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Let µ be a probability distribution on Rn.
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Measure of Progress

Set over which we optimize:
S = Rn, Zn, Zn × Rd
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{
y ∈ Rn | uT (y − x) ≥ 0
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A centerpoint w.r.t. S and µ is defined as an
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µ(H≥(u, x)).



Let µ be a probability distribution on Rn.

Let S ⊂ Rn be closed.

For x ∈ Rn and u ∈ Sn−1 we denote

H≥(u, x) :=
{
y ∈ Rn | uT (y − x) ≥ 0

}
.

Definition
A centerpoint w.r.t. S and µ is defined as an
optimal solution x? of

max
x∈S

inf
u∈Sn−1

µ(H≥(u, x)).

µ uniform distribution;
S = Rn



Let µ be a probability distribution on Rn.

Let S ⊂ Rn be closed.

For x ∈ Rn and u ∈ Sn−1 we denote

H≥(u, x) :=
{
y ∈ Rn | uT (y − x) ≥ 0

}
.

Definition
A centerpoint w.r.t. S and µ is defined as an
optimal solution x? of

max
x∈S

inf
u∈Sn−1

µ(H≥(u, x)).

µ counting measure;
S = Zn



Let µ be a probability distribution on Rn.
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For x ∈ Rn and u ∈ Sn−1 we denote

H≥(u, x) :=
{
y ∈ Rn | uT (y − x) ≥ 0

}
.

Definition
A centerpoint w.r.t. S and µ is defined as an
optimal solution x? of

max
x∈S

inf
u∈Sn−1

µ(H≥(u, x)).

µ mixed-integer measure;
S = Zn × Rd



Median
Given µ probability distribution on R, the median is defined as x?∈ R such that
µ({x ≤x?}) = µ({x ≥x?}). Take S = R.

Tukey-depth

S = Rn and µ is a finite sum of Dirac measures on Rn.

Winternitz’ measure of symmetry

S = Rn and µ be the uniform measure on a convex set K:
µ(C) = vol(C ∩K) vol(K)−1. Then

min
u∈Sn−1

µ(H≥(u, x?)) =
1

2
.

if and only if

K − x? = x? −K (Funk 1915)
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Centerpoints and the Helly-Number

Let S ⊂ Rn and K := {S ∩K | K ⊂ Rn convex }. The Helly-Number
h(S) ∈ Z+ is defined as the minimal number such that: For any
{K1, . . . ,Km} ⊂ K, if

K1 ∩ · · · ∩Km = ∅,
then there exists {i1, . . . , ih} ⊂ {1, . . . ,m} such that

Ki1 ∩ · · · ∩Kih = ∅.

If no such number exists, then h(S) =∞.

Theorem [Helly 1913, Doignon 1973, Hoffman 1979]

h(Zn × Rd) = 2n(d+ 1)

Theorem [Basu–Oertel 2015]

Let S ⊆ Rn be a closed subset and let µ be such that µ(Rn \ S) = 0. If
h(S) <∞, then

max
x∈S

inf
u∈Sn−1

µ(S ∩H≥(u, x)) ≥ h(S)−1.
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Centerpoints in Rd

Let S = Rd and let µ be a uniform measure w.r.t. a closed convex set K ⊂ Rd.
Let x? denote its corresponding centerpoint.

Theorem
µ(H≥(u, x?)) ≥ 1

d+ 1
.

The centroid of K is defined as cK :=
∫
K
xdx.

Theorem [Grünbaum 1960]

µ(H≥(u, cK)) ≥
(

d

d+ 1

)d
, ∀u ∈ Sd−1.

Thus, µ(H≥(u, x?)) ≥ e−1.
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Centerpoints in Zn × Rd

Let S = Zn × Rd and let µK(C) := vold(C∩K∩S)
vold(K∩S)

, where K is a convex body.

Let x? denote a corresponding centerpoint.

Theorem [Basu–Oertel 2015]

µK(H≥(u, x?)) ≥ 1

2n
1

d+ 1
.

Is this best possible?

Let v0, . . . , v3 ∈ R3 be affinely independent and let

K ∩ S := {0, 1}3 × conv{v0, . . . , v3}

Conjecture [Basu–Oertel 2015]
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Theorem [Basu–Oertel 2015]

Let ω be the lattice width of K. If ω≥ c 2O(n) such that
e−

1
c
−1 + e−

2
c − 1 ≥ 2−n−1, then
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2n
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min f(x)

s.t. g(x) ≤ 0,

x ∈ S.

Let S ⊂ Rn be closed.

f : Rn 7→ R,

g : Rn 7→ Rm: convex, given by a

first-order function oracles, queried

on a point x ∈ S the oracle returns

f(x) and h ∈ ∂f(x) or g respectively.

We assume ∃B ∈ N such that

{x ∈ Rn | g(x) ≤ 0} ⊂ [−B,B]n.

f is Lipschitz continuous, with

Lipschitz constant L.

Let K be a convex, compact body and

µK(C) := µ(C∩K∩S)
µ(K∩S) .



min f(x)

s.t. g(x) ≤ 0,

x ∈ S.

Let S = Zn × Rd be closed.

f : Rn 7→ R,

g : Rn 7→ Rm: convex, given by a

first-order function oracles, queried

on a point x ∈ S the oracle returns

f(x) and h ∈ ∂f(x) or g respectively.

We assume ∃B ∈ N such that

{x ∈ Rn+d | g(x) ≤ 0} ⊂ [−B,B]n+d.

f is Lipschitz continuous, with

Lipschitz constant L.

Let K be a convex, compact body and

µK(C) := vold(C∩K∩S)
vold(K∩S)

.



General cutting plane scheme

• Let P0 := [0, B)n+d ∩ (Zn × Rd).
• For i ≤ N
• Compute centerpoint xi w.r.t. µPi and S.
• Let h ∈ ∂f(xi).
• Define Pi+1 = Pi ∩H>(h, xi).

• Return x̄ := argmin f(xi).

x̄

x1

x0x3

x2
x4

Upper bound

Let δ > 0, and k? ≤ minu∈Sn+d−1 µK(H≥(u, x?S)) for all compact convex sets
K and corresponding centerpoints x?S .

After N iterations µP0(PN ) ≤ (1− k?)N . Thus, for N ≥
⌈

log 1
1−k?

(
Bn+d

δ

)⌉
µP0(PN ) ≤ δ.

If δ ≤ ε/L, then f(x̄)−minx∈Zn×Rd f(x) ≤ ε.
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Number of Function Oracle Calls

S Upper Bound Lower Bound

Rd
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(
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δ
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Zn O (n2n log2(B)) Ω (2n log2(B)) (Basu & Oertel)

Zn × Rd O
(

2n(d+ 1) log2

(
Bn+d

δ

))
Ω
(

2n
(

log2
Bd

δ

))
(Basu & Oertel)



Computing Centerpoints [Basu–Oertel 2016]

Let S = Zn × Rd and let µ be the uniform measure with respect to K ∩ S,
where K is a polytope.

I If n= 0 and d fixed, then we can compute centerpoints.

I If n= 2 and d= 0, then we can compute centerpoints.

I For fixed n and d and if ω(K) is large:
We can approximate centerpoints.

I For fixed n and d:
By random sampling, we can approximate centerpoints with a high
probability. (using Vapnik-Chervonenkis theory)
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Question
Let S = Z× Rd, K ∈ [−1, 1]× Rd be a convex body and let µ denote
the uniform measure on K ∩ S.

µK(H≥(u, x?)) ≥ 1

2

(
d

d+ 1

)d
?

THANKS
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