
%l%lllfj(@) =1 —lélglfi(@) =%

O

We have shown that if the proposal ratio during a time period of a certain length converges
to some value, then players divide the pie according to the ratio of this value. One interpretation
of the condition “there exists some k € N such that lim,, o Z?;k(m_l) ki1 pi converges to some
value V” is that, in reality, even if individuals propose the divisions freely in the beginning, the
negotiation often calm down and the ratio of frequencies of proposal during a time period of a
certain length often stays in some value in the long run. Then, the number k in Theorem 3 can
be considered as the length of this time period. That is, after the negotiation calm down, the
ratio of individuals’ opportunities to be a proposer are V : k — V during these periods. Theorem
3 represents that individuals divide the pie with the ratio V' : kK — V under this situation.

From Theorem 3, we obtain some corollaries.

m-+k

t—m41 Pt converges to some value

Corollary 1. If there exists some k € N such that lim, 00 Y,
V, then limgsyy fi(0) = ¥ and limsy f;(0) = E22.

Proof. If the sequence {Z?S?Z_l P }men converges to V, the subsequence {Z;ik(m_l)kﬂ Pi}men
converges to V. Therefore, by Theorem 3, limsty f;(0) = ¥ and limsyy f;(0) = ’“*TV O

Corollary 1 means that the proposal ratio during k& consecutive periods converges to V :
k — V, then players divide the pie according to this ratio. To help one understand, we give an
example which is a generalization of the alternating offers process used in Rubinstein (1982)

where pé(m71)+1 =1 and pi,, =0 for all m € N.

13



Example 1. Suppose that {P;(m,1)+1}meN converges to Vi and {p,, }men converges to Va, then
limsy1 f;(0) = Y112 and limsy f;(0) = 7(1_‘/1)42'(1_‘/2).
Proof. For all € > 0, there exists some N* € N such that

€ €

‘/1 92 < pé(m—l)-&-l < Vl + 9
for m > N*. Also, there exists some N** € N such that
€ i €
for m > N**.
Therefore,
m—+2 )
VitVa—e< > pi<Vi+Vate
t=m+1
for m > max{2N*,2N**}.
Thus,
m—+2 )
t=m+1
Hence, by Corollary 1,
. Vi+ Vs
1 () = L2
lim £:() 5
and (1-V1) +(1—Va)
. _U=W)+1 =V
%ﬁl f] (Q) - 2 .
O
The following Corollary 2 is also obtained by Theorem 3.
Corollary 2. Iflim;_,.. pi converges to some value V, then limgey fi(0) =V and limgey f;(0) =
1-V.
Proof. This is the case of k = 1. O

This corollary implies that SPE payoff is equal to player’s probability to be a proposer in the
limit.

Markov process is used in Kalandrakis (2004) and Herings and Predtetchinski (2010) where
player’s probability to be a proposer in each period depends on the identity of the proposer in
the last period. We prove that if player’s probability depends on the previous [ periods, then
this process satisfies the condition of Corollary 2.

Proposition 1. Suppose that for alli € N and 7 € U;’ilﬂ Nt=1 Pi(r) > 0 and Pi(m) depends

on the previous | periods (for m € Ui:1 N'=L1 Pi(r) can take arbitrary values). Then, the limit
limy_y oo pi exists.
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Proof. U2, oV t=1 can be divided into 2! states which are characterized by the history of pro-
posers during previous | periods (iy,...,i;) € N (where i; denotes the proposer in the last
period). We define the set of these states as © = {01,...,0u}. Then, for all m, 7" € 6,
(m € {1,...,2'}), P{(w) = Pi(r’') by assumption. Therefore, for all # € 6,,, P(m) can be
expressed as a constant value P*(6,,) > 0.

NOW, define Qt_l(ﬂ) = Zﬂ't71€N7‘_1,ﬂ't71€9 H(@, 7Tt_1) and Qt—1(®) = (Qt_l(Gl), ceay Qt—1(02l))-

Let 6 be the state corresponding to (i1, ...,4;) € N'. Also, let " be the state corresponding to
(1,41,...,4-1) and 6" be the state corresponding to (2,41,...,4-1). Then,

Qt(el) _ Pil (0//)Qt71(9//) —&-P“ (QI/I)Qtfl(em) (7)

Therefore, we can express
Q(O) = Q1—1(0)A

where A is the transition matrix satisfying (7). Under this setting, since

pi= Y T(Bm 1)P(m1)

T ENtL

=> P9 > (0, 1)
(4SS T 1ENt—1 €60

=3 PO)Q 1 0)
[2SC)

for t > 41, we can prove Proposition 1 by showing the limit lim;_,, Q+(0O) (: limy_s oo @ (@)At*l)
exists. It is sufficient to show that A is ergodic. We show that all entries of A’ are positive, that
is, show that we can arrive at any state from any state in [ steps with positive probability.

Let 6, be the state corresponding to (my,...,my;) € N' and 6, be the state corresponding
to (m},...,m}) € N'. We can arrive at the state 61 corresponding to (ma, ..., m;, m;) € N from
O in 1 step with probability P™1(6,,) > 0 (since for all m € [J;,,, N*~1, Pi(m) > 0). Also, we
can arrive at the state 6y corresponding to (ma,...,m;,m}, my) € N! from 6, in 2 steps with
probability P™ (Hm)Pmé(Ql) > 0. Similarly, we can arrive at the state 6,,, from 6,, in [ steps
with probability P™1(6,,)P™2(6;)--- P™ (6;_1) > 0. Since 6,, and 6,,/ can be taken arbitrarily,
we can arrive at any state from any state in [ steps with positive probability. Therefore, A is
ergodic. O

By Proposition 1, we can see that the Markov process satisfies the condition of Corollary 2
and players divide the pie according to the proposal ratio in the limit. A special case of Corollary
2 is as follows.

Example 2. Let P'(i) > 0 and P'(j) > 0 be constant values (j # i). Suppose that P*(m;) = P(i)
when m(t) =i and P'(m;) = P'(j) when m(t) = j (PY(0) and P7(0) can take arbitrary values).

Then, limsyq f;(0) = W(JP)J'@)'
Proof.
Pip1 = Z (0, 7¢) P ()
T ENt
= Y memPO+ Y memP)
T ENt my (t)=1i m ENt m (t)=]
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=P'(i) Z (0, 7¢—1) P* (1) + P'(j) Z (0, m—1) P (1)

=P'(i) > T, m_1)P(m_1)+P'(G) Y, T0,m)(1-P(m_1))
mT_1ENt—L m_1ENITL
=Pi(i) Y U@m-)P(m) = PG Y W0 m1)P (r)
m_1ENt—1 m—1ENtTL
+PG) Y T0,mo)
T ENtL
= (P =P'@) Y T0.m1)P(m)+ P()
m—1 ENt—L
=(P'(i)) = P'(j)) pi + P'().
Therefore,
i Pi(j _ (pif; il i P'(4)
Piy1 — 1+ Pi(j) — Pi(i) (P (i) —P (J)) (Pt - 1+ Pi(j) _Pi(i)>

Thus,

i P'(5) ity — PNt [ P —

tos = 3 gy (0= PO (PO~ 557
Since —1 < Pi(i) — P'(j) < 1,

e P PGy 1 Pi(i)
By Corollary 2, we obtain
, P(j)
1 L —_ T =<
i) = 553 B
O

Markov process satisfies the condition of Corollary 2 and players divide the pie according to
the proposal ratio in the limit. The main consequence of Theorem 3 is that although the process
used in Theorem 3 has less regularity than a Markov process, we can derive the same result as
in the model of Markov process. That is, the result that players divide the pie according to the
proposal ratio in the limit is “robust” to departures from an exact Markov process.

5 The n-player model
In this section, we consider the n-player bargaining model (n > 2). Although SPE payoffs may
not be unique in the n-player model if ¢ is large (see Merlo and Wilson (1995)), we can see that

there is an SPE similar to Theorem 1. Under this SPE, we obtain the results which correspond
to Theorem 3 and Proposition 1 in the n-player model.
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5.1 The model

We consider the game in which n players divide a pie of size 1. We redefine N = {1,2,...,n}
as a set of players and ¢ € (0,1) as a common discount factor. Also, let S = {(x1,22,...,2x) |
Y ien i = 1,z; > 0} as the set of divisions. As with the bilateral model, we assume that a
probability to be a proposer depends on the history of proposers. Since |J,cn IV t=1 denotes the
set of histories of proposers (N? = (}), the probability that a proposer is chosen in the next period
is represented by the function P : J, o N1 — {(P', P?,...,P") | >,y P' =1, P" > 0} where
P* denotes player ¢’s probability. The game goes on as follows.

At period t € {1,2,...}, nature selects one player as a proposer. The player who is selected
as a proposer proposes some division x € S. After it, all other players respond with Yes or No
sequentially (the order of responders does not affect our results). If all responders accept the
proposal, then the game ends and player i € N receives '~ 'x;. Conversely, if some responder
rejects the proposal, the game continues to the next period ¢ + 1 and repeat the above process.

5.2 SPE
We use the same notation as the bilateral model. That is, 7, € N” denotes an order of proposers
during r periods and (k) denotes k-th proposer of the order 7. ¥ = (m,(1),...,m.(s)) denotes

the proposers of the order 7, from the first proposer to s-th proposer. m,ms denotes an order of

proposers in which 7 follows 7,.. Also, we redefine I(r, r,.) = P™ M (7)P™ @) (zl) - .. P (") (mgl=1)

and - . 4
S5, ey T, w1 ) P,y

Dy 057!
for all m € (J,ey N*~!. Now, the property about II(, m,) given in Lemma 1 similarly holds in
the n player model. Also, the following lemma holds.

Lemma 5. For allme |J;2, N*"! andi € N,

fi(m) =

film) = Pi(m) | 1= 6f(mi) |+ PI(m)dfi(r, ).
J#i JFi

Proof.

Pim) | 1=6> fi(mi) | + Y P/(m)dfi(m, j)
J#i J#i
Ziil ot =4 Zj#i Ziil ot 277,,'71ENT—1 H((ﬂ-v i)r 7T7“—1)Pj (777 i 71-7’—1)
Desy 0ot
1 Z:il 5T_1 Zﬂ" eNT—1 H((T“j)? 7T7"*1)Pi(7r7j7 7(-7’71)
+Y Pi(m)6="= —
J#i Z =1 5
1+6Zr 167 1[1 - Z];ﬁz Zﬂ'r LENT-1 H((ﬂ- 'L) T — l)P (7(7277Tr 1)]
Zs:l §s—1
; Ziil ot Zﬂ' eNr—1 H((ﬂ',j), WT—l)Pi(Tﬁja '/Tr—l)
+ 3 P eeNT ]
J#i Zs:l d
1+ 4 270"021 5T71 Zm_leN“l H((ﬂ—v Z)v 7T,,‘,1)P7“(7T, ia 777”71)
Z?il 551

—Pi(x)

= (71'

=Pi(n)
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e 0T ene (), 1) P 1)
+ZPJ(7T)5 1 r— ENZOO o
J#i s=1
CPUm) +6302 07 Y e PUmI((m, ), w1 ) P (i )
a D ery 057t
5220:1 (Sr_l Zﬁéi Z?‘rr—lGN’"*I Pj (W)H((W,j), T‘—T*l)Pi(ﬂVj» 71—7"71)
+ oo s—1
Zs:l 5
_Pz(ﬂ') +6y 0 6t Do ene— H(m, (im0 —1)) P (7,4, 1)
Z:il 65—1
62:11 6T_1 Zg;ﬁz ZT{‘T,IGNT‘71 H(ﬂ-v (ja 7TT,1>>Pi<7T,j, 7T7‘71)
+ = —
Zs:l oS 1
_Pi(ﬁ) +9 Z:il ot aneNr,m(l):i (7, 7, ) P (m, )
Zs:l 65—1
n 52?:1 ot Zj;éi aneNT,m(l)zj (7, m, ) P*(, )
Dy 057
_Pi(ﬂ') + 0 27011 o1 erreN’“ (7, 7,.) Pt (7, 7))
Dy 057
:PZ(W) + 270.;1 o" ZTFTENT H(Trﬂ WT)Pi(7T7 WT)
Demy 057

=fi(m).
O
In the n player model, there exists the following SPE.
Theorem 4. Consider the following strategies o = (01,...,0,). After the history of proposers

T e Uz, N'=1 if player i € N becomes a proposer, she proposes the division x* € S where
xj = 0fj(mi) for j # i and a7 = 1 -6, fi(m,i). Conversely, when player i becomes a
responder, she accepts player j’s proposal x € S if x; > 6f;(m,j) and rejects if x; < 6 f;(m,j).
Then, o is an SPE of the n player model.

Proof. We apply the one-shot deviation principle. Consider the path after the history of proposers
Te—1 € Ntil.

First, consider the case that player i is selected as a proposer after ;1. If o is played, player
i receives 6'71(1 — 6>z fi(me—1,4)). Suppose that player i one-shot deviates from o; and
proposes another division « which satisfies x; > ¢ f;(m—1,4) for all j # i and xj > 0 fj (m4—1,1%)
for some j’ # i. Then, all responders accept it under o and player i receives 6°~*(1 — Zj# zj).
However, §71(1 — > j4i ©j) is smaller than (1 - 6>z [i(me—1,4)). Thus, player i cannot
improve her payoff by proposing the division z.

Next, suppose that player 7 one-shot deviates from o; and proposes another division z’
which satisfies acz < 6fj(m—1,1) for some j* # 4. Then, player j* rejects the offer under
oj- and the game continues to the next period. Then, the history of proposers is (m_1,1%).
After this history, player i is selected as a proposer with probability Pi(m;_1,i) and receives
51 — 6> 2 fi(me—1,4,4)) under . On the other hand, player j # i is selected as a proposer
with probability P’(m;_1,i) and player i receives 8" f;(m;_1,4,j) under o. Therefore, player i
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receives P(my_1,1)8%(1 —(SZHéz fi(me1,4,0)) + 325 4 PY (w1, 0)8" 4 fi(mi 1,4, §) = 6" fi(me—1,19)
(by Lemma 5) under . Now, since

S 1 =0 fi(mon,i) | = 8" fi(mioa, )
J#i

:(St_l 1-96 Z fj/(?‘(tfl, Z)
Jj'eEN

=5""1(1-9)

>0,

we can see

ST 1=0> fi(mon,i) | > 8 fi(mor,d).
J#i

Therefore, player i cannot improve her payoff by proposing the division z’.

Subsequently, consider the case that player j** # i is selected as a proposer after m,_; and
she proposes the division « € S. If player i accepts the offer, she receives 6/~ 'z;. On the other
hand, if she rejects the offer, the game continues to the next period. Then, player 1 receives
O(1—=032, fi (wt_l,j**, i)) with probability P*(m;_1,j**) and receives 6'T1 f;(m;_1,7**, 7) with
probability P’ (m;_1,j**) for j # i under o. Therefore if player i rejects player j**’s proposal x,
she receives Pi(m;_1, j**)ét(l—ézﬁéz [i(me=1,J ))—i-zﬁéz Iy, )T fi(mp—1, 5%, 5) =
8t fi(mi—1,5**) (by Lemma 5) under o.

Consider the case z; > 0f;(m—1,7**). Suppose that player ¢ one-shot deviates from o;
and rejects the offer z. Then, the game continues to the next period and player ¢ receives
8t fi(me_1,7**) under o. In this case, we can confirm that player i cannot improve her payoff by
deviating from o; since 8" 1xz; > 8 fi (w1, 5*%).

Consider the case z; < df;(m—1,7**). Suppose that player i one-shot deviates from o; and
accepts the offer . Then, player i receives 6' 'xz;. However, she can receive larger payoff
8t fi(me—1,7**) under o. Therefore, player i cannot improve her payoff by deviating from o;.

Consequently, Theorem 4 holds since there is no profitable one-shot deviation. O

5.3 The limit of the SPE payoff

If the SPE ¢ = (01, ...,0,) given in Theorem 4 is played, player i € N receives the payoff f;(0).
Under this SPE, we obtain the results which correspond to Theorem 3 and Proposition 1 in the
n player model.

We redefine

pi = Z H(@,ﬂ't_l)Pi(ﬂ't_l).

T 1ENtTL

Theorem 5. If there exists some k € N such that {(Zt (m Dkt1 Diyeees Z:;k(mq)kﬂ P) bmen

converges to some values (Vi,...,V,), then limsyq f;(0) = k foralli e N.

Proof. The proof is the same as Theorem 3. O
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Corollary 3. If there exists some k € N such that {(Z;’;ﬁfﬂ Diyeees Z:;:H Pi) }men converges

to some values (Vi,...,V,), then limgp f;(0) = % forallie N.

Corollary 4. If {(p},...,pi") }ten converges to some values (Vi,...,Vy), then limgyy fi(0) = V;
forallie N.

Therefore, players divide the pie according to the proposal ratio under the SPE given in
Theorem 4.

If player’s probability to be a proposer depends on the previous ! periods (Markov process),
this process satisfies the condition of Corollary 4.

Proposition 2. Suppose that for alli € N and 7 € U;,il-i-l N'=1, P{(r) > 0 and P*(r) depends
only on the previous | periods (for m € Uizl N'=1 Pi(n) can take arbitrary values). Then,
{(p},...,p") }en converges.

Proof. \U;2, a N t=1 can be divided into n! states which are characterized by the history of
proposers during previous [ periods. The rest of the proof is the same as Proposition 1. O

Therefore, in the n player model, under the SPE ¢ = (074, ..., 0,), we obtain the same results
as the bilateral model.

6 Conclusion

We analyzed the model which extends the model of Rubinstein (1982) from the viewpoint of
the process of how a proposer is decided in each period. In the bilateral bargaining model, we
derived the unique SPE payoffs and analyzed how the SPE payoffs are related to the process.
We saw each component game at period ¢ involving players dividing a pie of size §*~! according
to the proposal ratio at period ¢ in the unique SPE payoffs. Therefore, the player with more
chances to be a proposer can obtain a higher payoff.

In the case 6 — 1, we showed if the proposal ratio ultimately converges to some value, then
players divide the pie according to this convergent value. The main consequence of Theorem 3
is that although the process used in Theorem 3 has less regularity than a Markov process, we
can derive the same result as in the model of Markov process.

In the n-player model, we showed that there exists an SPE which has the same form as the
SPE given in Theorem 1. Under this SPE, we showed that the same results as the bilateral
model hold.
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