Polynomial Time Iterative Methods for Integer Programming

Shmuel Onn

Technion - Israel Institute of Technology

ZURICH LECTURES IN ADVANCED MATHEMATICS

Shmuel Onn

Nonlinear Discrete Optimization

An Algorithmic Theory

European Mathematical Society

Background in my book:

Theory of Graver bases for integer programming

Available electronically from my homepage

(with kind permission of EMS)

(Non)-Linear Integer Programming

The problem is: min/max { f(x) : $Ax \le b$, $I \le x \le u$, $x \in Z^n$ }

(Non)-Linear Integer Programming

The problem is: min/max { f(x) : $Ax \le b$, $I \le x \le u$, $x \in Z^n$ }

with data: A: integer $m \times n$ matrix b: right-hand side in Z^m I,u: lower/upper bounds in Z^n f: function from Z^n to R

(Non)-Linear Integer Programming

The problem is: min/max { f(x) : $Ax \le b$, $I \le x \le u$, $x \in Z^n$ }

Our theory enables polynomial time solution of broad natural universal (non)-linear integer programs in variable dimension

(with De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

Graver Bases and Nonlinear Integer Programming

The Graver basis of an integer matrix A is the finite set G(A) of conformal-minimal nonzero integer vectors x satisfying Ax = 0.

The Graver basis of an integer matrix A is the finite set G(A) of conformal-minimal nonzero integer vectors x satisfying Ax = 0.

x is conformal-minimal if no other y in same orthant has all $|y_i| \le |x_i|$

The Graver basis of an integer matrix A is the finite set G(A) of conformal-minimal nonzero integer vectors x satisfying Ax = 0.

Example: Consider $A=(1\ 2\ 1)$. Then G(A) consists of

The Graver basis of an integer matrix A is the finite set G(A) of conformal-minimal nonzero integer vectors x satisfying Ax = 0.

Example: Consider A=(1 2 1). Then G(A) consists of circuits: ±(2 -1 0), ±(1 0 -1), ±(0 1 -2)

The Graver basis of an integer matrix A is the finite set G(A) of conformal-minimal nonzero integer vectors x satisfying Ax = 0.

Example: Consider A=(1 2 1). Then G(A) consists of circuits: ±(2 -1 0), ±(1 0 -1), ±(0 1 -2) non-circuits: ±(1 -1 1)

Some Theorems on (Non)-Linear Integer Programming

Theorem 1: separable convex minimization in polytime with G(A): min { $\sum f_i(x_i)$: Ax = b, $l \le x \le u$, $x \in Z^n$ }

Reference: A polynomial oracle-time algorithm for convex integer minimization (Hemmecke, Onn, Weismantel) Mathematical Programming, 2011

Some Theorems on (Non)-Linear Integer Programming

Theorem 2: quadratic minimization in polytime with G(A):

 $\min \{x^{\mathsf{T}} \mathsf{V} x : \mathsf{A} x = \mathsf{b}, | \le x \le \mathsf{u}, x \in \mathbb{Z}^{\mathsf{n}}\}$

where V lies in cone $K_2(A)$ of possibly indefinite matrices, enabling minimization of some convex and some non-convex quadratics.

Reference: The quadratic Graver cone, quadratic integer minimization & extensions (Lee, Onn, Romanchuk, Weismantel), Mathematical Programming, 2012

The Main Iterative Algorithm

To solve min { $\sum f_i(x_i) : Ax = b$, $l \le x \le u$, $x \in Z^n$ } with the Graver basis G(A)

Do:

To solve min { $\sum f_i(x_i)$: Ax = b, $l \le x \le u$, $x \in \mathbb{Z}^n$ } with the Graver basis G(A)

Do:

1. Find initial point by auxiliary program

To solve min { $\sum f_i(x_i) : Ax = b$, $I \le x \le u$, $x \in Z^n$ } with the Graver basis G(A)

Do:

1. Find initial point by auxiliary program

2. Iteratively improve by Graver-best steps, that is, by best cz with $c \in Z$ and $z \in G(A)$.

Do:

To solve min { $\sum f_i(x_i)$: Ax = b, $l \le x \le u$, $x \in \mathbb{Z}^n$ } with the Graver basis G(A)

1. Find initial point by auxiliary program

2. Iteratively improve by Graver-best steps, that is, by best cz with $c \in Z$ and $z \in G(A)$.

Using supermodality of f and integer Caratheodory theorem (Cook-Fonlupt-Schrijver, Sebo) we can show polytime convergence to some optimal solution

N-Fold Integer Programming

N-Fold Products

The n-fold product of an (r,s) x t bimatrix $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ is the (r+ns) x nt matrix

$$A^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\ A_2 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_2 \end{pmatrix}$$

n

N-Fold Products

The n-fold product of an (r,s) x t bimatrix $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ is the (r+ns) x nt matrix

$$A^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\ A_2 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_2 \end{pmatrix}$$

Lemma: For fixed A we can compute the Graver basis $G(A^{(n)})$ in polynomial time $O(n^{g(A)})$ with g(A) the Graver complexity of A.

(Non)-Linear N-Fold Integer Programming

Theorem: for various f can solve in polynomial time $O(n^{g(A)}L)$:

$$min\{f(x): A^{(n)}x = b, \ | \le x \le u, \ x \in Z^{n^{\dagger}}\}$$

$$\mathbf{A}^{(n)} = \begin{pmatrix} A_1 & A_1 & A_1 & \cdots & A_1 \\ A_2 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_2 \end{pmatrix}$$

References: see Nonlinear Discrete Optimization (Onn), Zurich Lectures in Advanced Mathematics, European Mathematical Society, 2010

N-Fold Integer Programming is Fixed-Parameter Tractable

Reference: N-fold integer programming in cubic time (Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O(n^3 L)$:

$$\max\{wx : A^{(n)}x = b, | \le x \le u, x \in \mathbb{Z}^{n^{\dagger}}\}$$

Reference: N-fold integer programming in cubic time (Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O(n^3 L)$:

$$\max\{wx: A^{(n)}x = b, \ | \le x \le u, \ x \in \mathbb{Z}^{n^{\dagger}}\}$$

Instead of $O(n^{g(A)}L)$

Reference: N-fold integer programming in cubic time (Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

Theorem: For any fixed bimatrix A, the following linear n-fold integer program is solvable in fixed-parameter time $O(n^3 L)$:

$$\max\{wx: A^{(n)}x = b, | \leq x \leq u, x \in \mathbb{Z}^{n^{\dagger}}\}$$

Instead of $O(n^{g(A)}L)$

Proof very rough idea: in the iterative algorithm, at each iteration, can find a Graver-best step without computing the entire Graver basis.

Reference: N-fold integer programming in cubic time (Hemmecke, Onn, Romanchuk) Mathematical Programming, 2013

An Application: Multicommodity Flows

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

With I=2 or m=3 it is NP-complete so assume both I,m are parameters

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time O(n^{g(l,m)}L) with Graver complexity g(l,m) exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time O(n^{g(l,m)}L) with Graver complexity g(l,m) exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable O(n³ L) (Hemmecke, Onn, Lyubov Romanchuk)

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time O(n^{g(l,m)}L) with Graver complexity g(l,m) exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable O(n³ L) (Hemmecke, Onn, Lyubov Romanchuk)

2015: strongly polynomial O(n^{g(l,m)})
(De Loera, Hemmecke, Lee)

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time O(n^{g(l,m)}L) with Graver complexity g(l,m) exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable O(n³ L) (Hemmecke, Onn, Lyubov Romanchuk) usually the fastest

2015: strongly polynomial O(n^{g(I,m)})
(De Loera, Hemmecke, Lee)

Find flow of I commodities from m servers to n surfers satisfying given supplies $s_{i,k}$, demands $d_{j,k}$ and capacities $c_{i,j}$ of total bit size L

2008: polynomial time O(n^{g(l,m)}L) with Graver complexity g(l,m) exponential in l,m (De Loera, Hemmecke, Onn, Weismantel) (theory of n-fold IP)

2013: fixed-parameter tractable O(n³ L) (Hemmecke, Onn, Lyubov Romanchuk) usually the fastest

2015: strongly polynomial O(n^{g(I,m)}) (De Loera, Hemmecke, Lee)

Open: algorithm that is both fixed-parameter tractable and strongly polynomial?

Huge version: surfers come in huge clouds of t types

Huge version: surfers come in huge clouds of t types

2016 (Onn): fixed-parameter tractable with parameters l,t, variable m, huge n

Huge version: surfers come in huge clouds of t types

2016 (Onn): fixed-parameter tractable with parameters l,t, variable m, huge n

Open: 4-dimensional huge tables are only known to be in NP intersect coNP

Some Bibliography (available at http://ie.technion.ac.il/~onn)

- The complexity of 3-way tables (SIAM J. Comp.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM J. Opt.)
- Graver complexity of integer programming (Annals Combin.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig)
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Polynomial oracle-time convex integer minimization (Math. Prog.)
- The quadratic Graver cone, quadratic integer minimization & extensions (Math Prog.)
- N-fold integer programming in cubic time (Math. Prog.)
- Huge tables are fixed-parameter tractable via unimodular integer Caratheodory

ZURICH LECTURES IN ADVANCED MATHEMATICS

Shmuel Onn

Nonlinear Discrete Optimization

An Algorithmic Theory

European Mathematical Society

Background in my book:

Theory of Graver bases for integer programming

Available electronically from my homepage

(with kind permission of EMS)