
Shmuel Onn
Technion – Israel Institute of Technology

Polynomial Time 
Iterative Methods

for
Integer Programming



  :Background in my book

Theory of Graver bases 
for integer programming

Available electronically 
from my homepage

(with kind permission of EMS)



(Non)-Linear Integer Programming

Shmuel Onn

The problem is: min/max { f(x)   :   Ax ≤ b,   l ≤ x ≤ u,   x in Zn }
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l,u: lower/upper bounds in Zn f: function from Zn to R

with data: A: integer m x n matrix b: right-hand side in Zm
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The problem is: min/max { f(x)   :   Ax ≤ b,   l ≤ x ≤ u,   x in Zn }

Our theory enables polynomial time solution of broad natural
universal (non)-linear integer programs in variable dimension

(with De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)



Graver Bases
and

Nonlinear Integer Programming
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Graver Bases

The Graver basis of an integer matrix A is the finite set G(A) of 
conformal-minimal nonzero integer vectors x satisfying Ax = 0. 
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Graver Bases

The Graver basis of an integer matrix A is the finite set G(A) of 
conformal-minimal nonzero integer vectors x satisfying Ax = 0. 

x is conformal-minimal if no other y in same orthant has all |yi| ≤ |xi|
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Example: Consider A=(1 2 1).   Then G(A) consists of
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circuits: ±(2 -1 0),   ±(1 0 -1),   ±(0 1 -2)

Example: Consider A=(1 2 1).   Then G(A) consists of

non-circuits: ±(1 -1 1) 

Graver Bases

The Graver basis of an integer matrix A is the finite set G(A) of 
conformal-minimal nonzero integer vectors x satisfying Ax = 0. 
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Reference: A polynomial oracle-time algorithm for convex integer minimization 
(Hemmecke, Onn, Weismantel) Mathematical Programming, 2011

Theorem 1: separable convex minimization in polytime with G(A):

Some Theorems on
(Non)-Linear Integer Programming

min {Σfi(xi)  :  Ax = b,   l ≤ x ≤ u,   x in Zn }
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Reference: The quadratic Graver cone, quadratic integer minimization & extensions
(Lee, Onn, Romanchuk, Weismantel), Mathematical Programming, 2012

Theorem 2: quadratic minimization in polytime with G(A):

where V lies in cone K2(A) of possibly indefinite matrices, enabling 
minimization of some convex and some non-convex quadratics.

Some Theorems on
(Non)-Linear Integer Programming

min {xTVx  :  Ax = b,   l ≤ x ≤ u,   x in Zn }



The Main Iterative Algorithm
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Proof of Theorem 1

R
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with the Graver basis G(A)

To solve min {Σ fi(xi) : Ax = b,  l ≤ x ≤ u,  x in Zn } 

Do:
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R
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1. Find initial point by auxiliary program
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Do:

Proof of Theorem 1
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R

ff
1. Find initial point by auxiliary program

2. Iteratively improve by Graver-best steps,
that is, by best cz with c in Z and z in G(A). 

with the Graver basis G(A)

To solve min {Σ fi(xi) : Ax = b,  l ≤ x ≤ u,  x in Zn } 

Do:

Proof of Theorem 1
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1. Find initial point by auxiliary program

R

ff

Using supermodality of f and integer Caratheodory
theorem (Cook-Fonlupt-Schrijver, Sebo) we can 
show polytime convergence to some optimal solution 

2. Iteratively improve by Graver-best steps,
that is, by best cz with c in Z and z in G(A). 

with the Graver basis G(A)

To solve min {Σ fi(xi) : Ax = b,  l ≤ x ≤ u,  x in Zn } 

Do:

Proof of Theorem 1



N-Fold Integer Programming
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N-Fold Products

A(n) =

n

The n-fold product of an (r,s) x t bimatrix A =
is the (r+ns) x nt matrix
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N-Fold Products

The n-fold product of an (r,s) x t bimatrix A =
is the (r+ns) x nt matrix

A(n) =

n

Lemma: For fixed A we can compute the Graver basis G(A(n)) in  
polynomial time O(ng(A)) with g(A) the Graver complexity of A.



(Non)-Linear N-Fold Integer Programming
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A(n) =

n

References: see Nonlinear Discrete Optimization (Onn), Zurich Lectures in 
Advanced Mathematics, European Mathematical Society, 2010

min{f(x) : A(n)x = b,  l ≤ x ≤ u,  x in Znt}

Theorem: for various f can solve in polynomial time O(ng(A) L):



N-Fold Integer Programming 

is

Fixed-Parameter Tractable
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Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

N-Fold IP is Fixed-Parameter Tractable
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Theorem: For any fixed bimatrix A, the following linear n-fold 
integer program is solvable in fixed-parameter time O(n3 L):

Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

max{wx : A(n)x = b,  l ≤ x ≤ u,  x in Znt} 

N-Fold IP is Fixed-Parameter Tractable
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Theorem: For any fixed bimatrix A, the following linear n-fold 
integer program is solvable in fixed-parameter time O(n3 L):

Reference: N-fold integer programming in cubic time
(Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

max{wx : A(n)x = b,  l ≤ x ≤ u,  x in Znt} 

Proof very rough idea:  in the iterative algorithm, at each iteration, 
can find a Graver-best step without computing the entire Graver basis.

Instead of O(ng(A) L) 

N-Fold IP is Fixed-Parameter Tractable



An Application:

Multicommodity Flows
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Find flow of l commodities from m servers to n surfers satisfying 
given supplies si,k , demands dj,k and capacities ci,j of total bit size L

Multicommodity Flows

m servers
n surfers

s1,k

sm,k

d1,k

dn,k

l commodities capacities ci,j
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Find flow of l commodities from m servers to n surfers satisfying 
given supplies si,k , demands dj,k and capacities ci,j of total bit size L

Multicommodity Flows

m servers
n surfers

s1,k

sm,k

d1,k

dn,k

l commodities capacities ci,j

With l=2 or m=3 it is NP-complete so assume both l,m are parameters
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Multicommodity Flows

2008: polynomial time O(ng(l,m) L) with Graver complexity g(l,m) exponential in l,m
(De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)
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Multicommodity Flows

2008: polynomial time O(ng(l,m) L) with Graver complexity g(l,m) exponential in l,m
(De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

Open: algorithm that is both fixed-parameter tractable and strongly polynomial ?

2015: strongly polynomial O(ng(l,m)) 
(De Loera, Hemmecke, Lee)

Find flow of l commodities from m servers to n surfers satisfying 
given supplies si,k , demands dj,k and capacities ci,j of total bit size L

2013: fixed-parameter tractable O(n3 L) 
(Hemmecke, Onn, Lyubov Romanchuk)

usually the fastest
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Multicommodity Flows
Huge version:  surfers come in huge clouds of t types

m servers
huge n surfers

l commodities
t  surfer types

n1

nt

n1+ . . . +nt = n

binary encoded
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Multicommodity Flows
Huge version:  surfers come in huge clouds of t types

 2016 (Onn): fixed-parameter tractable with parameters l,t, variable m, huge n
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Multicommodity Flows
Huge version:  surfers come in huge clouds of t types

 2016 (Onn): fixed-parameter tractable with parameters l,t, variable m, huge n

Open: 4-dimensional huge tables are only known to be in NP intersect coNP

m servers
huge n surfers

l commodities
t  surfer types

n1

nt

n1+ . . . +nt = n

binary encoded
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- The complexity of 3-way tables (SIAM J. Comp.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM J. Opt.)
- Graver complexity of integer programming (Annals Combin.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig) 
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Polynomial oracle-time convex integer minimization (Math. Prog.)
- The quadratic Graver cone, quadratic integer minimization & extensions (Math Prog.)

-- N-fold integer programming in cubic time (Math. Prog.)
- Huge tables are fixed-parameter tractable via unimodular integer Caratheodory
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