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Let 1 be a probability distribution on R™.
Let S C R" be closed.
For x € R™ and u € S™! we denote

HZ (u,z) := {y eR" |u"(y—2z)> 0}.
Definition
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optimal solution z* of
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Given p probability distribution on R, the median is defined as z*€ R such that

p{z <z*}) = p({z >2*}). Take S=R.

Tukey-depth

S =R" and p is a finite sum of Dirac measures on R™.

Winternitz’ measure of symmetry

S =R" and p be the uniform measure on a convex set K:

u(C) = vol(C N K)vol(K)™*. Then

1
in p(H” (u,2%)) = 5.
Joam wUH (7)) =

if and only if
K-—az"=2"-K

(Funk 1915)
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Let SCR™ and K:={SNK | K CR" convex }. The Helly-Number
h(S) € Z+ is defined as the minimal number such that: For any
(Ki1,...,Kn} CK,if

Kin---NKy =0,

then there exists {i1,...,9,} C {1,...,m} such that
K, Nn---NK;, =0.

If no such number exists, then h(S) = oco.
Theorem [Helly 1913, Doignon 1973, Hoffman 1979]
h(Z™ x R*) = 2"(d + 1)

Theorem [Basu—Oertel 2015]

Let S C R"™ be a closed subset and let p be such that pu(R™\ S) =0. If
h(S) < oo, then

max inf (SN H>(u,z)) > h(S)"".

z€S yesSn—1
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e (H (u,2)) > ;(ijl)

Theorem [Basu—Oertel 2015]

Let w be thezlattlce width of K. If w> ¢2°™ such that
7771+e c —1>27""1 then

K(H (u,%)) > ;(djl)
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Let S = Z" x R be closed.

[ R" =R,

g :R"™ — R™: convex, given by a
first-order function oracles, queried
on a point x € S the oracle returns
f(z) and h € Of (x) or g respectively.

We assume d B € N such that
{z e R"™ | g(z) <0} C [-B, B]"™.

f is Lipschitz continuous, with

Lipschitz constant L.

Let K be a convex, compact body and

voly (CNKNS)
volg(KNS)

pr (C) ==
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General cutting plane scheme

o Let Py :=[0,B)" TN (Z™ x RY).

e Fori <N
e Compute centerpoint z; w.r.t. up, and S.
o Let h € Of(xi).
e Define Pi=PnN H~> (h, xz)

e Return T := argmin f(x;).

Upper bound
Let 0 > 0, and k" < min,cgnra—1 pur (H=(u, %)) for all compact convex sets
K and corresponding centerpoints x5%.

After N iterations pp, (Py) < (1 — k*)Y. Thus, for N > [log1 - (%ﬁ)—‘
ppy (Pr) < 6.

If 6 <e/L, then f(Z) — mingcynpa f(z) < e
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S Upper Bound Lower Bound
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ZnxRI O (2”((1 +1)log, (BT”» Q (2” (1og2 %)) (Basu & Oertel)



Computing Centerpoints [Basu-Oertel 2016]

Let S = Z™ x R? and let ; be the uniform measure with respect to K NS,
where K is a polytope.



Computing Centerpoints [Basu-Oertel 2016]

Let S = Z™ x R? and let ; be the uniform measure with respect to K NS,
where K is a polytope.

» If n=0 and d fixed, then we can compute centerpoints.



Computing Centerpoints [Basu-Oertel 2016]

Let S = Z™ x R? and let ; be the uniform measure with respect to K NS,
where K is a polytope.

» If n=0 and d fixed, then we can compute centerpoints.

» If n=2 and d =0, then we can compute centerpoints.



Computing Centerpoints [Basu-Oertel 2016]

Let S = Z™ x R? and let ; be the uniform measure with respect to K NS,
where K is a polytope.

» If n=0 and d fixed, then we can compute centerpoints.
» If n=2 and d =0, then we can compute centerpoints.

» For fixed n and d and if w(K) is large:
We can approximate centerpoints.



Computing Centerpoints [Basu-Oertel 2016]

Let S = Z™ x R? and let ; be the uniform measure with respect to K NS,
where K is a polytope.

» If n=0 and d fixed, then we can compute centerpoints.
» If n=2 and d =0, then we can compute centerpoints.

» For fixed n and d and if w(K) is large:
We can approximate centerpoints.

» For fixed n and d:
By random sampling, we can approximate centerpoints with a high
probability. (using Vapnik-Chervonenkis theory)
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