Centerpoints: Link between Convex Geometry and Optimization

Amitabh Basu, Timm Oertel

MOPTA conference Lehigh University, August 2016

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex.

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex. Assume we have evaluated f at x_1, x_2, \ldots, x_N .

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex. Assume we have evaluated f at x_1, x_2, \ldots, x_N .

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex. Assume we have evaluated f at x_1, x_2, \ldots, x_N .

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex. Assume we have evaluated f at x_1, x_2, \ldots, x_N . How should we choose x_{N+1} ?

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex. Assume we have evaluated f at x_1, x_2, \ldots, x_N . How should we choose x_{N+1} ?

Consider the problem $\min_{x \in \mathbb{Z}^n} f(x)$, where f is convex. Assume we have evaluated f at x_1, x_2, \ldots, x_N . How should we choose x_{N+1} ?

Let $S \subset \mathbb{R}^n$ be closed.

Let $S \subset \mathbb{R}^n$ be clc Set over which we optimize: $S = \mathbb{R}^n, \mathbb{Z}^n, \mathbb{Z}^n \times \mathbb{R}^d$

Let $S \subset \mathbb{R}^n$ be closed.

For $x \in \mathbb{R}^n$ and $u \in \mathcal{S}^{n-1}$ we denote

$$H^{\geq}(u,x) := \Big\{ y \in \mathbb{R}^n \mid u^T(y-x) \ge 0 \Big\}.$$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

 $\max_{x \in S} \inf_{u \in S^{n-1}} \mu(H^{\geq}(u, x)).$

Let $S \subset \mathbb{R}^n$ be closed.

For $x \in \mathbb{R}^n$ and $u \in \mathcal{S}^{n-1}$ we denote

$$H^{\geq}(u,x) := \left\{ y \in \mathbb{R}^n \mid u^T(y-x) \ge 0 \right\}.$$

Definition

A *centerpoint* w.r.t. S and μ is defined as an optimal solution x^* of

 $\max_{x\in S} \inf_{u\in \mathcal{S}^{n-1}} \mu(H^{\geq}(u,x)).$

 μ uniform distribution; $S = \mathbb{R}^n$

Let $S \subset \mathbb{R}^n$ be closed.

For $x \in \mathbb{R}^n$ and $u \in S^{n-1}$ we denote $H^{\geq}(u, x) := \Big\{ y \in \mathbb{R}^n \mid u^T(y - x) \ge 0 \Big\}.$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

 $\max_{x \in S} \inf_{u \in \mathcal{S}^{n-1}} \mu(H^{\geq}(u, x)).$

 μ counting measure; $S = \mathbb{Z}^n$

Let $S \subset \mathbb{R}^n$ be closed.

For $x \in \mathbb{R}^n$ and $u \in S^{n-1}$ we denote $H^{\geq}(u, x) := \Big\{ y \in \mathbb{R}^n \mid u^T(y - x) \ge 0 \Big\}.$

Definition

A centerpoint w.r.t. S and μ is defined as an optimal solution x^{\star} of

 $\max_{x \in S} \inf_{u \in \mathcal{S}^{n-1}} \mu(H^{\geq}(u, x)).$

 μ mixed-integer measure; $S = \mathbb{Z}^n \times \mathbb{R}^d$

Given μ probability distribution on \mathbb{R} , the median is defined as $x^* \in \mathbb{R}$ such that $\mu(\{x \leq x^*\}) = \mu(\{x \geq x^*\})$. Take $S = \mathbb{R}$.

Given μ probability distribution on \mathbb{R} , the median is defined as $x^* \in \mathbb{R}$ such that $\mu(\{x \leq x^*\}) = \mu(\{x \geq x^*\})$. Take $S = \mathbb{R}$.

Tukey-depth

 $S = \mathbb{R}^n$ and μ is a finite sum of Dirac measures on \mathbb{R}^n .

Given μ probability distribution on \mathbb{R} , the median is defined as $x^* \in \mathbb{R}$ such that $\mu(\{x \leq x^*\}) = \mu(\{x \geq x^*\})$. Take $S = \mathbb{R}$.

Tukey-depth

 $S = \mathbb{R}^n$ and μ is a finite sum of Dirac measures on \mathbb{R}^n .

Winternitz' measure of symmetry

 $S = \mathbb{R}^n$ and μ be the uniform measure on a convex set K: $\mu(C) = \operatorname{vol}(C \cap K) \operatorname{vol}(K)^{-1}$.

Given μ probability distribution on \mathbb{R} , the median is defined as $x^* \in \mathbb{R}$ such that $\mu(\{x \leq x^*\}) = \mu(\{x \geq x^*\})$. Take $S = \mathbb{R}$.

Tukey-depth

 $S = \mathbb{R}^n$ and μ is a finite sum of Dirac measures on \mathbb{R}^n .

Winternitz' measure of symmetry

 $S=\mathbb{R}^n$ and μ be the uniform measure on a convex set $K\colon \mu(C)=\mathrm{vol}(C\cap K)\,\mathrm{vol}(K)^{-1}.$ Then

$$\min_{u\in\mathcal{S}^{n-1}}\mu(H^{\geq}(u,\boldsymbol{x}^{\star}))=\frac{1}{2}.$$

if and only if

$$K - x^{\star} = x^{\star} - K \qquad (Funk 1915)$$

Centerpoints and the Helly-Number

Let $S \subset \mathbb{R}^n$ and $\mathcal{K} := \{S \cap K \mid K \subset \mathbb{R}^n \text{ convex }\}$. The *Helly-Number* $h(S) \in \mathbb{Z}_+$ is defined as the minimal number such that: For any $\{K_1, \ldots, K_m\} \subset \mathcal{K}$, if

 $K_1 \cap \cdots \cap K_m = \emptyset,$

then there exists $\{i_1,\ldots,i_h\}\subset\{1,\ldots,m\}$ such that

 $K_{i_1} \cap \cdots \cap K_{i_h} = \emptyset.$

If no such number exists, then $h(S) = \infty$.

Centerpoints and the Helly-Number

Let $S \subset \mathbb{R}^n$ and $\mathcal{K} := \{S \cap K \mid K \subset \mathbb{R}^n \text{ convex }\}$. The *Helly-Number* $h(S) \in \mathbb{Z}_+$ is defined as the minimal number such that: For any $\{K_1, \ldots, K_m\} \subset \mathcal{K}$, if

 $K_1 \cap \dots \cap K_m = \emptyset,$

then there exists $\{i_1,\ldots,i_h\}\subset\{1,\ldots,m\}$ such that

 $K_{i_1} \cap \cdots \cap K_{i_h} = \emptyset.$

If no such number exists, then $h(S) = \infty$.

Theorem [Helly 1913, Doignon 1973, Hoffman 1979]

 $h(\mathbb{Z}^n \times \mathbb{R}^d) = 2^n (d+1)$

Centerpoints and the Helly-Number

Let $S \subset \mathbb{R}^n$ and $\mathcal{K} := \{S \cap K \mid K \subset \mathbb{R}^n \text{ convex }\}$. The *Helly-Number* $h(S) \in \mathbb{Z}_+$ is defined as the minimal number such that: For any $\{K_1, \ldots, K_m\} \subset \mathcal{K}$, if

 $K_1 \cap \dots \cap K_m = \emptyset,$

then there exists $\{i_1,\ldots,i_h\}\subset\{1,\ldots,m\}$ such that

 $K_{i_1} \cap \cdots \cap K_{i_h} = \emptyset.$

If no such number exists, then $h(S) = \infty$.

Theorem [Helly 1913, Doignon 1973, Hoffman 1979]

 $h(\mathbb{Z}^n \times \mathbb{R}^d) = 2^n (d+1)$

Theorem [Basu–Oertel 2015] Let $S \subseteq \mathbb{R}^n$ be a closed subset and let μ be such that $\mu(\mathbb{R}^n \setminus S) = 0$. If $h(S) < \infty$, then

$$\max_{x \in S} \inf_{u \in \mathcal{S}^{n-1}} \mu(S \cap H^{\geq}(u, x)) \ge \mathbf{h}(S)^{-1}.$$

Let $S = \mathbb{R}^d$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^d$. Let x^* denote its corresponding centerpoint.

Theorem

$$\mu(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{d+1}.$$

Let $S = \mathbb{R}^d$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^d$. Let x^* denote its corresponding centerpoint.

Theorem

$$\mu(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{d+1}.$$

The *centroid* of *K* is defined as $c_K := \int_K x dx$.

Let $S = \mathbb{R}^d$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^d$. Let x^* denote its corresponding centerpoint.

Theorem

$$\mu(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{d+1}.$$

The *centroid* of *K* is defined as $c_K := \int_K x dx$.

Theorem [Grünbaum 1960]

$$\mu(H^{\geq}(u,c_K)) \geq \left(\frac{d}{d+1}\right)^d, \quad \forall u \in \mathcal{S}^{d-1}.$$

Let $S = \mathbb{R}^d$ and let μ be a uniform measure w.r.t. a closed convex set $K \subset \mathbb{R}^d$. Let x^* denote its corresponding centerpoint.

Theorem

$$\mu(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{d+1}.$$

The *centroid* of *K* is defined as $c_K := \int_K x dx$.

Theorem [Grünbaum 1960]

$$\mu(H^{\geq}(u,c_K)) \geq \left(\frac{d}{d+1}\right)^d, \quad \forall u \in \mathcal{S}^{d-1}.$$

Thus, $\mu(H^{\geq}(u, \mathbf{x}^{\star})) \geq e^{-1}$.

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let $\mu_K(C) := \frac{\operatorname{vol}_d(C \cap K \cap S)}{\operatorname{vol}_d(K \cap S)}$, where K is a convex body. Let x^* denote a corresponding centerpoint.

Theorem [Basu–Oertel 2015]

 $\mu_K(H^{\geq}(u, \boldsymbol{x}^*)) \ge \frac{1}{2^n} \frac{1}{d+1}.$

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let $\mu_K(C) := \frac{\operatorname{vol}_d(C \cap K \cap S)}{\operatorname{vol}_d(K \cap S)}$, where K is a convex body. Let x^* denote a corresponding centerpoint.

Theorem [Basu–Oertel 2015]

 $\mu_K(H^{\geq}(u, \boldsymbol{x}^*)) \ge \frac{1}{2^n} \frac{1}{d+1}.$

Is this best possible?

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let $\mu_K(C) := \frac{\operatorname{vol}_d(C \cap K \cap S)}{\operatorname{vol}_d(K \cap S)}$, where K is a convex body. Let x^* denote a corresponding centerpoint.

Theorem [Basu–Oertel 2015]

$$u_K(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{2^n} \frac{1}{d+1}.$$

Is this best possible?

Let $v_0, \ldots, v_3 \in \mathbb{R}^3$ be affinely independent and let

 $K \cap S := \{0, 1\}^3 \times \operatorname{conv}\{v_0, \dots, v_3\}$

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let $\mu_K(C) := \frac{\operatorname{vol}_d(C \cap K \cap S)}{\operatorname{vol}_d(K \cap S)}$, where K is a convex body. Let x^* denote a corresponding centerpoint.

Theorem [Basu–Oertel 2015]

$$u_K(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{2^n} \frac{1}{d+1}.$$

Is this best possible?

Let $v_0, \ldots, v_3 \in \mathbb{R}^3$ be affinely independent and let

 $K \cap S := \{0,1\}^3 \times \operatorname{conv}\{v_0,\ldots,v_3\}$

Conjecture [Basu-Oertel 2015]

$$\mu_K(H^{\geq}(u,x^*)) \geq \frac{1}{2^n} \left(\frac{d}{d+1}\right)^d.$$

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let $\mu_K(C) := \frac{\operatorname{vol}_d(C \cap K \cap S)}{\operatorname{vol}_d(K \cap S)}$, where K is a convex body. Let x^* denote a corresponding centerpoint.

Theorem [Basu–Oertel 2015]

$$u_K(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{2^n} \frac{1}{d+1}.$$

Is this best possible?

Let $v_0, \ldots, v_3 \in \mathbb{R}^3$ be affinely independent and let

 $K \cap S := \{0,1\}^3 \times \operatorname{conv}\{v_0,\ldots,v_3\}$

Conjecture [Basu–Oertel 2015]

$$\mu_K(H^{\geq}(u,x^{\star})) \geq \frac{1}{2^n} \left(\frac{d}{d+1}\right)^d.$$

Theorem [Basu–Oertel 2015]

Let ω be the lattice width of K. If $\omega \ge c 2^{O(n)}$ such that $e^{-\frac{1}{c}-1} + e^{-\frac{2}{c}} - 1 \ge 2^{-n-1}$, then

$$\mu_K(H^{\geq}(u, x^*)) \geq \frac{1}{2^n} \left(\frac{d}{d+1}\right)^d$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0, \\ & x \in S. \end{array}$$

Let $S \subset \mathbb{R}^n$ be closed.

$$\begin{split} f: \mathbb{R}^n &\mapsto \mathbb{R}, \\ g: \mathbb{R}^n &\mapsto \mathbb{R}^m: \text{ convex, given by a} \\ \text{ first-order function oracles, queried} \\ \text{ on a point } x \in S \text{ the oracle returns} \\ f(x) \text{ and } h \in \partial f(x) \text{ or } g \text{ respectively.} \end{split}$$

We assume $\exists B \in \mathbb{N}$ such that $\{x \in \mathbb{R}^n \mid g(x) \leq 0\} \subset [-B, B]^n.$

f is Lipschitz continuous, with Lipschitz constant L.

Let K be a convex, compact body and $\mu_K(C) := \frac{\mu(C \cap K \cap S)}{\mu(K \cap S)}.$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0, \\ & x \in S. \end{array}$$

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ be closed. $f : \mathbb{R}^n \mapsto \mathbb{R}$, $g : \mathbb{R}^n \mapsto \mathbb{R}^m$: convex, given by a first-order function oracles, queried on a point $x \in S$ the oracle returns f(x) and $h \in \partial f(x)$ or g respectively. We assume $\exists B \in \mathbb{N}$ such that $\{x \in \mathbb{R}^{n+d} \mid g(x) \leq 0\} \subset [-B, B]^{n+d}.$

f is Lipschitz continuous, with Lipschitz constant L.

Let K be a convex, compact body and

 $\mu_K(C) := \frac{\operatorname{vol}_d(C \cap K \cap S)}{\operatorname{vol}_d(K \cap S)}.$

General cutting plane scheme

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

- Let $P_0 := [0, B)^{n+d} \cap (\mathbb{Z}^n \times \mathbb{R}^d).$
- For $i \leq N$
 - Compute centerpoint x_i w.r.t. μ_{P_i} and S.
 - Let $h \in \partial f(x_i)$.
 - Define $P_{i+1} = P_i \cap H^>(h, x_i)$.
- Return $\bar{x} := \operatorname{argmin} f(x_i)$.

Upper bound

Let $\delta > 0$, and $k^* \leq \min_{u \in S^{n+d-1}} \mu_K(H^{\geq}(u, x_S^*))$ for all compact convex sets K and corresponding centerpoints x_S^* .

After N iterations $\mu_{P_0}(P_N) \leq (1-k^{\star})^N$. Thus, for $N \geq \left\lceil \log_{\frac{1}{1-k^{\star}}} \left(\frac{B^{n+d}}{\delta} \right) \right\rceil$ $\mu_{P_0}(P_N) \leq \delta.$

 $\text{If }\delta\leq \epsilon/L\text{, then }f(\bar{x})-\min_{x\in\mathbb{Z}^n\times\mathbb{R}^d}f(x)\leq\epsilon.$

 $\mathbb{Z}^n imes \mathbb{R}^d$

 $\mathbb{Z}^n\times \mathbb{R}^d$

S	Upper Bound	Lower Bound	
\mathbb{R}^{d}	$O\left(\log_2\left(rac{B^d}{\delta} ight) ight)$	$\Omega\left(\log_2\left(\frac{B^d}{\delta}\right)\right)$	(Yudin & Nemirovsky)
\mathbb{Z}^n	$O\left(n2^n\log_2(B)\right)$	$\Omega\left(2^n\log_2(B)\right)$	(Basu & Oertel)

 $\mathbb{Z}^n imes \mathbb{R}^d$

S	Upper Bound	Lower Bound	
\mathbb{R}^{d}	$O\left(\log_2\left(\frac{B^d}{\delta}\right)\right)$	$\Omega\left(\log_2\left(rac{B^d}{\delta} ight) ight)$ (Yudin	& Nemirovsky)
\mathbb{Z}^n	$O\left(n2^n\log_2(B)\right)$	$\Omega\left(2^n\log_2(B) ight)$ (Ba	su & Oertel)
$\mathbb{Z}^n imes \mathbb{R}^d$	$O\left(2^n(d+1)\log_2\left(rac{B^{n+d}}{\delta} ight) ight)$	$\Omega\left(2^n\left(\log_2 rac{B^d}{\delta} ight) ight)$ (Ba	su & Oertel)

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

• If n = 0 and d fixed, then we can compute centerpoints.

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If n = 0 and d fixed, then we can compute centerpoints.
- If n = 2 and d = 0, then we can compute centerpoints.

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If n = 0 and d fixed, then we can compute centerpoints.
- If n = 2 and d = 0, then we can compute centerpoints.
- For fixed n and d and if ω(K) is large: We can approximate centerpoints.

Let $S = \mathbb{Z}^n \times \mathbb{R}^d$ and let μ be the uniform measure with respect to $K \cap S$, where K is a polytope.

- If n = 0 and d fixed, then we can compute centerpoints.
- If n = 2 and d = 0, then we can compute centerpoints.
- For fixed n and d and if ω(K) is large: We can approximate centerpoints.
- For fixed n and d:

By random sampling, we can approximate centerpoints with a high probability. (using Vapnik-Chervonenkis theory)

Question

Let $S = \mathbb{Z} \times \mathbb{R}^d$, $K \in [-1, 1] \times \mathbb{R}^d$ be a convex body and let μ denote the uniform measure on $K \cap S$.

$$\mu_K(H^{\geq}(u, \boldsymbol{x}^{\star})) \geq \frac{1}{2} \left(\frac{d}{d+1}\right)^d ?$$

Question

Let $S = \mathbb{Z} \times \mathbb{R}^d$, $K \in [-1, 1] \times \mathbb{R}^d$ be a convex body and let μ denote the uniform measure on $K \cap S$.

$$\mu_K(H^{\geq}(u, \boldsymbol{x}^*)) \geq \frac{1}{2} \left(\frac{d}{d+1}\right)^d ?$$

Question

ŀ

Let $S = \mathbb{Z} \times \mathbb{R}^d$, $K \in [-1, 1] \times \mathbb{R}^d$ be a convex body and let μ denote the uniform measure on $K \cap S$.

$$\iota_K(H^{\geq}(u, x^*)) \geq \frac{1}{2} \left(\frac{d}{d+1}\right)^d?$$

THANKS