Facial Reduction and Geometry on Conic Programming

Masakazu Muramatsu UEC

Bruno F. Lourenço, and Takashi Tsuchiya

Seikei University GRIPS

Based on the papers of LMT:

- I. A structural geometrical analysis of weakly infeasible SDPs
- (Journal of Operations Research Society of Japan 2016)
- 2. Weak infeasibility in second order cone programming
- (Optimization Letters 2015)
- 3. Facial Reductions and Partial Polyhedrality (Under Review)

2016/8/13 WAO@Shinagawa

4. (Under preparation)

NOTE:

This talk is a `Random Walk' within these works.

Contents

- I. Conic Programming (CP) and Duality
- 2. Feasibility Statuses of CP
- 3. Facial Reduction Algorithm
- 4. Distance to Polyhedrality and FRA-Poly
- 5. Cone Expansion and Feasibility Transition Theorems
- 6. Nasty Problems and FRA

 $\begin{array}{ll} {\rm dual}\\ \theta_D = \sup\{by: c-A^Ty \in K^*\} \leftrightarrow \theta_P = \inf\{cx: Ax = b, \ x \in K\}\\ {\rm primal/dual} & {\rm dual/primal} \end{array}$

I. CP and Duality *dual* $\theta_D = \sup\{by : c - A^T y \in K^*\} \leftrightarrow \theta_P = \inf\{cx : Ax = b, x \in K\}$

 $\mathcal{A} = \{ c - A^T y : y \in \mathbb{R}^m \} \qquad \qquad \mathcal{A} = \{ x : Ax = b \}$

 $\mathcal{A} \cap \mathcal{K}$: Feasible Region

Conic Programming

 \mathcal{K} : Closed Convex ConeExample \mathcal{A} : Affine SubspaceLP, SOCP, SDP, ...CP: Minimizing Linear Fn. over $\mathcal{A} \cap \mathcal{K}$

Conic Programming

Duality Theorem and Nasty Cases

Duality Theorem in CP

If an *interior feasible* point exists for Primal I. Zero Duality Gap 2. Dual has an optimal solution.

No interior feasible point

- → I. Positive Duality Gap
 - 2. Optimal value may not be attained
 - → Hard to compute optimal value/solution

Both Primal and Dual need interior feasible solutions to ensure existence of optimal solutions in both sides

Corruption of Computation

Waki, Nakata, and M (2012)

Significant

Difference

 ζ_r : Computed optimal values by SeDuMi of SDP relaxations for Polynomial Optimization indexed by relaxation order $r=2,3,4,\ldots$

Fact: The Optimal Value is **zero** for all r.

One of the primal or dual does not have interior feasible solutions.

2. Feasibility Statuses of CP

 $\theta_D = \sup\{by : c - A^T y \in K^*\} \leftrightarrow \theta_P = \inf\{cx : Ax = b, x \in K\}$

 $\mathcal{A} = \{ c - A^T y : y \in \mathbb{R}^m \} \qquad \qquad \mathcal{A} = \{ x : Ax = b \}$

 $\mathcal{A} \cap \mathcal{K}$: Feasible Region

Four Feasibility Statuses of Conic LP I.

 $\mathcal{A} \cap \operatorname{rel}\mathcal{K} \neq \emptyset$

 $\mathcal{A} \cap \mathcal{K} \neq \emptyset$, but $\mathcal{A} \cap \operatorname{rel} \mathcal{K} = \emptyset$

Strongly Feasible

Weakly Feasible

Four Feasibility Statuses of Conic LP II.

See the next slide...

 $\operatorname{dist}(\mathcal{A},\mathcal{K}) > 0$

Strongly Infeasible

 $\operatorname{dist}(\mathcal{A},\mathcal{K}) = 0 \text{ but } \mathcal{A} \cap \mathcal{K} = \emptyset$

Weakly Infeasible Impossible in LP

Weakly Infeasible CP

 $\operatorname{dist}(\mathcal{A},\mathcal{K})=0 \text{ but } \mathcal{A}\cap\mathcal{K}=\emptyset \quad : \text{Weakly Infeasible}$

3.Facial Reduction Algorithm

— How to obtain a well-behaved problem —

Facial Reduction Algorithm(FRA)

Find w and take intersection of K and A. Repeat this until the `minimal cone' is found

FRA Details

 $\theta_D = \sup\{by : c - A^T y \in K^*\} \leftrightarrow \theta_P = \inf\{cx : Ax = b, x \in K\}$

FRA applied to θ_D — Iterate the following steps

- I. Find a *reducing direction w*
- 2. Replace \mathcal{K}^* in θ_D by $\mathcal{K}^* \cap \{w\}^{\perp}$

Properties

- I. The iteration number is bounded by the length of the longest chain of faces of \mathcal{K}^*
- 2. When it stops, then we find either:
 - strongly feasible instance whose objective value is θ_D
 - strongly infeasible instance, showing θ_D is infeasible

Example: SOCP FRA $\mathcal{K}^{n} = \{ (x_{0}, \tilde{x}) \in R^{n} : x_{0} \ge \|\tilde{x}\| \}$

Example: SOCP FRA

One FRA iteration makes at least one SOC to polyhedral
 At most m iteration is needed to obtain polyhedral cone
 Enough to have a good property of duality

FRA-Poly

4. Distance to Polyhedrality and FRA-Poly

 \mathcal{K}^{n_m} Х

Distance to Polyhedrality

Observation:

- No Nasty LPs even if not strongly feasible
- If we reach a polyhedral cone, we are happy. (if needed, just one more FRA is enough to obtain a strongly feasible LP)
- $I. \quad \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_l = \mathcal{K}$
- 2. \mathcal{F}_1 is polyhedral
- 3. Others are non-polyhedral
- 4. Suppose that this chain is the longest one

l-1 is called **Distance to Polyhedrality**

Partial Polyhedral Slater's (PPS) Condition

 $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2$ where \mathcal{K}_2 is polyhedral.

CP satisfies PPS Condition

 $\Leftrightarrow \exists (x_1, x_2) \in \mathcal{A} \cap \mathcal{K} \text{ s.t. } x_1 \in \operatorname{rel} \mathcal{K}_1$

Theorem. If CP satisfies PPS Condition,

- I. No duality gap
- 2. Dual is attained.

FRA-Poly

- We can construct FRA in such a way to reduce non-polyhedral cone (FRA-Poly).
- Distance-to-polyhedrality is an upper bound of the number of iterations of FRA-Poly.

Upper bounds of FRA predicted by

	the longest chain of Faces	Distance to Polyhedrality
SOC	2	
PSD	n+l	n
DNN	n(n+1)/2+1	n

SOC

5. Cone Expansion and Feasibility Transition Theorems

Cone Expansion (CE)

 $\theta_D = \sup\{by : c - A^T y \in K^*\} \leftrightarrow \theta_P = \inf\{cx : Ax = b, x \in K\}$

$$\theta'_D = \sup\{by : c - A^T y \in K^* \cap w^{\perp}\} \\ \leftrightarrow \theta'_P = \inf\{cx : Ax = b, \ x \in \operatorname{cl}(K + l(w))\}$$

(Specially chosen w corresponds to Luo, Sturm, Zhang; Waki, M)

Example: SOCP CE 1. Dual of SOC is SOC SOC is full-dimensional (Self Dual) w: p educing direction If $w \in \operatorname{rel} \mathcal{K}^n$, then $\mathcal{K}^n + l(w) = R^n$

FRA, CE and Feasibility

- I. FRA does not change the feasible region
- 2. Feasible region of θ'_P could be *larger* than that of $\theta_P \longrightarrow \theta'_D = \theta_D, \ \theta'_P \le \theta_P$

Feasibility Transition by FRA

Strongly Feasible Weakly Feasible Weakly Infeasible Strongly Infeasible Strongly Feasible Weakly Feasible Weakly Infeasible Strongly Infeasible

As long as the problem is in weak status, we can apply FRA.

Final status: strongly feasible or infeasible instance

Feasibility Transition by CE

Strongly Feasible Weakly Feasible Weakly Infeasible Strongly Infeasible Strongly Feasible Weakly Feasible Weakly Infeasible Strongly Infeasible

As long as the problem weakly infeasible, we can apply CE.

Final status: Feasible, or strongly infeasible instance.

Strongly Feasible but Non-attained problem

 $\theta_D = \sup\{by : c - A^T y \in K^*\} \leftrightarrow \theta_P = \inf\{cx : Ax = b, x \in K\}$

- Suppose that θ_D is strongly feasible but not attained.
- Apply FRA to θ_P to obtain the final problem θ_P^p (Equivalently, Apply CE to θ_D to obtain θ_D^p) Street

Strongly feasible

6. Nasty Problems and FRA

Computing an approximate optimal solution

Aim. Given $\epsilon > 0$ find an feasible solution of θ_D whose obj. value $> \theta_D - \epsilon$

the cone of θ_D^p

- Since θ_D^p is strongly feasible by FTT for CE, $\exists \hat{y}, \ c - A^T \hat{y} \in \operatorname{rel} \hat{K}^*$
- Let y^* be an optimal solution of θ^p_D

It is easy to compute a feasible solution of θ_D^p whose obj. value $> \theta_D - \epsilon$ using the above.

Let \hat{y}_{ϵ} be such a solution.

How to compute an approximate optimal solution

- Let w_1, \ldots, w_p be the reducing directions.
- There exists positive numbers $\alpha_1, \ldots, \alpha_p$ such that

$$c - A^T \hat{y}_{\epsilon} + \sum_{i=1}^p \alpha_i w_i \in \mathcal{K}.$$

Cone Expansion

 $\mathcal{K} \mapsto \operatorname{cl}(\mathcal{K} + l(w))$

Properties of Reducing Direction

Let $w_1, \ldots, w_p \in \mathcal{K}$ be reducing directions of FRA applied to θ_D . $(p \leq n)$ If θ_P is weakly infeasible, then $(c + \operatorname{span}(w_1, \ldots, w_p)) \cap \mathcal{K}$ is also weakly infeasible. \cap \mathcal{A} directions approaching the cone

In case of SOCP or SDP, given a positive number ϵ , we can explicitly compute a point on \mathcal{A} whose distance from the cone is less than ϵ

Misleading Picture of Weak Infeasibility

We need p>0 directions to approach K in general. These directions are `reducing directions'.

Thank you and Happy Birthday, Mizuno Sensei

The papers by Lourenço, M. and Tsuchiya:

- I.A structural geometrical analysis of weakly infeasible SDPs (Journal of Operations Research Society of Japan 2016)
- 2. Weak infeasibility in second order cone programming (Optimization Letters 2015)
- 3. Facial Reductions and Partial Polyhedrality (Under Review)
- 4. (Under preparation)

Example: FRA and CE on SDP

$$w = \begin{pmatrix} O & O \\ O & \oplus \end{pmatrix} : \text{reducing direction}$$

$$FRA \qquad \qquad \swarrow CE$$

$$S_{+}^{n} \cap \{w\}^{\perp} = \begin{pmatrix} \oplus & O \\ O & O \end{pmatrix} \qquad \operatorname{cl}(S_{+}^{n} + l(w)) = \begin{pmatrix} \oplus & * \\ * & * \end{pmatrix}$$

NOTE: The resulting problems are again SDP