Centerpoints: Link between Convex Geometry and Optimization

Amitabh Basu, Timm Oertel

MOPTA conference
Lehigh University, August 2016

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.
Assume we have evaluated f at $x_{1}, x_{2}, \ldots, x_{N}$.

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.
Assume we have evaluated f at $x_{1}, x_{2}, \ldots, x_{N}$.

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.
Assume we have evaluated f at $x_{1}, x_{2}, \ldots, x_{N}$.

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.
Assume we have evaluated f at $x_{1}, x_{2}, \ldots, x_{N}$.
How should we choose x_{N+1} ?

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.
Assume we have evaluated f at $x_{1}, x_{2}, \ldots, x_{N}$.
How should we choose x_{N+1} ?

Consider the problem $\min _{x \in \mathbb{Z}^{n}} f(x)$, where f is convex.
Assume we have evaluated f at $x_{1}, x_{2}, \ldots, x_{N}$.
How should we choose x_{N+1} ?

Let μ be a probability distribution on \mathbb{R}^{n}.

Let $S \subset \mathbb{R}^{n}$ be closed.

Let μ be a probab Measure of Progress

Let $S \subset \mathbb{R}^{n}$ be clc Set over which we optimize:

$$
S=\mathbb{R}^{n}, \mathbb{Z}^{n}, \mathbb{Z}^{n} \times \mathbb{R}^{d}
$$

Let μ be a probability distribution on \mathbb{R}^{n}.
Let $S \subset \mathbb{R}^{n}$ be closed.
For $x \in \mathbb{R}^{n}$ and $u \in \mathcal{S}^{n-1}$ we denote

$$
H^{\geq}(u, x):=\left\{y \in \mathbb{R}^{n} \mid u^{T}(y-x) \geq 0\right\} .
$$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

$$
\max _{x \in S} \inf _{u \in \mathcal{S}^{n-1}} \mu\left(H^{\geq}(u, x)\right) .
$$

Let μ be a probability distribution on \mathbb{R}^{n}.
Let $S \subset \mathbb{R}^{n}$ be closed.
For $x \in \mathbb{R}^{n}$ and $u \in \mathcal{S}^{n-1}$ we denote

$$
H^{\geq}(u, x):=\left\{y \in \mathbb{R}^{n} \mid u^{T}(y-x) \geq 0\right\} .
$$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

$$
\max _{x \in S} \inf _{u \in \mathcal{S}^{n-1}} \mu\left(H^{\geq}(u, x)\right)
$$

μ uniform distribution; $S=\mathbb{R}^{n}$

Let μ be a probability distribution on \mathbb{R}^{n}.
Let $S \subset \mathbb{R}^{n}$ be closed.
For $x \in \mathbb{R}^{n}$ and $u \in \mathcal{S}^{n-1}$ we denote

$$
H^{\geq}(u, x):=\left\{y \in \mathbb{R}^{n} \mid u^{T}(y-x) \geq 0\right\} .
$$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

$$
\max _{x \in S} \inf _{u \in \mathcal{S}^{n-1}} \mu\left(H^{\geq}(u, x)\right) .
$$

μ counting measure;

$$
S=\mathbb{Z}^{n}
$$

Let μ be a probability distribution on \mathbb{R}^{n}.
Let $S \subset \mathbb{R}^{n}$ be closed.
For $x \in \mathbb{R}^{n}$ and $u \in \mathcal{S}^{n-1}$ we denote

$$
H^{\geq}(u, x):=\left\{y \in \mathbb{R}^{n} \mid u^{T}(y-x) \geq 0\right\} .
$$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

$$
\max _{x \in S} \inf _{u \in \mathcal{S}^{n-1}} \mu\left(H^{\geq}(u, x)\right)
$$

Median

Given μ probability distribution on \mathbb{R}, the median is defined as $x^{\star} \in \mathbb{R}$ such that $\mu\left(\left\{x \leq x^{\star}\right\}\right)=\mu\left(\left\{x \geq x^{\star}\right\}\right)$. Take $S=\mathbb{R}$.

Median

Given μ probability distribution on \mathbb{R}, the median is defined as $x^{\star} \in \mathbb{R}$ such that $\mu\left(\left\{x \leq x^{\star}\right\}\right)=\mu\left(\left\{x \geq x^{\star}\right\}\right)$. Take $S=\mathbb{R}$.

Tukey-depth

$S=\mathbb{R}^{n}$ and μ is a finite sum of Dirac measures on \mathbb{R}^{n}.

Median

Given μ probability distribution on \mathbb{R}, the median is defined as $x^{\star} \in \mathbb{R}$ such that $\mu\left(\left\{x \leq x^{\star}\right\}\right)=\mu\left(\left\{x \geq x^{\star}\right\}\right)$. Take $S=\mathbb{R}$.

Tukey-depth

$S=\mathbb{R}^{n}$ and μ is a finite sum of Dirac measures on \mathbb{R}^{n}.

Winternitz' measure of symmetry
$S=\mathbb{R}^{n}$ and μ be the uniform measure on a convex set K : $\mu(C)=\operatorname{vol}(C \cap K) \operatorname{vol}(K)^{-1}$.

Median

Given μ probability distribution on \mathbb{R}, the median is defined as $x^{\star} \in \mathbb{R}$ such that $\mu\left(\left\{x \leq x^{\star}\right\}\right)=\mu\left(\left\{x \geq x^{\star}\right\}\right)$. Take $S=\mathbb{R}$.

Tukey-depth

$S=\mathbb{R}^{n}$ and μ is a finite sum of Dirac measures on \mathbb{R}^{n}.

Winternitz' measure of symmetry
$S=\mathbb{R}^{n}$ and μ be the uniform measure on a convex set K : $\mu(C)=\operatorname{vol}(C \cap K) \operatorname{vol}(K)^{-1}$. Then

$$
\min _{u \in \mathcal{S}^{n-1}} \mu\left(H^{\geq}\left(u, x^{\star}\right)\right)=\frac{1}{2} .
$$

if and only if

$$
K-x^{\star}=x^{\star}-K
$$

$$
2
$$

2n

$$
8
$$

Centerpoints and the Helly-Number

Let $S \subset \mathbb{R}^{n}$ and $\mathcal{K}:=\left\{S \cap K \mid K \subset \mathbb{R}^{n}\right.$ convex $\}$. The Helly-Number $h(S) \in \mathbb{Z}_{+}$is defined as the minimal number such that: For any $\left\{K_{1}, \ldots, K_{m}\right\} \subset \mathcal{K}$, if

$$
K_{1} \cap \cdots \cap K_{m}=\emptyset,
$$

then there exists $\left\{i_{1}, \ldots, i_{h}\right\} \subset\{1, \ldots, m\}$ such that

$$
K_{i_{1}} \cap \cdots \cap K_{i_{h}}=\emptyset .
$$

If no such number exists, then $h(S)=\infty$.

Centerpoints and the Helly-Number

Let $S \subset \mathbb{R}^{n}$ and $\mathcal{K}:=\left\{S \cap K \mid K \subset \mathbb{R}^{n}\right.$ convex $\}$. The Helly-Number $h(S) \in \mathbb{Z}_{+}$is defined as the minimal number such that: For any $\left\{K_{1}, \ldots, K_{m}\right\} \subset \mathcal{K}$, if

$$
K_{1} \cap \cdots \cap K_{m}=\emptyset,
$$

then there exists $\left\{i_{1}, \ldots, i_{h}\right\} \subset\{1, \ldots, m\}$ such that

$$
K_{i_{1}} \cap \cdots \cap K_{i_{h}}=\emptyset .
$$

If no such number exists, then $h(S)=\infty$.
Theorem [Helly 1913, Doignon 1973, Hoffman 1979]

$$
h\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=2^{n}(d+1)
$$

Centerpoints and the Helly-Number

Let $S \subset \mathbb{R}^{n}$ and $\mathcal{K}:=\left\{S \cap K \mid K \subset \mathbb{R}^{n}\right.$ convex $\}$. The Helly-Number $h(S) \in \mathbb{Z}_{+}$is defined as the minimal number such that: For any $\left\{K_{1}, \ldots, K_{m}\right\} \subset \mathcal{K}$, if

$$
K_{1} \cap \cdots \cap K_{m}=\emptyset
$$

then there exists $\left\{i_{1}, \ldots, i_{h}\right\} \subset\{1, \ldots, m\}$ such that

$$
K_{i_{1}} \cap \cdots \cap K_{i_{h}}=\emptyset
$$

If no such number exists, then $h(S)=\infty$.

Theorem [Helly 1913, Doignon 1973, Hoffman 1979]

$$
h\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=2^{n}(d+1)
$$

Theorem [Basu-Oertel 2015]
Let $S \subseteq \mathbb{R}^{n}$ be a closed subset and let μ be such that $\mu\left(\mathbb{R}^{n} \backslash S\right)=0$. If $h(S)<\infty$, then

$$
\max _{x \in S} \inf _{u \in \mathcal{S}^{n-1}} \mu\left(S \cap H^{\geq}(u, x)\right) \geq h(S)^{-1}
$$

Centerpoints in \mathbb{R}^{d}

Let $S=\mathbb{R}^{d}$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^{d}$. Let x^{\star} denote its corresponding centerpoint.

Theorem

$$
\mu\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{d+1} .
$$

Centerpoints in \mathbb{R}^{d}

Let $S=\mathbb{R}^{d}$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^{d}$. Let x^{\star} denote its corresponding centerpoint.

Theorem

$$
\mu\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{d+1}
$$

The centroid of K is defined as $c_{K}:=\int_{K} x d x$.

Centerpoints in \mathbb{R}^{d}

Let $S=\mathbb{R}^{d}$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^{d}$. Let x^{\star} denote its corresponding centerpoint.
Theorem

$$
\mu\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{d+1}
$$

The centroid of K is defined as $c_{K}:=\int_{K} x d x$.

Theorem [Grünbaum 1960]

$$
\mu\left(H^{\geq}\left(u, c_{K}\right)\right) \geq\left(\frac{d}{d+1}\right)^{d}, \quad \forall u \in \mathcal{S}^{d-1}
$$

Centerpoints in \mathbb{R}^{d}

Let $S=\mathbb{R}^{d}$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^{d}$. Let x^{\star} denote its corresponding centerpoint.
Theorem

$$
\mu\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{d+1}
$$

The centroid of K is defined as $c_{K}:=\int_{K} x d x$.
Theorem [Grünbaum 1960]

$$
\mu\left(H^{\geq}\left(u, c_{K}\right)\right) \geq\left(\frac{d}{d+1}\right)^{d}, \quad \forall u \in \mathcal{S}^{d-1}
$$

Thus, $\mu\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq e^{-1}$.

Centerpoints in $\mathbb{Z}^{n} \times \mathbb{R}^{d}$

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let $\mu_{K}(C):=\frac{\operatorname{vol}_{d}(C \cap K \cap S)}{\operatorname{vol}_{d}(K \cap S)}$, where K is a convex body.
Let x^{\star} denote a corresponding centerpoint.
Theorem [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}} \frac{1}{d+1}
$$

Centerpoints in $\mathbb{Z}^{n} \times \mathbb{R}^{d}$

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let $\mu_{K}(C):=\frac{\operatorname{vol}_{d}(C \cap K \cap S)}{\operatorname{vol}_{d}(K \cap S)}$, where K is a convex body.
Let x^{\star} denote a corresponding centerpoint.
Theorem [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}} \frac{1}{d+1}
$$

Is this best possible?

Centerpoints in $\mathbb{Z}^{n} \times \mathbb{R}^{d}$

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let $\mu_{K}(C):=\frac{\operatorname{vol}_{d}(C \cap K \cap S)}{\operatorname{vol}_{d}(K \cap S)}$, where K is a convex body.
Let x^{\star} denote a corresponding centerpoint.
Theorem [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}} \frac{1}{d+1}
$$

Is this best possible?
Let $v_{0}, \ldots, v_{3} \in \mathbb{R}^{3}$ be affinely independent and let

$$
K \cap S:=\{0,1\}^{3} \times \operatorname{conv}\left\{v_{0}, \ldots, v_{3}\right\}
$$

Centerpoints in $\mathbb{Z}^{n} \times \mathbb{R}^{d}$

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let $\mu_{K}(C):=\frac{\operatorname{vol}_{d}(C \cap K \cap S)}{\operatorname{vol}_{d}(K \cap S)}$, where K is a convex body.
Let x^{\star} denote a corresponding centerpoint.
Theorem [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}} \frac{1}{d+1}
$$

Is this best possible?
Let $v_{0}, \ldots, v_{3} \in \mathbb{R}^{3}$ be affinely independent and let

$$
K \cap S:=\{0,1\}^{3} \times \operatorname{conv}\left\{v_{0}, \ldots, v_{3}\right\}
$$

Conjecture [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}}\left(\frac{d}{d+1}\right)^{d}
$$

Centerpoints in $\mathbb{Z}^{n} \times \mathbb{R}^{d}$

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let $\mu_{K}(C):=\frac{\operatorname{vol}_{d}(C \cap K \cap S)}{\operatorname{vol}_{d}(K \cap S)}$, where K is a convex body.
Let x^{\star} denote a corresponding centerpoint.
Theorem [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}} \frac{1}{d+1}
$$

Is this best possible?
Let $v_{0}, \ldots, v_{3} \in \mathbb{R}^{3}$ be affinely independent and let

$$
K \cap S:=\{0,1\}^{3} \times \operatorname{conv}\left\{v_{0}, \ldots, v_{3}\right\}
$$

Conjecture [Basu-Oertel 2015]

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}}\left(\frac{d}{d+1}\right)^{d}
$$

Theorem [Basu-Oertel 2015]
Let ω be the lattice width of K. If $\omega \geq c 2^{O(n)}$ such that $e^{-\frac{1}{c}-1}+e^{-\frac{2}{c}}-1 \geq 2^{-n-1}$, then

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2^{n}}\left(\frac{d}{d+1}\right)^{d}
$$

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0, \\
& x \in S
\end{array}
$$

We assume $\exists B \in \mathbb{N}$ such that

$$
\left\{x \in \mathbb{R}^{n} \mid g(x) \leq 0\right\} \subset[-B, B]^{n}
$$

f is Lipschitz continuous, with Lipschitz constant L.

Let K be a convex, compact body and

$$
\mu_{K}(C):=\frac{\mu(C \cap K \cap S)}{\mu(K \cap S)} .
$$

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0, \\
& x \in S
\end{array}
$$

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ be closed.
$f: \mathbb{R}^{n} \mapsto \mathbb{R}$,
$g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$: convex, given by a first-order function oracles, queried on a point $x \in S$ the oracle returns $f(x)$ and $h \in \partial f(x)$ or g respectively.

We assume $\exists B \in \mathbb{N}$ such that

$$
\left\{x \in \mathbb{R}^{n+d} \mid g(x) \leq 0\right\} \subset[-B, B]^{n+d}
$$

f is Lipschitz continuous, with Lipschitz constant L.

Let K be a convex, compact body and

$$
\mu_{K}(C):=\frac{\operatorname{vol}_{d}(C \cap K \cap S)}{\operatorname{vol}_{d}(K \cap S)} .
$$

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

General cutting plane scheme

- Let $P_{0}:=[0, B)^{n+d} \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$.
- For $i \leq N$
- Compute centerpoint x_{i} w.r.t. $\mu_{P_{i}}$ and S.
- Let $h \in \partial f\left(x_{i}\right)$.
- Define $P_{i+1}=P_{i} \cap H^{>}\left(h, x_{i}\right)$.
- Return $\bar{x}:=\operatorname{argmin} f\left(x_{i}\right)$.

Upper bound

Let $\delta>0$, and $k^{\star} \leq \min _{u \in \mathcal{S}^{n+d-1}} \mu_{K}\left(H^{\geq}\left(u, x_{S}^{\star}\right)\right)$ for all compact convex sets K and corresponding centerpoints x_{S}^{\star}.
After N iterations $\mu_{P_{0}}\left(P_{N}\right) \leq\left(1-k^{\star}\right)^{N}$. Thus, for $N \geq\left\lceil\log _{\frac{1}{1-k^{\star}}}\left(\frac{B^{n+d}}{\delta}\right)\right\rceil$

$$
\mu_{P_{0}}\left(P_{N}\right) \leq \delta
$$

If $\delta \leq \epsilon / L$, then $f(\bar{x})-\min _{x \in \mathbb{Z}^{n} \times \mathbb{R}^{d}} f(x) \leq \epsilon$.

Number of Function Oracle Calls

$$
\begin{array}{ccc}
S & \text { Upper Bound } & \text { Lower Bound } \\
\mathbb{R}^{d} & \left\lceil\log _{\frac{e}{e-1}}\left(\frac{B^{d}}{\delta}\right)\right\rceil & \left\lceil\log _{2}\left(\frac{B^{d}}{\delta}\right)\right\rceil-1 \text { (Yudin \& Nemirovsky) } \\
\mathbb{Z}^{n} & \\
\mathbb{Z}^{n} \times \mathbb{R}^{d} &
\end{array}
$$

Number of Function Oracle Calls

$$
\begin{array}{ccc}
S & \text { Upper Bound } & \text { Lower Bound } \\
\mathbb{R}^{d} & O\left(\log _{2}\left(\frac{B^{d}}{\delta}\right)\right) & \Omega\left(\log _{2}\left(\frac{B^{d}}{\delta}\right)\right) \quad \text { (Yudin \& Nemirovsky) } \\
\mathbb{Z}^{n} & \\
\mathbb{Z}^{n} \times \mathbb{R}^{d} & &
\end{array}
$$

Number of Function Oracle Calls

$$
\begin{array}{cccc}
S & \text { Upper Bound } & \text { Lower Bound } \\
\mathbb{R}^{d} & O\left(\log _{2}\left(\frac{B^{d}}{\delta}\right)\right) & \Omega\left(\log _{2}\left(\frac{B^{d}}{\delta}\right)\right) & \text { (Yudin \& Nemirovsk } \\
\mathbb{Z}^{n} & O\left(n 2^{n} \log _{2}(B)\right) & \Omega\left(2^{n} \log _{2}(B)\right) & \text { (Basu \& Oertel) } \\
\mathbb{Z}^{n} \times \mathbb{R}^{d} & &
\end{array}
$$

Number of Function Oracle Calls

$$
\begin{array}{cccc}
S & \text { Upper Bound } & \text { Lower Bound } & \\
\mathbb{R}^{d} & O\left(\log _{2}\left(\frac{B^{d}}{\delta}\right)\right) & \Omega\left(\log _{2}\left(\frac{B^{d}}{\delta}\right)\right) & \text { (Yudin \& Nemirovsk } \\
\mathbb{Z}^{n} & O\left(n 2^{n} \log _{2}(B)\right) & \Omega\left(2^{n} \log _{2}(B)\right) & \text { (Basu \& Oertel) } \\
\times \mathbb{R}^{d} & O\left(2^{n}(d+1) \log _{2}\left(\frac{B^{n+d}}{\delta}\right)\right) & \Omega\left(2^{n}\left(\log _{2} \frac{B^{d}}{\delta}\right)\right) & \text { (Basu \& Oertel) }
\end{array}
$$

Computing Centerpoints [Basu-Oertel 2016]

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

Computing Centerpoints [Basu-Oertel 2016]

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If $n=0$ and d fixed, then we can compute centerpoints.

Computing Centerpoints [Basu-Oertel 2016]

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If $n=0$ and d fixed, then we can compute centerpoints.
- If $n=2$ and $d=0$, then we can compute centerpoints.

Computing Centerpoints [Basu-Oertel 2016]

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If $n=0$ and d fixed, then we can compute centerpoints.
- If $n=2$ and $d=0$, then we can compute centerpoints.
- For fixed n and d and if $\omega(K)$ is large: We can approximate centerpoints.

Computing Centerpoints [Basu-Oertel 2016]

Let $S=\mathbb{Z}^{n} \times \mathbb{R}^{d}$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If $n=0$ and d fixed, then we can compute centerpoints.
- If $n=2$ and $d=0$, then we can compute centerpoints.
- For fixed n and d and if $\omega(K)$ is large: We can approximate centerpoints.
- For fixed n and d :

By random sampling, we can approximate centerpoints with a high probability. (using Vapnik-Chervonenkis theory)

Question

Let $S=\mathbb{Z} \times \mathbb{R}^{d}, K \in[-1,1] \times \mathbb{R}^{d}$ be a convex body and let μ denote the uniform measure on $K \cap S$.

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2}\left(\frac{d}{d+1}\right)^{d} ?
$$

Question

Let $S=\mathbb{Z} \times \mathbb{R}^{d}, K \in[-1,1] \times \mathbb{R}^{d}$ be a convex body and let μ denote the uniform measure on $K \cap S$.

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2}\left(\frac{d}{d+1}\right)^{d} ?
$$

Question

Let $S=\mathbb{Z} \times \mathbb{R}^{d}, K \in[-1,1] \times \mathbb{R}^{d}$ be a convex body and let μ denote the uniform measure on $K \cap S$.

$$
\mu_{K}\left(H^{\geq}\left(u, x^{\star}\right)\right) \geq \frac{1}{2}\left(\frac{d}{d+1}\right)^{d} ?
$$

THANKS

