Polynomial Time Iterative Methods for
 Integer Programming

Shmuel Onn

Technion - Israel Institute of Technology

ZURICH LECTURES IN ADVANCED MATHEMATICS

Background in my book:
Theory of Graver bases for integer programming

Shmuel Onn

Nonlinear Discrete Optimization
An Algorithmic Theory

Available electronically from my homepage
(with kind permission of EMS)

(Non)-Linear Integer Programming

The problem is: $\min / \max \left\{f(x): A x \leq b, \quad 1 \leq x \leq u, x \in Z^{n}\right\}$

(Non)-Linear Integer Programming

The problem is: $\min / \max \left\{f(x): A x \leq b, \quad 1 \leq x \leq u, x \in Z^{n}\right\}$
with data: A: integer $m \times n$ matrix
I,u: lower/upper bounds in Z^{n}
b: right-hand side in Z^{m}
f : function from Z^{n} to R

(Non)-Linear Integer Programming

The problem is: $\min / \max \left\{f(x): A x \leq b, 1 \leq x \leq u, x \in Z^{n}\right\}$

Our theory enables polynomial time solution of broad natural universal (non)-linear integer programs in variable dimension
(with De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

Graver Bases

and

Nonlinear Integer Programming

Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors \times satisfying $A \times=0$.

Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors \times satisfying $A \times=0$.
x is conformal-minimal if no other y in same orthant has all $\left|y_{i}\right| \leq\left|x_{i}\right|$

Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors \times satisfying $A \times=0$.

Example: Consider $A=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Then $G(A)$ consists of

Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors \times satisfying $A \times=0$.

Example: Consider $A=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Then $G(A)$ consists of

$$
\text { circuits: } \pm(2-10), \pm(10-1), \pm(01-2)
$$

Graver Bases

The Graver basis of an integer matrix A is the finite set $G(A)$ of conformal-minimal nonzero integer vectors \times satisfying $A \times=0$.

Example: Consider $A=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Then $G(A)$ consists of

$$
\begin{aligned}
& \text { circuits: } \pm\left(\begin{array}{ll}
2 & -1
\end{array} 0\right), \pm\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right), \pm\left(\begin{array}{lll}
0 & 1 & -2
\end{array}\right) \\
& \text { non-circuits: } \pm\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Some Theorems on (Non)-Linear Integer Programming

Theorem 1: separable convex minimization in polytime with $G(A)$:

$$
\min \left\{\sum f_{i}\left(x_{i}\right): A x=b, \quad 1 \leq x \leq u, \quad x \in Z^{n}\right\}
$$

Reference: A polynomial oracle-time algorithm for convex integer minimization (Hemmecke, Onn, Weismantel) Mathematical Programming, 2011

Some Theorems on (Non)-Linear Integer Programming

Theorem 2: quadratic minimization in polytime with $G(A)$:

$$
\min \left\{x^{\top} V x: A x=b, \quad 1 \leq x \leq u, x \in Z^{n}\right\}
$$

where V lies in cone $K_{2}(A)$ of possibly indefinite matrices, enabling minimization of some convex and some non-convex quadratics.

Reference: The quadratic Graver cone, quadratic integer minimization \& extensions
(Lee, Onn, Romanchuk, Weismantel), Mathematical Programming, 2012

The Main Iterative Algorithm

Proof of Theorem 1

To solve $\min \left\{\sum f_{i}\left(x_{i}\right): A x=b, 1 \leq x \leq u, x \in Z^{n}\right\}$ with the Graver basis $G(A)$ Do:

Proof of Theorem 1

Proof of Theorem 1

Proof of Theorem 1

N-Fold Integer Programming

N-Fold Products

The n-fold product of an $(r, s) \times t$ bimatrix $A=\binom{A_{1}}{A_{2}}$
is the $(r+n s) \times n t$ matrix

$$
A^{(n)}=\underbrace{\left(\begin{array}{ccccc}
A_{1} & A_{1} & A_{1} & \cdots & A_{1} \\
A_{2} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{2}
\end{array}\right)}_{n}
$$

N-Fold Products

 is the $(r+n s) \times n t$ matrix

$$
\mathbf{A}^{(n)}=\underbrace{\left(\begin{array}{ccccc}
A_{1} & A_{1} & A_{1} & \cdots & A_{1} \\
A_{2} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{2}
\end{array}\right)}_{n}
$$

Lemma: For fixed A we can compute the Graver basis $G\left(A^{(n)}\right)$ in polynomial time $O\left(n^{g(A)}\right)$ with $g(A)$ the Graver complexity of A.

(Non)-Linear N-Fold Integer Programming

Theorem: for various f can solve in polynomial time $O\left(n^{g(A)} L\right)$:

$$
\min \left\{f(x): A^{(n)} x=b, \mid \leq x \leq u, x \in Z^{n \dagger}\right\}
$$

$$
\mathbf{A}^{(n)}=\underbrace{\left(\begin{array}{ccccc}
A_{1} & A_{1} & A_{1} & \cdots & A_{1} \\
A_{2} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{2}
\end{array}\right)}_{n}
$$

References: see Nonlinear Discrete Optimization (Onn), Zurich Lectures in Advanced Mathematics, European Mathematical Society, 2010

N-Fold Integer Programming

is
Fixed-Parameter Tractable

N-Fold IP is Fixed-Parameter Tractable

Reference: N -fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

N-Fold IP is Fixed-Parameter Tractable

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O\left(n^{3} L\right)$:

$$
\max \left\{w x: A^{(n)} x=b, \mid \leq x \leq u, x \in Z^{n \dagger}\right\}
$$

Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

N-Fold IP is Fixed-Parameter Tractable

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O\left(n^{3} L\right)$:

$$
\max \left\{w x: A^{(n)} x=b, \mid \leq x \leq u, x \in Z^{n \dagger}\right\}
$$

$$
\text { Instead of } O\left(n^{g(A)} L\right)
$$

Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

N-Fold IP is Fixed-Parameter Tractable

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O\left(n^{3} L\right)$:

$$
\max \left\{w x: A^{(n)} x=b, \mid \leq x \leq u, x \in Z^{n \dagger}\right\}
$$

$$
\text { Instead of } O\left(n^{g(A)} L\right)
$$

Proof very rough idea: in the iterative algorithm, at each iteration, can find a Graver-best step without computing the entire Graver basis.

Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

An Application:

Multicommodity Flows

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

With $1=2$ or $m=3$ it is NP-complete so assume both I, m are parameters

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

2008: polynomial time $O\left(n^{g(1, m)} \mathrm{L}\right)$ with Graver complexity $g(1, \mathrm{~m})$ exponential in $1, \mathrm{~m}$ (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

2008: polynomial time $O\left(n^{g(1, m)} L\right)$ with Graver complexity $g(1, m)$ exponential in I,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O\left(n^{3} \mathrm{~L}\right)$ (Hemmecke, Onn, Lyubov Romanchuk)

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

2008: polynomial time $O\left(n^{g(1, m)} L\right)$ with Graver complexity $g(1, m)$ exponential in I,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O\left(n^{3} \mathrm{~L}\right)$ (Hemmecke, Onn, Lyubov Romanchuk)

2015: strongly polynomial $O\left(n^{g(1, m)}\right)$
(De Loera, Hemmecke, Lee)

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

2008: polynomial time $O\left(n^{g(1, m)} L\right)$ with Graver complexity $g(1, m)$ exponential in I,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O\left(n^{3} \mathrm{~L}\right)$ (Hemmecke, Onn, Lyubov Romanchuk) usually the fastest

2015: strongly polynomial $O\left(n^{g(1, m)}\right)$
(De Loera, Hemmecke, Lee)

Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i, k}$, demands $d_{j, k}$ and capacities $c_{i, j}$ of total bit size L

2008: polynomial time $O\left(n^{g(1, m)} L\right)$ with Graver complexity $g(1, m)$ exponential in I,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable $O\left(n^{3} L\right)$
(Hemmecke, Onn, Lyubov Romanchuk) usually the fastest

2015: strongly polynomial $O\left(n^{g(1, m)}\right)$
(De Loera, Hemmecke, Lee)

Open: algorithm that is both fixed-parameter tractable and strongly polynomial ?

Multicommodity Flows

Huge version: surfers come in huge clouds of t types

Multicommodity Flows

Huge version: surfers come in huge clouds of t types

2016 (Onn): fixed-parameter tractable with parameters I,t, variable m, huge n

Multicommodity Flows

Huge version: surfers come in huge clouds of t types

2016 (Onn): fixed-parameter tractable with parameters I,t, variable m, huge n Open: 4-dimensional huge tables are only known to be in NP intersect coNP

Some Bibliography (available at http://ie.technion.ac.il/~onn)

- The complexity of 3-way tables (SIAM J. Comp.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM J. Opt.)
- Graver complexity of integer programming (Annals Combin.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig)
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Polynomial oracle-time convex integer minimization (Math. Prog.)
- The quadratic Graver cone, quadratic integer minimization \& extensions (Math Prog.)
- N -fold integer programming in cubic time (Math. Prog.)
- Huge tables are fixed-parameter tractable via unimodular integer Caratheodory

ZURICH LECTURES IN ADVANCED MATHEMATICS

Background in my book:
Theory of Graver bases for integer programming

Shmuel Onn

Nonlinear Discrete Optimization
An Algorithmic Theory

Available electronically from my homepage
(with kind permission of EMS)

