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The Unequal-Areas Facility Layout Problem

Find the optimal positions for a given collection of rectangular
departments of fixed area within a rectangular facility of fixed area.
All the dimensions may be given or left undetermined.
The objective is to minimize (according to a given norm) the
distances between pairs of departments that have a nonzero
connection cost.
The problem was originally formulated by Armour & Buffa (1963).
Like many optimization problems coming from practical
applications, facility layout is hard (NP-hard).
In Very Large Scale Integration (VLSI) design, a very similar
problem is referred to as floorplanning, and the departments are
called modules.



Example of a Layout for a 33-Department Instance



A Well-Studied Problem - Global Optimal Solutions

Montreuil (1990) proposed one of the first MIP formulations in the
continuous plane, where integer variables are used to prevent
overlap.
Castillo and Westerlund (2005) used a MIP formulation that
satisfies the area requirements within a given accuracy ε.
Major contributions by Meller, Sherali and co-authors.
Meller et al. (2007) solved instances with up to 11 departments;
the previous limit was nine departments by Sherali et al. (2003).
Xie & Sahinidis (2008) use a minimum-cost network flow problem
to obtain a feasible layout from the sequence-pair representation
of the relative position layout. This is only valid for a restricted
version of layout.



A Well-Studied Problem - Two-Stage Approaches

These approaches date back at least to the DISCON method of
Drezner (1980).

Solve the first stage model that provides the relative position of
the departments.
The solution to the first stage is used as the starting point for the
second stage.
The second stage computes a feasible layout.



Recent Two-Stage Approaches

A. and Vannelli (2002,2006) use a first stage that approximates the
departments using circles of radius ri centered at (xi , yi):

min
(xi ,yj ),wF ,hF

∑
1≤i<j≤n

cijDij +
(

tij
Dij
− 1
)

s.t. xi + ri ≤ 1
2wF and ri − xi ≤ 1

2wF , for i = 1, ...,N,
yi + ri ≤ 1

2hF and ri − yi ≤ 1
2hF , for i = 1, ...,N,

where Dij = (xi − xj)
2 + (yi − yj)

2,
and tij = α(ri + rj)

2 is a target distance between i and j (α > 0 fixed).

The interpretation is:
The first term is an attractor (aims for Dij = 0).
The second term is a repeller that prevents the circles from
overlapping.



Recent Two-Stage Approaches (ctd)

Jankovits, Luo, A. and Vannelli (2011) proposed an improvement of the
A.-Vannelli framework:

An improved first stage model that incorporates the aspect ratio
constraints in a limited manner.
A new formulation of the second stage as a (convex) second-order
conic optimization problem.
This approach provided the best results for the Armour & Buffa
20-department instance (AB20) until now.
Instances with up to 30 departments can be solved in up to 5
minutes.



Recent Two-Stage Approaches (ctd)
Kulturel-Konak & Konak (2013) proposed the following approach:

The GA searches for the relative locations of the departments.
The LP model determines their exact locations and shapes.
They introduce the location/shape representation:
department i is represented as (xi , yi , αi), where αi = hi/wi .
For each (xi , yi , αi), define two straight lines:

One passing through (xi , yi ) and the upper right corner
(xi + wi/2, yi + hi/2);
the other passing through (xi , yi ) and the upper left corner
(xi − wi/2, yi + hi/2).
These lines split the facility into four regions w.r.t. department i , so
every other department is above, below, left or right of i .

It outperforms the previous approaches: the cost function is
reduced and the computational time is lower.

Resende and Gonçalves (2015): Very recent paper that applies a
random-key GA followed by an LP.



Our Contribution

We propose an improved version of the framework of Jankovits et al.

More precise first stage:
The departments are handled as rectangles.
Aspect ratio constraints are enforced exactly in the first stage.
Simpler objective function→ improved computational times.

Use the same second stage (second-order conic optimization
problem) as Jankovits et al.
The resulting framework normally improves on the results of
Jankovits et al.
We can compute solutions for instances with up to 100
departments in minutes.



Starting Formulation

min
xi , yi ,hi ,wi

∑
1≤i<j≤N

cij (|xi − xj |+ |yi − yj |)

s.t. xi +
1
2

wi ≤
1
2

wF , xi −
1
2

wi ≥ −
1
2

wF , i = 1, . . . ,N,

yi +
1
2

hi ≤
1
2

hF , yi −
1
2

hi ≥ −
1
2

hF , i = 1, . . . ,N,

wihi = ai , i = 1, . . . ,N,

max
{

wi

hi
,

hi

wi

}
≤ β, i = 1, . . . ,N,

wmin
i ≤ wi ≤ wmax

i and hmin
i ≤ hi ≤ hmax

i , i = 1, . . . ,N,

|xi − xj | ≥
1
2

(wi + wj) or |yi − yj | ≥
1
2

(hi + hj),

1 ≤ i < j ≤ N.



Objective function

The objective function∑
1≤i<j≤N

cij (|xi − xj |+ |xj − xi |)

can be linearized term-by-term using the standard technique:

min
xi ,yi ,ui ,vi

∑
1≤i<j≤N

cij(uij + vij),

s.t. uij ≥ xj − xi ,

uij ≥ xi − xj , 1 ≤ i < j ≤ N,
vij ≥ yj − yi ,

vij ≥ yi − yj , 1 ≤ i < j ≤ N.



Area constraints

The area constraint
wihi = ai

is not linear nor convex.

It can be relaxed to the following convex version:

wihi ≥ ai

that is easy to represent as a semidefinite constraint:(
wi

√
ai√

ai hi

)
� 0.

Any 2× 2 semidefinite constraint is equivalent to a second-order cone
constraint (see e.g. Kim & Kojima (2001)).



Aspect ratio constraints

The aspect ratios must satisfy

wi

hi
≤ β and

hi

wi
≤ β.

Therefore, we obtain linear constraints

wi − βhi ≤ 0 and hi − βwi ≤ 0.

(If β = 1, then the department is a square.)



No-Overlap Constraints

|xi − xj | ≥
1
2

(wi + wj) or |yi − yj | ≥
1
2

(hi + hj)

hi

1
2 wi

1
2 hj

1
2 wj

1
2 hk

xj − xi ≥ 1
2 (wi + wj )

yk − yj ≥ 1
2 (hk + hj )



First Stage Relaxation of the No-Overlap Constraints

Drop the no-overlap constraints.
Define the target distance

T 2
ij =

1
4

(
(wi + wj)

2 + (hi + hj)
2
)
.

The resulting objective function is:

∑
i,j

cijD2
ij + αK

{
T 2

ij

D2
ij
− 1

}
,

where 0 < α ≤ 1 is the parameter to balance the penalty term
versus the cost term.



First Stage Model

min
∑

1≤i<j≤N

cijD2
ij + αK

{
T 2

ij

D2
ij
− 1

}
,

s.t. xi +
1
2

wi ≤
1
2

wF , and xi −
1
2

wi ≥ −
1
2

wF , for i = 1, . . . ,N,

yi +
1
2

hi ≤
1
2

hF , and yi −
1
2

hi ≥ −
1
2

hF , for i = 1, . . . ,N,

wihi ≥ ai , for i = 1, . . . ,N,
βwi − hi ≥ 0, for i = 1, . . . ,N,
βhi − wi ≥ 0, for i = 1, . . . ,N,
wi ,hi ≥ 0, for i = 1, . . . ,N.



First Stage Solutions
Examples of solutions for the AB20 instance:
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Recovering the No-Overlap Decisions

∆y

∆x
.(xj , yj )

.(xi , yi )

If ∆x ≥ ∆y , then horizontal separation is enforced:
If xi < xj , then department i is placed to the left of department j ,
i.e., the constraint

|xi − xj | ≥
1
2

(wi + wj) or |yi − yj | ≥
1
2

(hi + hj)

is replaced by the constraint

xj − xi ≥
1
2

(wi + wj).

If xi < xj , then department i is placed to the right of department j .
If ∆y > ∆x , then vertical separation is enforced.



Second Stage Model

min
xi ,yi ,hi ,wi

∑
1≤i<j≤N

cij(uij + vij),

s.t. uij ≥ xj − xi , uij ≥ xi − xj , 1 ≤ i < j ≤ N,
vij ≥ yj − yi , vij ≥ yi − yj , 1 ≤ i < j ≤ N,

xi +
1
2

wi ≤
1
2

wF , and xi −
1
2

wi ≥ −
1
2

wF , i = 1, . . . ,N,

yi +
1
2

hi ≤
1
2

hF , and yi −
1
2

hi ≥ −
1
2

hF , i = 1 . . .N,

wihi ≥ ai , i = 1, . . . ,N,
βwi − hi ≥ 0, i = 1, . . . ,N,
βhi − wi ≥ 0, i = 1, . . . ,N.

wmin
i ≤ wi ≤ wmax

i , i = 1, . . . ,N,

hmin
i ≤ hi ≤ hmax

i , i = 1, . . . ,N,
No-overlap constraints for all 1 ≤ i < j ≤ N.



Example of Second Stage Solution
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Figure: AB20 best solution with aspect ratio 3



Cost Improvement vs Number of α Values Used

Results for AB20 with varying number of α values used:

Number of Best Cost Time Line-by-line Cumulative
α-values Improvement Improvement

20 3016.3 16.4 s — —
100 2939.0 73.4 s 2.6% 2.6%
500 2858.5 370.2 s 2.7% 5.2%
1000 2858.5 759.0 s 0.0% 5.2%
1500 2829.2 1074.5 s 1.0% 6.2%
2000 2806.4 1411.3 s 0.8% 7.0%



Test Instances

Instance # of depts Height Width Empty space Flow density Source

AB20 20 30 20 0.0% 64.7% Armour & Buffa (1963)
SC30 30 15 12 9.4% 11.5% Liu & Meller (2007)
Tam30 30 45 40 11.1% 67.4% Tam (1992)
JLAV30-A 30 14 13 0.0% 75.9% Jankovits et al. (2011)
JLAV30-B 30 20 10 0.0% 72.4% Jankovits et al. (2011)
SC35 35 16 15 20.0% 9.1% Liu and Meller (2007)
AnVi-50 50 21 18 1.6% 29.6% New
AnVi-70 70 27 20 1.9% 29.1% New
AnVi-80 80 26 22 0.3% 30.3% New
AnVi-100 100 31 25 4.3% 31.3% New



Implementation

The computational tests were performed on a dual core Intel(R)
Xeon(R) X5675 @ 3.07 GHz with 8 Gb of memory.
The first stage model was solved using the nonlinear optimization
solver SNOPT 7.2-8.
The second stage model was solved with CPLEX 12.5.1.0.
Both solvers were accessed using the modeling language AMPL.



Results for AB20

Aspect ratio Jankovits et al. K.-K. & Konak Our approach Cost reduction

10 —– 3 758.7 2 793.7 25.7%
9 —– —– 2 869.1 —–
8 3 014.2 —– 2 842.6 5.7%
7 2 979.3 4 718.8 2 829.3 5.0%
6 2 708.0 —– 2 781.3 -2.7 %
5 3 009 5 023.7 2 858.5 5.0 %
4 2 960.5 5 196.3 2 919.1 1.4%
3 —– 5 400.0 2 899.8 46.3%
2 —



Results for Tam30

Aspect ratio Kim et al. (1998) Jankovits et al. K.-K. & Konak Our approach Cost reduction

10 — 24 098 — 20 489.8 15.0%
9 — 23 924 — 20 391.8 14.8 %
8 — 23 420 — 20 514.1 12.4 %
7 — 23 974 — 20 505.0 14.5 %
6 — 23 770 — 20 528.6 13.6 %
5 — 24 916 19 009.90 20 523.8 -8.0 %
4 — 25 000 — 20 658.9 17.4 %
3 — — — 20 751.6 —
2 21 560.6 — — 20 745.2 3.8%



Results for SC30 and SC35

Instance Aspect ratio Liu & Meller K.-K. & Konak Our approach Cost reduction

SC30

5 3 706.83 3 370.98 4 342.8 -28.8%
4 4 165.83 —– 4 363.2 -4.7%
3 4 332.87 —— 4 564.2 -5.3%
2 4 790.43 —– 5 413.7 -13.0 %

SC35

5 3 247.48 —– 3 655.6 -12.6%
4 3 604.12 3 385.48 3 770.6 -11.4%
3 4 332.87 —– 3 999.0 7.7%
2 4 839.45 —– 4 808.6 0.6%



Results for JLAV30-A and JLAV30-B
JLAV30-A

Aspect ratio Jankovits et al. Our approach Cost reduction

10 9445 8699.8 7.9%
9 9591 8510.1 11.3%
8 9312 8401.4 9.8%
7 9320 8471.7 9.1%
6 9504 8733.6 8.1%
5 9544 8577.4 10.1%
4 9509 8770.2 7.8%

JLAV30-B

Aspect ratio Jankovits et al. Our approach Cost reduction

10 10511 9539.6 9.2%
9 10532 9771.2 7.2%
8 10506 9762.6 7.1%
7 10414 9768.1 6.2%
6 10604 9671.0 8.8%
5 10424 9930.5 4.7%
4 10199 9843.9 3.5%



Results for New Very Large Instances

Costs of the best layouts computed by our approach:

Aspect ratio AnVi-50 AnVi-70 AnVi-80 AnVi-100

6 17714.2 42902.4 63717.4 117493.5
5 17727.0 43432.1 63744.1 117791.9
4 17927.4 42927.5 64509.2 117253.6

Time for 10 αs 70 s 150 s 230 s 760 s



Conclusion

We presented an improved version of the framework of Jankovits et al.:

Improved first stage:
The departments are handled as rectangles.
Aspect ratio constraints are enforced exactly in the first stage.
Simpler objective function→ improved computational times.

Same second stage (second-order conic optimization problem).
Normally improves on the results of Jankovits et al.
Can compute solutions for instances with up to 100 departments
in minutes.

Thank you for your attention.
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