RANDOM-EDGE is slower than RANDOM-FACET on abstract cubes

Thomas Dueholm Hansen ${ }^{1} \quad$ Uri Zwick ${ }^{2}$

1 Department of Computer Science, Aarhus University, Denmark.

2 School of Computer Science, Tel Aviv University, Israel.

August 13, 2016

- Linear programming: Maximize a linear objective function subject to linear constraints.
- The simplex algorithm: Move from vertex to vertex along edges while improving the objective.
- This operation is called a pivot.

Pivoting rules

- A pivoting rule chooses which improving pivot to make.
- Random-Edge: Repeatedly use a uniformly random improving pivot.

Orientations

- The objective function defines an orientation of the edges.
- Many pivoting rules only rely on this orientation.

Orientations

- The objective function defines an orientation of the edges.
- Many pivoting rules only rely on this orientation.
- Random-Edge: Perform a random walk until reaching the sink where all edges are incoming.

The Random-Facet pivoting rule

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

The Random-Facet pivoting rule

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

The Random-Facet pivoting rule

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

The Random-Facet pivoting rule

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

- Random-Facet: Introduced independently by Kalai [1992] and by Matoušek, Sharir and Welzl [1992].

Properties of the orientation

(1) The graph is acyclic.

Properties of the orientation

(1) The graph is acyclic.
(2) The unique sink property: In every face there is a unique sink (optimal vertex within the face).

Abstract cubes

- Acyclic unique sink orientations (AUSOs) (or abstract objective functions) are orientations that are
(1) acyclic and
(2) have the unique sink property.

Abstract cubes

- Acyclic unique sink orientations (AUSOs) (or abstract objective functions) are orientations that are
(1) acyclic and
(2) have the unique sink property.
- AUSOs can be defined for arbitrary polytopes. We focus on the case where the underlying polytope is a hypercube.

Acyclic unique sink orientations

- An algorithm asks an oracle for the orientation of the edges adjacent to a vertex.

Acyclic unique sink orientations

- An algorithm asks an oracle for the orientation of the edges adjacent to a vertex.

Acyclic unique sink orientations

- An algorithm asks an oracle for the orientation of the edges adjacent to a vertex.
- Goal: Find the global sink with as few oracle calls as possible.

AUSOs and some applications

Results about RANDOM-FACET

Bounds for the expected number of steps performed by Random-Facet on n-dimensional AUSOs with m facets.

- Kalai [1992] and Matoušek, Sharir and Welzl [1992]: $2^{O(\sqrt{(m-n) \log n})}$
- Gärtner [2002]: $2^{O(\sqrt{n})}$ for abstract cubes

Results about RANDOM-FACET

Bounds for the expected number of steps performed by Random-Facet on n-dimensional AUSOs with m facets.

- Kalai [1992] and Matoušek, Sharir and Welzl [1992]: $2^{O(\sqrt{(m-n) \log n})}$
- Gärtner [2002]: $2^{O(\sqrt{n})}$ for abstract cubes
- This is the best known bound for solving AUSOs on cubes.

Results about RANDOM-FACET

Bounds for the expected number of steps performed by Random-Facet on n-dimensional AUSOs with m facets.

- Kalai [1992] and Matoušek, Sharir and Welzl [1992]:

$$
2^{O(\sqrt{(m-n) \log n})}
$$

- Gärtner [2002]: $2^{O(\sqrt{n})}$ for abstract cubes
- This is the best known bound for solving AUSOs on cubes.
- Matoušek [1994]: $2^{\Omega(\sqrt{n})}$ for abstract cubes ($m=2 n$)
- Friedmann, Hansen, and Zwick [2011]: $2^{\tilde{\Omega}(\sqrt[3]{m})}$ for linear programs

Results about Random-EDGE

Bounds for the expected number of steps performed by Random-Edge on n-dimensional AUSOs of cubes.

- Matoušek and Szabó [2004]: $2^{\Omega(\sqrt[3]{n})}$
- Friedmann, Hansen, and Zwick [2011]: $2^{\Omega(\sqrt[4]{n})}$ for linear programs (that are cubes)

Results about Random-EDGE

Bounds for the expected number of steps performed by Random-Edge on n-dimensional AUSOs of cubes.

- Matoušek and Szabó [2004]: $2^{\Omega(\sqrt[3]{n})}$
- Friedmann, Hansen, and Zwick [2011]: $2^{\Omega(\sqrt[4]{n})}$ for linear programs (that are cubes)
- Gärtner and Kaibel [2007]: $O\left(2^{n} / n^{\log n}\right)$
- Hansen, Paterson, and Zwick [2014]: $O\left(1.80^{n}\right)$

Results about Random-EDGE

Bounds for the expected number of steps performed by Random-Edge on n-dimensional AUSOs of cubes.

- Matoušek and Szabó [2004]: $2^{\Omega(\sqrt[3]{n})}$
- Friedmann, Hansen, and Zwick [2011]: $2^{\Omega(\sqrt[4]{n})}$ for linear programs (that are cubes)
- Gärtner and Kaibel [2007]: $O\left(2^{n} / n^{\log n}\right)$
- Hansen, Paterson, and Zwick [2014]: $O\left(1.80^{n}\right)$
- We show: $2^{\Omega(\sqrt{n \log n})}$

Results about Random-EDGE

Bounds for the expected number of steps performed by Random-Edge on n-dimensional AUSOs of cubes.

- Matoušek and Szabó [2004]: $2^{\Omega(\sqrt[3]{n})}$
- Friedmann, Hansen, and Zwick [2011]: $2^{\Omega(\sqrt[4]{n})}$ for linear programs (that are cubes)
- Gärtner and Kaibel [2007]: $O\left(2^{n} / n^{\log n}\right)$
- Hansen, Paterson, and Zwick [2014]: $O\left(1.80^{n}\right)$
- We show: $2^{\Omega(\sqrt{n \log n})}$
- Thus Random-Edge is slower than Gärtner's $2^{O(\sqrt{n})}$ upper bound for Random-Facet.

Results about Random-EDGE

Bounds for the expected number of steps performed by Random-Edge on n-dimensional AUSOs of cubes.

- Matoušek and Szabó [2004]: $2^{\Omega(\sqrt[3]{n})}$
- Friedmann, Hansen, and Zwick [2011]: $2^{\Omega(\sqrt[4]{n})}$ for linear programs (that are cubes)
- Gärtner and Kaibel [2007]: $O\left(2^{n} / n^{\log n}\right)$
- Hansen, Paterson, and Zwick [2014]: $O\left(1.80^{n}\right)$
- We show: $2^{\Omega(\sqrt{n \log n})}$
- Thus Random-Edge is slower than Gärtner's $2^{O(\sqrt{n})}$ upper bound for Random-Facet.
- Improving the bound further requires significantly new ideas.

Results about Random-EDGE

Bounds for the expected number of steps performed by Random-Edge on n-dimensional AUSOs of cubes.

- Matoušek and Szabó [2004]: $2^{\Omega(\sqrt[3]{n})}$
- Friedmann, Hansen, and Zwick [2011]: $2^{\Omega(\sqrt[4]{n})}$ for linear programs (that are cubes)
- Gärtner and Kaibel [2007]: $O\left(2^{n} / n^{\log n}\right)$
- Hansen, Paterson, and Zwick [2014]: $O\left(1.80^{n}\right)$
- We show: $2^{\Omega(\sqrt{n \log n})}$
- Thus Random-Edge is slower than Gärtner's $2^{O(\sqrt{n})}$ upper bound for Random-Facet.
- Improving the bound further requires significantly new ideas.

Open problem: Is Random-Edge subexponential?

Product of AUSOs [Schurr and Szabó, 2004]

Product of AUSOs [Schurr and Szabó, 2004]

Product of AUSOs [Schurr and Szabó, 2004]

Matoušek and Szabó [2004]

- Let A be an AUSO for which Random-Edge performs T steps with high probability.
- Goal: Construct a slightly larger AUSO C for which Random-Edge performs $2 T$ steps with high probability.

Matoušek and Szabó [2004]

- Let A be an AUSO for which Random-Edge performs T steps with high probability.
- Goal: Construct a slightly larger AUSO C for which Random-Edge performs $2 T$ steps with high probability.
- Construction: Randomized product $C=A \times_{R} B$.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk on product AUSO

- Every step in A brings us to a previously unvisited copy of B.
- Every copy of B has its coordinates randomly permuted.
- The hypersink is a randomly translated copy of A : This corresponds to starting from a uniformly random vertex of A.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.
- Matoušek and Szabó [2004] use many copies of the Klee-Minty cube to get a large k.

Random walk with reshuffles

- Main challenge: Ensure that B does not reach its sink before A.
- Random-ReshuFfle k : Random walk on B where at least k edges are always available in A.
- A larger k delays progress in B.
- Matoušek and Szabó [2004] use many copies of the Klee-Minty cube to get a large k.
- We simplify and improve their analysis by using only two copies (and therefore $k=2$) of a path AUSO.

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11100110

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11100100

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11100000

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11110000

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11111000

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11111100

Path AUSOs

- Every vertex of a hypercube can be identified by a binary vector.
- Path AUSO: The i-th edge is outgoing iff the i-th coordinate is 0 and all previous coordinates are 1 , or the i-th coordinate is 1 and some previous coordinate is 0 .

In/Out: 11011101

- A reshuffle permutes the coordinates; the number of 0 's and 1's remain unchanged.

RANDOM-RESHUFFLE 2 on a path AUSO

In/Out: $11100110 \quad k=5, j=2$

- Suppose a vertex has $k 1$'s, j of which are non-leading.
- Let $r \geq 2 /(j+3)$ be the reshuffle probability for Random-Reshuffle 2 on B.

RANDOM-RESHUFFLE 2 on a path AUSO

In/Out: $11100110 \quad k=5, j=2$

- Suppose a vertex has k 1's, j of which are non-leading.
- Let $r \geq 2 /(j+3)$ be the reshuffle probability for Random-Reshuffle 2 on B.
- In the next step in B, the number of 1 's increases with probability:

$$
p=(1-r) \cdot \frac{1}{j+1}+r \cdot \sum_{j^{\prime}=0}^{k} \frac{\binom{n-\left(k-j^{\prime}+1\right)}{j^{\prime}}}{\binom{n}{k}} \frac{1}{j^{\prime}+1}
$$

- Lemma: For $8 \leq k \leq n-9$, the number of 1 's increases with probability at most 5/12.

RANDOM-RESHUFFLE 2 on a path AUSO

In/Out: $11100110 \quad k=5, j=2$

- Suppose a vertex has k 1's, j of which are non-leading.
- Let $r \geq 2 /(j+3)$ be the reshuffle probability for Random-Reshuffle 2 on B.
- In the next step in B, the number of 1 's increases with probability:

$$
p=(1-r) \cdot \frac{1}{j+1}+r \cdot \sum_{j^{\prime}=0}^{k} \frac{\binom{n-\left(k-j^{\prime}+1\right)}{j^{\prime}}}{\binom{n}{k}} \frac{1}{j^{\prime}+1}
$$

- Lemma: For $8 \leq k \leq n-9$, the number of 1 's increases with probability at most 5/12.
- The process can be analyzed as a biased random walk on $\{0,1, \ldots, n-17\}$.

Choosing the size of B

By analyzing the biased random walk on $\{0,1, \ldots, n\}$ we get:

Lemma

Let P_{m} be the m-dimensional path AUSO. There are constants $\alpha, \beta>0$ such that the probability that Random-Reshuffle 2 on P_{m}, starting from a random vertex, performs less than $2^{\alpha m}$ steps before reaching the sink is at most $2^{-\beta m}$.

- We let $A_{0}=P_{m}$ and $A_{i}=A_{i-1} \times_{R}^{2} P_{m}$ for $i>1$.
- We show that the probability that Random-Edge performs less than 2^{ℓ} steps when started at a random vertex of A_{ℓ}, where $\ell<\alpha m$, is at most $4 \cdot 2^{\ell-\beta m}$.

Choosing the size of B

By analyzing the biased random walk on $\{0,1, \ldots, n\}$ we get:

Lemma

Let P_{m} be the m-dimensional path AUSO. There are constants $\alpha, \beta>0$ such that the probability that Random-Reshuffle 2 on P_{m}, starting from a random vertex, performs less than $2^{\alpha m}$ steps before reaching the sink is at most $2^{-\beta m}$.

- We let $A_{0}=P_{m}$ and $A_{i}=A_{i-1} \times_{R}^{2} P_{m}$ for $i>1$.
- We show that the probability that Random-Edge performs less than 2^{ℓ} steps when started at a random vertex of A_{ℓ}, where $\ell<\alpha m$, is at most $4 \cdot 2^{\ell-\beta m}$.
- Choosing $\ell=\Theta(m)$ gives a $2^{\Omega(\sqrt{n})}$ lower bound, where $n=\Theta(\ell m)$.

Improving the bound further

- We show that Random-Reshuffle 2 on the m-dimensional path AUSO in two steps almost always increases the number of 1 's with probability at most $O(1 / \sqrt{m})$.
- The improved analysis gives a $2^{\Omega(\sqrt{n \log n})}$ lower bound.

Improving the bound further

- We show that Random-Reshuffle 2 on the m-dimensional path AUSO in two steps almost always increases the number of 1 's with probability at most $O(1 / \sqrt{m})$.
- The improved analysis gives a $2^{\Omega(\sqrt{n \log n})}$ lower bound.
- Can we do better?

Improving the bound further

- We show that Random-Reshuffle 2 on the m-dimensional path AUSO in two steps almost always increases the number of 1 's with probability at most $O(1 / \sqrt{m})$.
- The improved analysis gives a $2^{\Omega(\sqrt{n \log n})}$ lower bound.
- Can we do better? No:
- Any m-dimensional AUSO has a path of length at most m to its sink from every vertex.
- This is true for any choice of B in $A_{i}=A_{i-1} \times_{R} B$.
- Random-Edge on A_{ℓ} follows this path in B with probability at least $1 / n^{m}$, where m is the dimension of B and $n=m \ell$ is the dimension of A_{ℓ}.

$$
\# \text { steps } \leq \min \left\{2^{\ell}, n^{n / \ell}\right\} \text { poly }(n)
$$

- It is impossible to get a better ℓ relative to m, regardless of the choice of B.

Concluding remarks

- We gave a $2^{\Omega(\sqrt{n \log n})}$ lower bound for Random-Edge on abstract cubes (AUSOs), showing that Random-Edge is slower than Random-Facet for this problem.
- Open problem: Is Random-Edge subexponential? Can the lower bound be further improved?
- Open problem: Improve the $2^{\Omega(\sqrt[4]{n})}$ lower bound for linear programming by Friedmann, Hansen, and Zwick [2011].
- Open problem: Is there an algorithm for AUSOs that is faster than $2^{O(\sqrt{n})}$?
- Schurr and Szabó [2004]: Any deterministic algorithm requires $\Omega\left(n^{2} / \log n\right)$ queries.

Concluding remarks

- We gave a $2^{\Omega(\sqrt{n \log n})}$ lower bound for Random-Edge on abstract cubes (AUSOs), showing that Random-Edge is slower than Random-Facet for this problem.
- Open problem: Is Random-Edge subexponential? Can the lower bound be further improved?
- Open problem: Improve the $2^{\Omega(\sqrt[4]{n})}$ lower bound for linear programming by Friedmann, Hansen, and Zwick [2011].
- Open problem: Is there an algorithm for AUSOs that is faster than $2^{O(\sqrt{n})}$?
- Schurr and Szabó [2004]: Any deterministic algorithm requires $\Omega\left(n^{2} / \log n\right)$ queries.

Thank you for listening!

