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Abstract

We propose a new test for the equality of the mean vectors be-
tween a two groups with the same number of the observations in high-
dimensional data. The existing tests for this problem require a strong
condition on the population covariance matrix. The proposed test in
this paper does not require such conditions for it. This test will be
obtained in a general model, that is, the data need not be normally
distributed.

1 Introduction

Advances of information technology and database system make it possible
to collect and store “high-dimensional data” which have fewer observations
than or equal to the dimension. High-dimensional data appears in various
fields, such as DNA microarray data analysis and marketing data analysis.
In such high-dimensional data, however, traditional multivariate analysis is
not often applicable.

In this paper, we propose a new test for the equality of two mean vectors
of n observations which are given by (X

(i1)
p , X

(i2)
p ), i = 1, . . . , n, where X

(ij)
p

are p-dimensional random vectors. Within the group j = 1, 2, X
(ij)
p (i =

1, . . . , n) are independent, while the two groups may be dependent. In a

specific situation, we can regard X
(i1)
p and X

(i2)
p as the two measurements

on the same subject i before and after a treatment. Let X
(i)
p = X

(i1)
p −

X
(i2)
p , µp = E(X

(i)
p ) and Σp = Var(X

(i)
p ), then the problem is a one-sample

problem. We wish to test the following hypothesis:

H0 : µp = 0 versus H1 : µp 6= 0. (1.1)

A traditional method to test the null hypothesis is Hotelling’s T 2 test. How-
ever, Hotelling’s T 2 test is not applicable when n ≤ p since the inverse of the
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sample covariance matrix does not exist. Bai and Saranadasa (1996) propose
a test for the two sample problem with equal population covariance matrices.
For the one sample problem in (1.1), the test is based on the statistic

Fn,p = X̄T
n,pX̄n,p −

1

n
trSn,p, (1.2)

where X̄n,p is the sample mean vector and Sn,p is the sample covariance
matrix. More recently, Chen and Qin (2010) propose a test based on the
statistic

Gn,p =
1

n(n − 1)

n∑
i6=j

X(i)T
p X(j)

p (1.3)

for the one sample problem in (1.1). They also propose a test for the
two sample problem with unequal population covariance matrices. The
asymptotic normality of the test statistic is obtained under the condition
trΣ4

p = o{(trΣ2
p)

2} and the null hypothesis H0 in (1.1) when the sample size
n and the dimension p tend to infinity.

We easily show that Fn,p = Gn,p. Hence, for the one sample problem in
(1.1), the asymptotic normality of Bai and Saranadasa’s test statistic is also
obtained under the condition trΣ4

p = o{(trΣ2
p)

2} which is weaker than the
original one. However, this condition is still restrictive. Indeed, the condition
exclude some typical situation such as Σp = (1 − ρ)Ip + ρ1p1

T
p , ρ ∈ (0, 1),

where Ip is the p × p identity matrix and 1p is the p-column vector with
all entries one, or the case where the maximum eigenvalue of Σp has larger
order of p than 1/2. Moreover, it is hard to estimate whether the condition
is satisfied or not from the data because of its high-dimensionality.

When the condition is not satisfied, the population covariance matrix
makes an enormous effect on the asymptotic null distributions of the two
test statistics. Katayama et al. (2010) show that the type of the asymp-
totic null distribution of Bai and Saranadasa’s test statistic depends on the
population covariance matrix, hence so is Chen and Qin’s test statistic. To
illustrate this phenomenon, we give a simple example. Suppose temporarily
X

(i)
p ’s are independently and identically distributed (i.i.d.) as p-dimensional

multivariate normal distribution with mean vector 0p and covariance matrix
Σp = (1−ρp)Ip+ρp1p1

T
p , ρp = p−α, α ∈ (0, 1). Here, 0p denotes the p-column

vector with all entries zero. Note that the condition is satisfied only when
1/2 < α < 1. Since the two test statistics are equivalent, we consider Chen
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and Qin’s test statistic only. We define the standardized version of the test
statistic as follows:

T̃CQ =
Gn,p√

2trΣ2
p/n(n − 1)

.

The distributions of T̃CQ are plotted for (n, p) = (80, 300), (80, 500) based on
10, 000 simulations in Figure 1. This shows that the type of the asymptotic
null distributions of T̃CQ depends on α, hence on Σp. When the condition
is not satisfied, i.e., 0 < α ≤ 1/2, the asymptotic distribution of T̃CQ is
obviously not normal for the two cases considered. Indeed, the asymptotic
distribution is standardized chi-square distribution with 1 degree of freedom
for 0 < α < 1/2, and the convolution of normal and chi-square distributions
for α = 1/2. See Katayama et al. (2010) for more details. Hence the type I
error of Chen and Qin’s test would be asymptotically incorrect.
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Figure 1: Distribution of T̃CQ, when n = 80 and p = 300, 500, based on
10, 000 Monte Carlo simulations

Motivated by these findings, in this paper, we construct a test statistic
which has the asymptotic normality under H0 without any assumption on
population covariance matrix. Hence, the type I error of the proposed test
is always asymptotically correct when we use the percentile point of normal
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distribution. The asymptotic normality is obtained without assuming that
the random vectors are i.i.d. as multivariate normal distribution.

The paper is organized as follows. In Section 2, we introduce the proposed
test and obtain the asymptotic normality. Several simulations and a real data
example are given in Section 3. All the proofs are given in Section 4.

2 Proposed Test

In this section, we propose a test statistic for (1.1). The asymptotic
normality of the test statistic is obtained without any assumption on the
population covariance matrix under H0. Like Srivastava (2009), we assume

X(i)
p = µp + CpZ

(i)
p , i = 1, . . . , n, (2.1)

where Cp is a p × p matrix with Σp = CpC
T
p and Z

(i)
p = (zi1, . . . , zip)

T .
Assume that zij’s are independent random variables which satisfy

E(zij) = 0, E(z2
ij) = 1, E(z4

ij) = γ < ∞.

For the high-dimensional inference, we assume the following condition:
Condition A. n = n(p) → ∞ as p → ∞.
Now we propose the test statistic as

Tn,p = trXT
n,pMnXn,p, (2.2)

where Xn,p = (X
(1)
p , . . . , X

(n)
p )T is the data matrix and Mn is a known n×n

symmetric matrix which satisfies the following condition:
Condition B. Mn = (mij) with mij ≥ 0 and mii = 0, 1T

nMn1n 6= 0 ,
trM 4

n = o{(trM 2
n)2}.

The proposed test statistic is also defined as

Tn,p =
n∑

i6=j

mijX
(i)T
p X(j)

p .

The mean and variance of Tn,p are given by

E(Tn,p) = (1T
nMn1n)µT

p µp, (2.3)

Var(TMn) = 2trM 2
ntrΣ2

p + 4(1T
nM 2

n1n)µT
p Σpµp. (2.4)
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The derivation of (2.4) is a little complicated, while the equation (2.3) is
easily obtained. We shall give the derivation of (2.4) in Section 4. Since
1T

nMn1n 6= 0 under Condition B, we note that Tn,p is a valid statistic for
testing the null hypothesis in (1.1). In view of trM 2

n 6= 0, we also note that
Var(Tn,p) 6= 0 for any population mean vector µp.

For the asymptotic normality of Tn,p under the null hypothesis H0 in
(1.1), we have the following theorem.

Theorem 2.1 Under the null hypothesis H0 and Conditions A and B, we
have

T̃n,p =
Tn,p√

2trM 2
ntrΣ2

p

d−→ N(0, 1), p → ∞,

where
d−→ denotes the convergence in distribution and N(0, 1) denotes a

standard normal distribution.

Since trΣ2
p is unknown generally, we need to estimate it. Define

U2 =
1

P 2
n

n∑
i 6=j

X(i)T
p X(j)

p X(i)T
p X(j)

p ,

U3 =
1

P 3
n

n∑
i6=j 6=k

X(i)T
p X(j)

p X(i)T
p X(k)

p ,

U4 =
1

P 4
n

n∑
i6=j 6=k 6=`

X(i)T
p X(j)

p X(k)T
p X(`)

p ,

where P r
n = n!/(n− r)!. Following Chen et al. (2010), an unbiased estimator

t̂rΣ2
p of trΣ2

p is given by

t̂rΣ2
p = U2 − 2U3 + U4. (2.5)

In addition to the unbiasedness, the estimator t̂rΣ2
p is ratio-consistent which

is given in the following theorem:

Theorem 2.2 Under Condition A, we have

t̂rΣ2
p

trΣ2
p

P−→ 1, p → ∞, (2.6)

where
P−→ 1 denotes the convergence in probability.
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From Theorem 2.1 and 2.2, under H0 and Conditions A and B, we have

Tn,p√
2trM 2

n t̂rΣ2
p

d−→ N(0, 1), p → ∞.

This result does not require any conditions on the population covariance
matrix. The asymptotic normality is attained by using the known matrix
Mn which satisfies Condition B. For instance, the matrix Mn is given by

(i) Mn = (ρ|i−j|I(|i − j| > 0)) with ρ ∈ (0, 1);

(ii) Mn = (|i − j|−sI(|i − j| > 0)) with s > 1;

(iii) Mn = (m|i−j|I(|i − j| > 0)) with limn→∞
∑n−1

k=1 |mk| < ∞,

where I(E) for a event E equals to 1 when E is true, equals to 0 when E
is false. The matrices (i) and (ii) are the special cases of (iii). We apply
the Szegö theorem (see, e.g., Grenander and Szegö, 1958) to show that (iii)
meets Condition B.

For the asymptotic power of T̃n,p, we assume the following condition:
Condition C. (1T

nM 2
n1n)µT

p Σpµp = o(trM 2
ntrΣ2

p).

The following theorem establishes the asymptotic power of T̃n,p under the
local alternative defined by Condition C.

Theorem 2.3 Under the alternative H1 and Conditions A–C, we have

P
(
T̃n,p > z1−α|H1

)
− Φ

(
−z1−α +

(1T
nMn1n)µT

p µp√
2trM 2

ntrΣ2
p

)
→ 0, p → ∞,

where Φ denotes the distribution function of a standard normal distribution,
z1−α is the upper α-percentile point of the standard normal distribution, and
P (· |H1) denotes the probability under the alternative H1.

From Theorem 2.3, we note that the asymptotic power of T̃n,p depends on
λn = 1T

nMn1n/(trM
2
n)1/2. Hence, we suppose that selecting the matrix Mn

which has larger λn leads to larger power of T̃n,p. Obviously, the matrix Mn

which maximizes λn is given by c1n1
T
n where c is any constant. However,

this matrix does not satisfy mii = 0 and trM 4
n = o{(trM 2

n)2} in Condition
B. We need to maximize λn over the matrices which satisfy Condition B.
Unfortunately, it is hard to find such matrix even in the case (iii) since the
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numbers of the parameters, we need to determine to maximize λn, increase
as the sample size increases. For this reason, we shall compare T̃n,p using (i)
and (ii) numerically later in the next Section.

It should be mentioned that when we use the matrix Mn which maximizes
λn subject only to mii = 0 in Condition B, the proposed statistic Tn,p is
equivalent to the statistic Gn,p given in (1.3), and hence, to Fn,p given in
(1.2). Thus we note that the power of the proposed test would be lower than
the two tests. In this view, we should use the existing test when Σp is known
and the asymptotic distribution is specified using the result of Katayama
et.al. (2010). Nevertheless, the proposed test is useful when we have no
information about Σp for the correct type I error.

In the rest of this section, we consider the consistency of the proposed
test. Assume that the matrix Mn is given by (iii). Then we have

1T
nMn1n = 2

n−1∑
k=1

(n − k)mk = O(n)

and

trM 2
n = 2

n−1∑
k=1

(n − k)m2
k = O(n),

since limn→∞
∑n−1

k=1 |mk| < ∞ and
∑n−1

k=1 m2
k ≤ (

∑n−1
k=1 |mk|)2. Hence,

1T
nMn1n√
trM 2

n

= O(
√

n). (2.7)

Theorem 2.3 and (2.7) yield the following theorem:

Theorem 2.4 Assume Conditions A–C and that Mn has the form given by
(iii). Let δn,p = n1/2µT

p µp/(trΣ
2
p)

1/2. Under the alternative H1, if δn,p → ∞
as p → ∞, then we have P (T̃n,p > z1−α |H1) → 1 where P (·|H1) denotes the
probability under the alternative H1.

3 Numerical Results

In this section, we evaluate performance of the proposed test statistic T̃n,p

with the existing one T̃CQ by computing the empirical significance level and
power. The performance for a DNA microarray data is also evaluated.
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3.1 Computational Complexity of t̂rΣ2
p

Before conducting several simulations and a DNA microarray data anal-

ysis, we need to mention the computational complexity of t̂rΣ2
p. Indeed, a

large amounts of time is required to calculate t̂rΣ2
p since it includes the sum-

mation over the set of up to quadruplet, i.e., {(i, j, k, `) |1 ≤ i, j, k, ` ≤ n}.
Let aij = X

(i) T
p X

(j)
p for the sake of simplicity. Then it follows that

P 3
nU3 =

n∑
i,j,k=1

aijaik −
n∑

i6=j

a2
ij − 2

∑
i6=j

aiiaij −
n∑

i=1

a2
ii

=
n∑

i=1

{( n∑
j=1

aij

)2}
−

n∑
i,j=1

a2
ij − 2

n∑
i=1

aii

( n∑
j=1

aij

)
+ 2

n∑
i=1

a2
ii (3.1)

and

P 4
nU4 =

n∑
i,j,k,`=1

aijak` − 2
n∑

i6=j 6=k

aiiajk − 4
n∑

i6=j 6=k

aijaik

−
n∑

i 6=j

aiiajj − 2
n∑

i 6=j

a2
ij − 4

n∑
i6=j

aiiaij −
n∑

i=1

a2
ii

=

( n∑
i,j=1

aij

)2

− 2

( n∑
i=1

aii

)( n∑
j,k=1

ajk

)
− 4

n∑
i=1

{( n∑
j=1

aij

)2}

+

( n∑
i=1

aii

)2

+ 2
n∑

i,j=1

a2
ij + 8

n∑
i=1

aii

( n∑
j=1

aij

)
− 6

n∑
i=1

a2
ii. (3.2)

Thus, when aij (i, j = 1, . . . , p) are given, we only require O(n2) operations

to calculate t̂rΣ2
p through the above equations (3.1) and (3.2), while it costs

as many as O(n4) operations to calculate it directly.

3.2 Simulations

We consider three population distributions in the model (2.1): random
variables zij’s are i.i.d. as standard normal distribution, standardized t distri-
bution with 5 degrees of freedom and standardized gamma distribution with
shape and scale parameters 2 and 2. For the population covariance matrix,
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we choose

Σ1 = (σiσjρ
|i−j|), Σ2 = (σiσjρ), Σ3 = (σiσjuij)

where ρ = 0.5, σ2
i = 2 + (p − i + 1)/p, uii = 1 and uij = uji (i 6= j) are

i.i.d. as U(0, 1), uniform distribution with the support (0, 1) . We note that
T̃n,p and T̃CQ include the unknown parameter trΣ2

p. The estimator (2.5) is
used in the following simulations. The empirical significance level and power
are calculated based on 10, 000 Monte Carlo simulations.

New Test (1) New Test (2) CQ
Covariance Population p .0500 .0100 .0500 .0100 .0500 .0100

Σ1 Normal 100 .0502 .0122 .0500 .0124 .0629 .0201
300 .0462 .0097 .0466 .0092 .0594 .0180
500 .0508 .0101 .0527 .0098 .0566 .0145

t 100 .0537 .0133 .0535 .0130 .0602 .0185
300 .0489 .0101 .0492 .0099 .0564 .0172
500 .0500 .0114 .0510 .0109 .0548 .0156

Gamma 100 .0491 .0107 .0487 .0108 .0612 .0193
300 .0521 .0129 .0526 .0121 .0598 .0159
500 .0539 .0111 .0557 .0109 .0513 .0143

Σ2 Normal 100 .0576 .0141 .0567 .0144 .0726 .0418
300 .0614 .0176 .0612 .0174 .0724 .0430
500 .0596 .0163 .0592 .0166 .0716 .0414

t 100 .0553 .0169 .0560 .0171 .0747 .0424
300 .0557 .0148 .0561 .0145 .0729 .0443
500 .0554 .0153 .0554 .0153 .0722 .0441

Gamma 100 .0603 .0155 .0593 .0146 .0736 .0449
300 .0563 .0159 .0568 .0153 .0722 .0406
500 .0564 .0154 .0563 .0152 .0681 .0391

Σ3 Normal 100 .0530 .0143 .0510 .0139 .0616 .0316
300 .0501 .0129 .0487 .0125 .0663 .0344
500 .0568 .0129 .0554 .0131 .0647 .0329

t 100 .0606 .0159 .0622 .0157 .0707 .0363
300 .0527 .0141 .0524 .0145 .0646 .0322
500 .0553 .0142 .0548 .0144 .0646 .0336

Gamma 100 .0551 .0150 .0542 .0152 .0663 .0348
300 .0503 .0133 .0499 .0132 .0635 .0312
500 .0551 .0131 .0548 .0134 .0609 .0314

Table 1: Empirical significance levels for Σ1, Σ2 and Σ3 at 5% and 1%
significance based on the normal approximation.
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In Table 1, we evaluate empirical significance levels of the three statis-
tics based on the normal approximation at 5% and 1% significance. We
choose n = 80 and p = 100, 300, 500. In the table, New Test (1) and (2)
denote the proposed test using (i) and (ii) as Mn respectively. Considering
trM 4

n = o{(trM 2
n)2} in Condition B for the asymptotic normality of Tn,p,

we determine ρ and s in (i) and (ii) such that trM 4
n/(trM 2

n)2 = 0.03. CQ
denotes the test proposed by Chen and Qin (2010). It is found that the pro-
posed test has better approximation for the significance level, particularly at
1%, for the all populations and population covariance matrices considered.

We denote η = µT
p µp/(trΣ

2
p)

1/2 for comparing the empirical powers of the
three tests. This simulation is conducted at significance 5%. In Figure 2, we
show the empirical power curves for n = 80, p = 300, Σ1, Σ2 and Σ3 with
standard normal, t and gamma distributions. It is found that the power of
the proposed test which uses (ii) as Mn is slightly higher than that using
(i). As described in Section 2, the power of the proposed test is lower than
that of Chen and Qin’s test, theoretically. We also find this result in the
figure. For improvement of the power of the proposed test, we may need to
find a optimal matrix Mn in the matrices which satisfy Condition B. This is
a future problem.

3.3 A Real Data Example

We evaluate performance of the proposed test using the prostate cancer
data (Singh et al., 2002). This data contain 12, 600 genes for 102 patients,
52 of which are prostate tumor patients and 50 of which are prostate normal
patients. Following Dudoit et al. (2002), we preprocess the data by first trun-
cating on the closed set [1, 5000], second removing genes with max/min ≤ 5
or max − min ≤ 150 where max and min denote the maximum and mini-
mum intensities over 102 patients, and finally transforming all intensities to
base-10 logarithms. The number of genes is reduced to p = 2, 745. We use
n = 50 observations from each of the tumor and normal patients. Then this
setup leads to the situation of (1.1).

In Figure 3, we plot the distributions of Tn,p and TCQ under H0 using the
parametric bootstrap method, that is, we draw 50 samples from Np(0p,Sn,p)
ten thousand times, and then plot them each time. For the proposed test
statistic Tn,p, the matrix Mn is given by (ii) of which parameter s is deter-
mined such that trM 4

n/(trM 2
n)2 = 0.05. This shows that the distribution of

the proposed test statistic is much closer to the standard normal distribution
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Figure 2: Power curves of the proposed test and Chen and Qin’s test for
n = 80, p = 300, Σ1, Σ2 and Σ3 with normal, t and gamma distributions.
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than the existing one.
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Figure 3: Distributions of Tn,p and TCQ under H0 based on the parametric
bootstrap method

4 Proofs

In this section, we give proofs of the equation (2.4) and Theorem 2.1–2.3

in Section 2. Throughout this section, we describe Xi and Zi for X
(i)
p and

Z
(i)
p respectively.
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4.1 Proof of the equation (2.4)

Note that

Tn,p =
n∑

i6=j

mij(Xi − µp)
T (Xj − µp) + 2

n∑
i6=j

mijµ
T
p Xj −

n∑
i 6=j

mijµ
T
p µp

=
n∑

i6=j

mijZ
T
i CT

p CpZj + 2
n∑

i6=j

mijµ
T
p CpZj +

n∑
i6=j

mijµ
T
p µp.

Hence, we have

Var(Tn,p) = Var

(
n∑

i 6=j

mijZ
T
i CT

p CpZj

)
+ 4Var

(
n∑

i 6=j

mijµ
T
p CpZj

)

+ 4
n∑

i 6=j

n∑
k 6=`

mijmk` Cov
(
ZT

i CT
p CpZj, µ

T
p CpZ`

)
= V1 + 4V2 + 4V3, say.

Clearly, V3 = 0 since Zi’s are independent and E(Zi) = 0p. For the first
term V1, using the vec-operator vec(·) and the Kronecker product ⊗ (see,
e.g., Schott, 2005), it follows that

n∑
i6=j

mijZ
T
i CT

p CpZj = vec(Zn,p)
T (CT

p Cp ⊗ Mn)vec(Zn,p),

where Zn,p = (Z1, . . . , Zn)T . Then, from Lemma 2.1 in Srivastava (2009),

V1 = 2tr(CT
p Cp ⊗ Mn)2 = 2trM 2

ntrΣ2
p.

For the second term V2, let Θ = 1pµ
T
p . Note that

n∑
i6=j

mijµ
T
p CpZj = vec(Θ)T (Cp ⊗ Mn)vec(Zn,p).

Then we obtain

V2 = vec(Θ)T (Cp ⊗ Mn)(Cp ⊗ Mn)T vec(Θ)

= (µp ⊗ 1p)(Σp ⊗ M 2
n)(µp ⊗ 1p)

= (1T
p M 2

n1p)µ
T
p Σpµp.

Thus, the equation (2.4) is derived.
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4.2 Proof of Theorem 2.1

This proof is based on the results in Srivastava (2009) and Chen and Qin
(2010). Let m̃ij = mij/(2trM 2

ntrΣ2
p)

1/2 and M̃n = (m̃ij). Then we have

T̃n,p =

∑n
i6=j mijX

T
i Xj√

2trM 2
ntrΣ2

p

=
n∑

i6=j

m̃ijX
T
i Xj = 2

n∑
j=2

j−1∑
i=1

m̃ijX
T
i Xj = 2

n∑
j=2

Yj,

where Yj =
∑j−1

i=1 m̃ijX
T
i Xj. We need to show that

Qn =
n∑

j=2

Yj
d−→ N(0, 1/4), p → ∞. (4.1)

We can apply Martingale Central Limit Theorem (Hall and Heyde, 1980)
for Qn to show (4.1). Let Fn be the σ algebra which is generated by
{X1, . . . , Xn}. Then we have Fj−1 ⊂ Fj for any j = 2, . . . , n. It is eas-
ily obtained that E(Qn) = 0 and E(Q2

n) < ∞. We note for n > m that
Qn = Qm+

∑n
j=m+1 Yj and E(

∑n
j=m+1 Yj|Fm) = 0 since when m+1 ≤ j ≤ n,

E(XT
i Xj|Fm) = XT

i E(Xj) = 0 for 1 ≤ i ≤ m and E(XT
i Xj|Fm) =

E(XT
i Xj) = 0 for m + 1 ≤ i ≤ n − 1. Hence we find that the sequence

{Qn,Fn} is a zero mean and square integrable martingale array. It suffices
to show that under Conditions A and B

n∑
j=2

E(Y 2
j |Fj−1)

P−→ 1

4
, p → ∞ (4.2)

n∑
j=2

E(Y 4
j ) → 0, p → ∞. (4.3)

We first show (4.2). Note that

n∑
j=2

E(Y 2
j |Fj−1) =

n∑
j=2

E

(
j−1∑
i=1

m̃ijX
T
i Xj

)2 ∣∣∣∣Fj−1


=

n∑
i<j

m̃2
ijX

T
i ΣpXi +

n∑
j=2

j−1∑
i1 6=i2

m̃i1jm̃i2jX
T
i1
ΣpXi2

= A1 + A2, say.
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Also we note that

E(A1) =
n∑

i<j

m̃2
ijE(XT

i ΣpXi) =
n∑

i<j

m̃2
ijtrΣ

2
p =

1

2
trM̃ 2

ntrΣ2
p =

1

4
,

and we have

Var(A1) = Var

(
n∑

i<j

m̃2
ijX

T
i ΣpXi

)

=
n−1∑
i=1

(
n∑

j=i+1

m̃ij

)2

Var(XT
i ΣpXi)

=
n−1∑
i=1

(
n∑

j=i+1

m̃ij

)2 [
(γ − 3)

p∑
k=1

v2
kk + trΣ4

p

]
,

where vii is the diagonal elements of CT
p ΣpCp = (CT

p Cp)(C
T
p Cp). The last

equation is derived from Lemma 2.1 in Srivastava (2009). Let Dp = CT
p Cp =

(dij). Following Lemma 2.6 in Srivastava (2009), we note that

p∑
k=1

v2
kk =

p∑
k=1

(
p∑

i=1

d2
ik

)2

≤ tr(DT
p Dp)

2 = trΣ4
p. (4.4)

Also we note that under Condition B

n−1∑
i=1

(
n∑

j=i+1

m̃2
ij

)2

≤
n∑

i=1

(
n∑

j=1

m̃2
ij

)2

+
n∑

i1 6=i2

(
n∑

j=1

m̃i1jm̃i2j

)2

= trM̃ 4
n.

Hence, we have

Var(A1) = O(trM̃ 4
ntrΣ4

p).

Since trΣ4
p/(trΣ

2
p)

2 ≤ 1, we obtain

trM̃ 4
ntrΣ4

p =
trM 4

ntrΣ4
p

4(trM 2
n)2(trΣ2

p)
2
→ 0, p → ∞ (4.5)
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under Conditions A and B. Thus A1
P−→ 1/4 from the Chebyshev’s inequality.

Next, we shall show A2
P−→ 0. Since

A2 =
n−1∑
i1 6=i2

XT
i1
ΣpXi2

 n∑
j=min{i1,i2}+1

m̃i1jm̃i2j

 ,

and E(XT
i1
ΣpXi2X

T
i3
ΣpXi4) = 0 when at least one index is different between

(i1, i2) and (i3, i4), we have E(A2) = 0 and

E(A2
2) =

n∑
i1 6=i2

E(XT
i1
ΣpXi2)

2

 ∑
j=min{i1,i2}+1

m̃i1jm̃i2j

2

.

Note that E(XT
i1
ΣpXi2)

2 = trΣ4
p for i1 6= i2 and

n∑
i1 6=i2

 n∑
j=min{i1,i2}+1

m̃i1jm̃i2j

2

≤
n∑

i1 6=i2

(
n∑

j=1

m̃i1jm̃i2j

)2

+
n∑

i=1

(
n∑

j=1

m̃2
ij

)2

= trM̃ 4
n,

under Condition B. Then we have E(A2
2) = O(trM̃ 4

ntrΣ4
p). From (4.5),

we obtain that E(A2
2) → 0 as p → ∞ under Conditions A and B. The

Chebyshev’s inequality yields A2
P−→ 0.

Next, we verify (4.3). Note that

E(Y 4
j ) = E

(
j−1∑
i=1

m̃ijX
T
i Xj

)4

= E

[ j−1∑
i=1

m̃2
ij(X

T
i Xj)

2 +

j−1∑
i1 6=i2

m̃i1jm̃i2jX
T
i1
XjX

T
i2
Xj

]2

=

j−1∑
i=1

m̃4
ijE(XT

i Xj)
4 + 3

j−1∑
i1 6=i2

m̃2
i1jm̃

2
i2jE[(XT

i1
Xj)

2(XT
i2
Xj)

2].

Following Chen and Qin (2010), we have

E(XT
i Xj)

4 = O(trΣ4
p) + O{(trΣ2

p)
2}, i 6= j.
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Also we have from (4.4),

E[(XT
i1
Xj)

2(XT
i2
Xj)

2] = E[(XT
j ΣpXj)

2]

= (γ − 3)

p∑
k=1

v2
kk + 2trΣ4

p + (trΣ2
p)

2

= O(trΣ4
p) + O{(trΣ2

p)
2}, i1 6= i2 6= j.

Following Corollary 2.7 in Srivastava (2009), we have

n∑
j=2

j−1∑
i=1

m̃4
ij ≤

n∑
i6=j

m̃4
ij ≤ trM̃ 4

n

and

n∑
j=2

j−1∑
i1 6=i2

m̃2
i1jm̃

2
i2j ≤

n∑
j=1

n∑
i1 6=i2

m̃2
i1jm̃

2
i2j ≤

n∑
i=1

(
n∑

j=1

m̃2
ij

)2

≤ trM̃ 4
n.

From (4.5) and the fact that

trM̃ 4
n(trΣ2

p)
2 =

trM 4
n

4(trM 2
n)2

→ 0, p → ∞

under Conditions A and B, we obtain
∑n

j=2 E(Y 4
j ) → 0, p → ∞. This ends

the proof.

4.3 Proof of Theorem 2.2

Note that t̂rΣ2
p is invariant under the location transformations Xi →

Xi+cp where cp is an arbitrary p-column constant vector. Hence, we assume
µp = 0 without loss of generality. Obviously, we have E(U2) = trΣ2

p and
E(U3) = E(U4) = 0. It follows from Chen et al. (2010) that

Var(U2) =
4

n2
(trΣ2

p)
2 +

8

n
trΣ4

p +
4(γ − 3)

n
tr[(CT

p Cp)
2 ¯ (CT

p Cp)
2]

+ O

[
1

n3
(trΣ2

p)
2 +

1

n2
trΣ4

p

]
,

Var(U3) =
2

n3
(trΣ2

p)
2 +

2

n2
trΣ4

p + O

[
1

n4
(trΣ2

p)
2 +

1

n3
trΣ4

p

]
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and

Var(U4) =
8

n4
(trΣ2

p)
2 + O

[
1

n5
(trΣ2

p)
2 +

1

n4
trΣ4

p

]
,

where the symbol ¯ denotes the Hadamard product. Using the fact that

tr[(CT
p Cp)

2 ¯ (CT
p Cp)

2] ≤ tr(CT
p Cp)

4 = trΣ4
p,

we have Var(Ui/trΣ
2
p) → 0 for i = 2, 3, 4 under Condition A. This and the

Chebychev’s inequality yield (2.6).

4.4 Proof of Theorem 2.3

Using Theorem 2.2, we have∑n
i6=j mij(Xi − µp)

T (Xj − µp)

σn,p

d−→ N(0, 1), p → ∞,

under Conditions A and B. Note that

Tn,p =
n∑

i6=j

mij(Xi − µp)
T (Xj − µp) + 2

n∑
i6=j

mijµ
T
p Xj −

n∑
i6=j

mijµ
T
p µp.

Hence, it remains to show that∑n
i6=j mijµ

T
p Xj −

∑n
i6=j mijµ

T
p µp

σn,p

P−→ 0, p → ∞. (4.6)

We notice E(
∑n

i6=j mijµ
T
p Xj) =

∑n
i6=j mijµ

T
p µp and

Var

(
n∑

i6=j

mijµ
T
p Xj

)
= 4(1T

nM 2
n1n)µT

p Σpµp = o(σ2
n,p),

under Condition C. The Chebyshev’s inequality yields (4.6). The Slutsky’s
theorem and (4.6) complete the proof.
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