Facial Reduction and Geometry on Conic Programming
 Masakazu Muramatsu UEC

Bruno F. Lourenço, and Takashi Tsuchiya
Seikei University GRIPS

Based on the papers of LMT:
I. A structural geometrical analysis of weakly infeasible SDPs (Journal of Operations Research Society of Japan 2016)
2. Weak infeasibility in second order cone programming (Optimization Letters 20I5)
3. Facial Reductions and Partial Polyhedrality (Under Review)
4. (Under preparation)

NOTE:
2016/8/I3WAO@Shinagawa
This talk is a 'Random Walk' within these works.

Contents

1. Conic Programming (CP) and Duality
2. Feasibility Statuses of CP
3. Facial Reduction Algorithm
4. Distance to Polyhedrality and FRA-Poly
5. Cone Expansion and Feasibility Transition Theorems
6. Nasty Problems and FRA
dual

$$
\theta_{D}=\sup \left\{b y: c-A^{T} y \in K^{*}\right\} \leftrightarrow \theta_{P}=\inf \{c x: A x=b, x \in K\}
$$

primal/dual
dual/primal

I. CP and Duality

dual

$$
\begin{gathered}
\theta_{D}=\sup \left\{b y: c-A^{T} y \in K^{*}\right\} \leftrightarrow \theta_{P}=\inf \{c x: A x=b, x \in K\} \\
\mathcal{A}=\left\{c-A^{T} y: y \in R^{m}\right\} \quad \mathcal{A}=\{x: A x=b\}
\end{gathered}
$$

$\mathcal{A} \cap \mathcal{K}:$ Feasible Region

Conic Programming

\mathcal{K} : Closed Convex Cone
\mathfrak{A} : Affine Subspace
Example
LP, SOCP, SDP,...
CP: Minimizing Linear Fn. over $\mathcal{A} \cap \mathcal{K}$

Conic Programming

$x \in \mathcal{A} \cap \operatorname{rel} \mathcal{K} \Leftrightarrow x$ is an interior feasible point. relative interior

Duality Theorem and Nasty Cases

Duality Theorem in CP

If an interior feasible point exists for Primal I. Zero Duality Gap
2. Dual has an optimal solution.

No interior feasible point
\longrightarrow I. Positive Duality Gap
2. Optimal value may not be attained
\longrightarrow Hard to compute optimal value/solution
Both Primal and Dual need interior feasible solutions to ensure existence of optimal solutions in both sides

Corruption of Computation

Waki, Nakata, and M (20|2)
ζ_{r} : Computed optimal values by SeDuMi of SDP relaxations for Polynomial Optimization indexed by relaxation order $r=2,3,4, \ldots$

r	2	3	4	5	6	7
ζ_{r}	0.0000	0.0000	0.0024	0.0761	0.6813	0.7862

Fact: The Optimal Value is zero for all r.

One of the primal or dual
Significant
Difference does not have interior feasible solutions.

2. Feasibility Statuses of CP

$$
\begin{gathered}
\theta_{D}=\sup \left\{b y: c-A^{T} y \in K^{*}\right\} \leftrightarrow \theta_{P}=\inf \{c x: A x=b, x \in K\} \\
\mathcal{A}=\left\{c-A^{T} y: y \in R^{m}\right\} \quad \mathcal{A}=\{x: A x=b\}
\end{gathered}
$$

$\mathcal{A} \cap \mathcal{K}$: Feasible Region

Four Feasibility Statuses of Conic LP I.

\mathcal{K}
\mathcal{A}
$\mathcal{K}_{\text {min }}$: minimal cone
$\mathcal{A} \cap \mathcal{K} \neq \emptyset$, but $\mathcal{A} \cap \operatorname{rel} \mathcal{K}=\emptyset$
Strongly Feasible
Weakly Feasible

Four Feasibility Statuses of Conic LP II.

$$
\operatorname{dist}(\mathcal{A}, \mathcal{K})>0
$$

$\operatorname{dist}(\mathcal{A}, \mathcal{K})=0$ but $\mathcal{A} \cap \mathcal{K}=\emptyset$
Strongly Infeasible

Weakly Infeasible CP

$\operatorname{dist}(\mathcal{A}, \mathcal{K})=0$ but $\mathcal{A} \cap \mathcal{K}=\emptyset \quad$:Weakly Infeasible

3.Facial Reduction Algorithm

- How to obtain a well-behaved problem -

Facial Reduction Algorithm(FRA)

Define linear subspace by w

Find w and take intersection of K and A.
Repeat this until the 'minimal cone' is found

FRA Details

$$
\theta_{D}=\sup \left\{b y: c-A^{T} y \in K^{*}\right\} \leftrightarrow \theta_{P}=\inf \{c x: A x=b, x \in K\}
$$

FRA applied to θ_{D} — Iterate the following steps

1. Find a reducing direction w
2. Replace \mathcal{K}^{*} in θ_{D} by $\mathcal{K}^{*} \cap\{w\}^{\perp}$

Properties

I. The iteration number is bounded by the length of the longest chain of faces of \mathcal{K}^{*}
2. When it stops, then we find either:

- strongly feasible instance whose objective value is θ_{D}
- strongly infeasible instance, showing θ_{D} is infeasible

Example: SOCP FRA

$$
\mathcal{K}^{n}=\left\{\left(x_{0}, \tilde{x}\right) \in R^{n}: x_{0} \geq\|\tilde{x}\|\right\}
$$

If $w \in \operatorname{rel} \mathcal{K}^{n}$, then

$$
\mathcal{K}^{n} \cap\{w\}^{\perp}=\{0\} .
$$

Example: SOCP FRA

$$
\mathcal{K}^{n}=\left\{\left(x_{0}, \tilde{x}\right) \in R^{n}: x_{0} \geq\|\tilde{x}\|\right\}
$$

w : reducing direction

Example: SOCP FRA

$\mathcal{K}^{n_{1}}$

$\mathcal{K}^{n_{2}}$

$\times \quad \mathcal{K}^{n_{m}}$

1. One FRA iteration makes at least one SOC to polyhedral
2. At most m iteration is needed to obtain polyhedral cone

- Enough to have a good property of duality

FRA-Poly

4. Distance to

Polyhedrality and FRA-Poly

$\mathcal{K}^{n_{1}} \times$

$\mathcal{K}^{n_{2}}$

Distance to Polyhedrality

Observation:

- No Nasty LPs even if not strongly feasible
- If we reach a polyhedral cone, we are happy. (if needed, just one more FRA is enough to obtain a strongly feasible LP)

1. $\mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{l}=\mathcal{K}$
2. $\quad \mathcal{F}_{1}$ is polyhedral
3. Others are non-polyhedral
4. Suppose that this chain is the longest one

$$
l-1 \text { is called }
$$

Distance to Polyhedrality

Partial Polyhedral Slater's (PPS) Condition

$\mathcal{K}=\mathcal{K}_{1} \times \mathcal{K}_{2}$ where \mathcal{K}_{2} is polyhedral.
CP satisfies PPS Condition
$\Leftrightarrow \exists\left(x_{1}, x_{2}\right) \in \mathcal{A} \cap \mathcal{K}$ s.t. $x_{1} \in \operatorname{rel} \mathcal{K}_{1}$
Theorem. If CP satisfies PPS Condition, I. No duality gap
2. Dual is attained.

FRA-Poly

- We can construct FRA in such a way to reduce non-polyhedral cone (FRA-Poly).
- Distance-to-polyhedrality is an upper bound of the number of iterations of FRA-Poly.

Upper bounds of FRA predicted by

the longest chain of Faces	Distance to Polyhedrality
2	1
$n+1$	n
$n(n+1) / 2+1$	n

5. Cone Expansion and Feasibility Transition Theorems

Cone Expansion

Cone Expansion $\mathcal{K} \mapsto \operatorname{cl}(\mathcal{K}+l(w))$

$$
\operatorname{cl}(\mathcal{K}+l(w))
$$

w: reducing direction of FRA applied to the dual program linear subspace spanned by w

Cone Expansion (CE)

$$
\theta_{D}=\sup \left\{b y: c-A^{T} y \in K^{*}\right\} \leftrightarrow \theta_{P}=\inf \{c x: A x=b, x \in K\}
$$

FRA
 Project the primal cone

dual

CE
Expand the dual cone

$$
\begin{aligned}
& \theta_{D}^{\prime}=\sup \left\{b y: c-A^{T} y \in K^{*} \cap w^{\perp}\right\} \\
& \leftrightarrow \theta_{P}^{\prime}=\inf \{c x: A x=b, x \in \operatorname{cl}(K+l(w))\}
\end{aligned}
$$

(Specially chosen w corresponds to
Luo, Sturm, Zhang;Waki, M)

Example: SOCP CE I.

Dual of SOC is SOC (Self Dual)

Example: SOCP CE 2.

FRA, CE and Feasibility

Primal Problem $\theta_{D} \xrightarrow{\mathrm{FRA}} \theta_{D}^{\prime}$
Dual Problem $\quad \theta_{P} \xrightarrow{\mathrm{CE}} \theta_{P}^{\prime}$

1. FRA does not change the feasible region
2. Feasible region of θ_{P}^{\prime} could be larger than that of θ_{P}
$\longrightarrow \theta_{D}^{\prime}=\theta_{D}, \theta_{P}^{\prime} \leq \theta_{P}$
FRA

$$
\begin{gathered}
\theta_{D}=\theta_{D}^{0}=\theta_{D}^{1}=\ldots=\theta_{D}^{p} \\
\theta_{P}=\theta_{P}^{0} \leq \theta_{P}^{1} \leq \ldots \leq \theta_{P}^{p}
\end{gathered}
$$

CE

Feasibility Transition by FRA

As long as the problem is in weak status, we can apply FRA.

Final status: strongly feasible or infeasible instance

Feasibility Transition by CE

As long as the problem weakly infeasible, we can apply CE.

Final status: Feasible, or strongly infeasible instance.

Strongly Feasible but Non-attained problem

$$
\theta_{D}=\sup \left\{b y: c-A^{T} y \in K^{*}\right\} \leftrightarrow \theta_{P}=\inf \{c x: A x=b, x \in K\}
$$

- Suppose that θ_{D} is strongly feasible but not attained.
- Apply FRA to θ_{P} to obtain the final problem θ_{P}^{p}
(Equivalently, Apply CE to θ_{D} to obtain θ_{D}^{p})
Strongly feasible

$$
\begin{array}{r}
\qquad \begin{array}{r}
\theta_{P}= \\
\theta_{D}= \\
\uparrow \\
\text { Strongly feasible }
\end{array} .
\end{array}
$$

Strongly feasible and attained but not attained

6. Nasty Problems and FRA

Computing an approximate optimal solution

Aim. Given $\epsilon>0$ find an feasible solution of θ_{D} whose obj. value $>\theta_{D}-\epsilon$

- Since θ_{D}^{p} is strongly feasible by FTT for CE, $\exists \hat{y}, c-A^{T} \hat{y} \in \operatorname{rel} \hat{K}^{*}$
- Let y^{*} be an optimal solution of θ_{D}^{p} the cone of θ_{D}^{p}
It is easy to compute a feasible solution of θ_{D}^{p} whose obj. value $>\theta_{D}-\epsilon$ using the above.

Let \hat{y}_{ϵ} be such a solution.

How to compute an
 approximate optimal solution

- Let w_{1}, \ldots, w_{p} be the reducing directions.
- There exists positive numbers $\alpha_{1}, \ldots, \alpha_{p}$ such that

$$
c-A^{T} \hat{y}_{\epsilon}+\sum_{i=1}^{p} \alpha_{i} w_{i} \in \mathcal{K}
$$

Cone Expansion

$$
\mathcal{K} \mapsto \operatorname{cl}(\mathcal{K}+l(w))
$$

Properties of Reducing Direction

Let $w_{1}, \ldots, w_{p} \in \mathcal{K}$ be reducing directions of FRA applied to $\theta_{D} \cdot(p \leq n)$
If θ_{P} is weakly infeasible, then
$\left(c+\operatorname{span}\left(\underline{w_{1}, \ldots, w_{p}}\right)\right) \cap \mathcal{K}$ is also weakly infeasible.
directions approaching the cone
In case of SOCP or SDP, given a positive number ϵ, we can explicitly compute a point on \mathcal{A} whose distance from the cone is less than ϵ

Misleading Picture of Weak Infeasibility

We need $\mathrm{p}>0$ directions to approach K in general. These directions are ‘reducing directions'.

Thank you and

Happy Birthday, Mizuno Sensei

The papers by Lourenço, M. and Tsuchiya:
I. A structural geometrical analysis of weakly infeasible SDPs (Journal of Operations Research Society of Japan 2016)
2. Weak infeasibility in second order cone programming (Optimization Letters 2015)
3. Facial Reductions and Partial Polyhedrality (Under Review)
4. (Under preparation)

Example: FRA and CE on SDP

$$
w=\left(\begin{array}{cc}
O & O \\
O & \oplus
\end{array}\right): \text { reducing direction }
$$

$$
S_{+}^{n} \cap\{w\}^{\perp}=\left(\begin{array}{cc}
\oplus & O \\
O & O
\end{array}\right)
$$

$$
\operatorname{cl}\left(S_{+}^{n}+l(w)\right)=\left(\begin{array}{ll}
\oplus & * \\
* & *
\end{array}\right)
$$

NOTE: The resulting problems are again SDP

