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The Unequal-Areas Facility Layout Problem

@ Find the optimal positions for a given collection of rectangular
departments of fixed area within a rectangular facility of fixed area.

@ All the dimensions may be given or left undetermined.

@ The objective is to minimize (according to a given norm) the
distances between pairs of departments that have a nonzero
connection cost.

@ The problem was originally formulated by Armour & Buffa (1963).
@ Like many optimization problems coming from practical
applications, facility layout is hard (NP-hard).

@ In Very Large Scale Integration (VLSI) design, a very similar
problem is referred to as floorplanning, and the departments are
called modules.



Example of a Layout for a 33-Department Instance

40

a5k #5 L L g

30F M2 |- ...... -JHG

o] o of e 0] LY R P Pt -

ok - A oy PR P . -

| T e I A e T o B o o

10F - -- s e ol e ...... _9 ........ ........ . R




e
A Well-Studied Problem - Global Optimal Solutions

@ Montreuil (1990) proposed one of the first MIP formulations in the
continuous plane, where integer variables are used to prevent
overlap.

@ Castillo and Westerlund (2005) used a MIP formulation that
satisfies the area requirements within a given accuracy e.

@ Major contributions by Meller, Sherali and co-authors.

@ Meller et al. (2007) solved instances with up to 11 departments;
the previous limit was nine departments by Sherali et al. (2003).

@ Xie & Sahinidis (2008) use a minimum-cost network flow problem
to obtain a feasible layout from the sequence-pair representation
of the relative position layout. This is only valid for a restricted
version of layout.



e
A Well-Studied Problem - Two-Stage Approaches

These approaches date back at least to the DISCON method of
Drezner (1980).

@ Solve the first stage model that provides the relative position of
the departments.

@ The solution to the first stage is used as the starting point for the
second stage.

@ The second stage computes a feasible layout.
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Recent Two-Stage Approaches

A. and Vannelli (2002,2006) use a first stage that approximates the
departments using circles of radius r; centered at (x;, y;):

min > c,-,-D,-,-+(%,—1)

(xi,¥j):Weshe 1<i<j<n
st xj+n<iweandr —x; < wg, fori=1,.,N,
Yi+r<gheandri—y; < She, fori=1,...,N,

where Dj = (x; — x;)? + (i — ¥))?,
and t; = a(r; + r;)? is a target distance between j and j (o > 0 fixed).

The interpretation is:
@ The first term is an attractor (aims for D; = 0).

@ The second term is a repeller that prevents the circles from
overlapping.
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Recent Two-Stage Approaches (ctd)

Jankovits, Luo, A. and Vannelli (2011) proposed an improvement of the
A.-Vannelli framework:

@ An improved first stage model that incorporates the aspect ratio
constraints in a limited manner.

@ A new formulation of the second stage as a (convex) second-order
conic optimization problem.

@ This approach provided the best results for the Armour & Buffa
20-department instance (AB20) until now.

@ Instances with up to 30 departments can be solved inup to 5
minutes.



Recent Two-Stage Approaches (ctd)

Kulturel-Konak & Konak (2013) proposed the following approach:
@ The GA searches for the relative locations of the departments.
@ The LP model determines their exact locations and shapes.

@ They introduce the location/shape representation:
department j is represented as (x;, y;, «;), where «; = h;/w;.
@ For each (x;, yi, «;), define two straight lines:
e One passing through (x;, y;) and the upper right corner
(Xi +wi/2,y; + hi/2);
o the other passing through (x;, y;) and the upper left corner
(X,' — W,'/2,y,' + h,/2)
e These lines split the facility into four regions w.r.t. department i, so
every other department is above, below, left or right of /.
@ It outperforms the previous approaches: the cost function is
reduced and the computational time is lower.

Resende and Gongalves (2015): Very recent paper that applies a
random-key GA followed by an LP.
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Our Contribution

We propose an improved version of the framework of Jankovits et al.

@ More precise first stage:
e The departments are handled as rectangles.
@ Aspect ratio constraints are enforced exactly in the first stage.
e Simpler objective function — improved computational times.
@ Use the same second stage (second-order conic optimization
problem) as Jankovits et al.

@ The resulting framework normally improves on the results of
Jankovits et al.

@ We can compute solutions for instances with up to 100
departments in minutes.



Starting Formulation

min > e (= xl+1yi—yl)
Xis Yis hfa Wi 1<i<j<N
1 1 1 .
s.t. m+§m§§wﬁ m—émz—ﬁm;/:L”wN
1 1 1 1 .
y;—i—Eh,'Séh/:, y/_éhIZ_EhFa I:17"‘7N7

WIhI:aI’ i:1,...,N,
w; h; ,
m — — » < =1,....N
w{m,m}_& / yoees N,
WlminSWiSWImax and h;‘ninghigh;naxa i:17--'7N7
1 1
X = x| = (wi+w)) or Iy =yl = 5(hi+ ),
1T<i<j<N.



Objective function

The objective function

> e (1% — X1+ x5 — xi)
1<i<j<N

can be linearized term-by-term using the standard technique:

min > ciluj+ vy),
Xi»Yis Ui, Vi —
1<i<j<N

st uj = X — X,
uj = X=X, 1<i<j<N,
Vijzyj_.yl'a
Vizyi—Yy, 1<i<j<N.
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Area constraints

The area constraint
W,'h,' = aj

is not linear nor convex.
It can be relaxed to the following convex version:
w;h; > a;

that is easy to represent as a semidefinite constraint:
Wi a;
= 0.
( vai  hi ) -

Any 2 x 2 semidefinite constraint is equivalent to a second-order cone
constraint (see e.g. Kim & Kojima (2001)).



-
Aspect ratio constraints

The aspect ratios must satisfy

Wi h,'
— < — < 0.
hi_ﬁ and Wi_ﬁ

Therefore, we obtain linear constraints

w;—8h;<0 and h;—Bw; <O0.

(If 8 =1, then the department is a square.)
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No-Overlap Constraints

1 1
|Xi — xj| > §(W,- +wj) or |yi—yl> E(h" + hy)

Yk =Y ZI%(hk + ) I%hk

|
Wi+ w) J I%hf

n|—
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First Stage Relaxation of the No-Overlap Constraints

@ Drop the no-overlap constraints.
@ Define the target distance
1
2 2 2
T8 = 2 ((w+ w2+ (i + m)?)

@ The resulting objective function is:

T2
ZC,,D +aK{D§ },

where 0 < a < 1 is the parameter to balance the penalty term
versus the cost term.



First Stage Model

T2
min > ¢;D5 —|-04K{D2 },

1<i<j<N

1 1 1 1 .
s.t. Xi+§W/§§WF, and X/—EW/Z—EWF, fori=1,...,N,

y,-+%h,-§%hp, and y,-—%h,-g—%hp, fori=1,...,N,

wih; > a;, fori=1,...,N,
Bw;—h; >0, fori=1,...,N,
Bhi—w; >0, fori=1,...,N,
w;,hj>0, fori=1,...,N.



First Stage Solutions

Examples of solutions for the AB20 instance:
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Recovering the No-Overlap Decisions

(xi, ¥i)
Ay

4 (xj; ¥j)

If Ax > Ay, then horizontal separation is enforced:

@ If x; < x;, then department / is placed to the left of department j,
i.e., the constraint

1 1
[Xi = Xj| = 5 (Wi +wj) or lyi —yj| = 5(hi + )
is replaced by the constraint
1
Xj— X > E(W,-+ w;).

@ If x; < x;, then department / is placed to the right of department j.
If Ay > Ax, then vertical separation is enforced.



Second Stage Model
Xi,m;‘awj Z ij(uij + V,'j),
1<i<j<N
st ui>x—x, U>x—x, 1<i<j<N,
Vijz-}/j_yia V,'I'Zyl-_yj’ 1§’<_I§N,

1 1 1 ]

2 2 2 - 2WF,I:1".'7N’
.—|—1h-<1h d '_1h'>—1h 1N
Yi 5= 5lF,  an Yi ohi> —5he i=1...N,
wih;>a, i=1,...,N,

Bw;—h; >0, i=1,...,N,
Bhi—w; >0, i=1,...,N.
Wl.minSW,'SWimaX’ i=1,...,N,
h;ningh,-ﬁhlmax’ i=1,...,N,

No-overlap constraints forall 1 < i< j < N.
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Example of Second Stage Solution

20 8|7 6 5

Figure: AB20 best solution with aspect ratio 3
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Cost Improvement vs Number of o Values Used

Results for AB20 with varying number of « values used:

Number of Best Cost Time Line-by-line Cumulative
a-values Improvement Improvement
20 3016.3 16.4s — —

100 2939.0 73.4s 2.6% 2.6%

500 2858.5 370.2s 2.7% 5.2%

1000 2858.5 759.0s 0.0% 5.2%

1500 2829.2 1074.5s 1.0% 6.2%

2000 2806.4 1411.3s 0.8% 7.0%




Test Instances

Instance  #of depts Height Width Empty space Flow density Source

AB20 20 30 20 0.0% 64.7% Armour & Buffa (1963)
SC30 30 15 12 9.4% 11.5% Liu & Meller (2007)
Tam30 30 45 40 11.1% 67.4% Tam (1992)
JLAV30-A 30 14 13 0.0% 75.9% Jankovits et al. (2011)
JLAV30-B 30 20 10 0.0% 72.4% Jankovits et al. (2011)
SC35 35 16 15 20.0% 9.1% Liu and Meller (2007)
AnVi-50 50 21 18 1.6% 29.6% New

AnVi-70 70 27 20 1.9% 29.1% New

AnVi-80 80 26 22 0.3% 30.3% New

AnVi-100 100 31 25 4.3% 31.3% New




Implementation

@ The computational tests were performed on a dual core Intel(R)
Xeon(R) X5675 @ 3.07 GHz with 8 Gb of memory.

@ The first stage model was solved using the nonlinear optimization
solver SNOPT 7.2-8.

@ The second stage model was solved with CPLEX 12.5.1.0.
@ Both solvers were accessed using the modeling language AMPL.



-
Results for AB20

Aspectratio Jankovits et al. K.-K. & Konak Our approach Cost reduction

10 — 3758.7 2793.7 25.7%
9 — — 2 869.1

8 3014.2 — 2 842.6 5.7%
7 2979.3 4718.8 2829.3 5.0%
6 2708.0 — 2781.3 2.7 %
5 3 009 5023.7 2 858.5 5.0 %
4 2960.5 5196.3 29191 1.4%
3 — 5400.0 2899.8 46.3%
2 —
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Results for Tam30

Aspect ratio Kim et al. (1998) Jankovits etal. K.-K. & Konak Our approach Cost reduction

10 — 24 098 — 20 489.8 15.0%
9 — 23 924 — 20 391.8 14.8 %
8 — 23 420 — 20 5141 12.4 %
7 — 23974 — 20 505.0 14.5%
6 — 23770 — 20 528.6 13.6 %
5 — 24 916 19 009.90 20 523.8 -8.0 %
4 — 25000 — 20 658.9 17.4 %
3 — — — 20 751.6 —

2 21 560.6 — — 20745.2 3.8%
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Results for SC30 and SC35

Instance Aspectratio Liu & Meller K.-K. & Konak Our approach Cost reduction

5 3706.83 3370.98 43428 -28.8%
4 4165.83 _ 43632 -4.7%

SC30 3 4332.87 — 45642 -5.3%
2 4790.43 — 5413.7 13.0%
5 3 247.48 — 36556 12.6%

G5 4 3604.12 3385.48 3770.6 1.4%
3 433287 — 3999.0 7.7%
2 4839.45 — 4808.6 0.6%
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Results for JLAV30-A and JLAV30-B

JLAV30-A
Aspect ratio  Jankovits et al. Our approach Cost reduction
10 9445 8699.8 7.9%
9 9591 8510.1 11.3%
8 9312 8401.4 9.8%
7 9320 8471.7 9.1%
6 9504 8733.6 8.1%
5 9544 8577.4 10.1%
4 9509 8770.2 7.8%
JLAV30-B
Aspect ratio Jankovits et al. Our approach Cost reduction
10 10511 9539.6 9.2%
9 10532 9771.2 7.2%
8 10506 9762.6 71%
7 10414 9768.1 6.2%
6 10604 9671.0 8.8%
5 10424 9930.5 4.7%
4 10199 9843.9 3.5%
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Results for New Very Large Instances

Costs of the best layouts computed by our approach:

Aspectratio  AnVi-50 AnVi-70 AnVi-80 AnVi-100

6 177142 42902.4 63717.4 117493.5
5 17727.0 43432.1 63744.1 117791.9
4 17927.4 42927.5 64509.2 117253.6

Time for 10 as 70s 150s 230s 760s




Conclusion

We presented an improved version of the framework of Jankovits et al.:

@ Improved first stage:

e The departments are handled as rectangles.
o Aspect ratio constraints are enforced exactly in the first stage.
e Simpler objective function — improved computational times.

@ Same second stage (second-order conic optimization problem).
@ Normally improves on the results of Jankovits et al.

@ Can compute solutions for instances with up to 100 departments
in minutes.
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Thank you for your attention.



