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Introduction

Simplex Method

The simplex method for LP was originally
developed by Dantzig.

In spite of the practical efficiency of the simplex
method, we do not have any good bound for the
number of iterations (the bound we knew was only
the number of bases n!

m!(n−m)!
).

Klee and Minty showed that the simplex method
needs an exponential number of iterations for an
LP.
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Introduction

LP on a perturbed rectangular feasible
region

xcT

Number of vertices (basic feasible solutions) is 2n = 8.
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Introduction

Exponential number of iterations

xcT 1
2

34
5 6

78
Number of Iterations (or number of vertices generated)
is also 2n = 8.
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Introduction

LP on a rectangular feasible region

Suppose that

the feasible region is rectangular without
perturbation (for example, all the components of
vertices are 0 or 1 after scaling),

we use Dantzig’s rule (the most negative pivoting
rule),

then

the number of vertices generated by the simplex
method could not be exponential,

our result shows that the number is bounded by
nm log m .
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Introduction

Standard form of LP
The standard form of LP is

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn = b1,
...
am1x1 + am2x2 + · · ·+ amn xn = bm ,
(x1, x2, · · · , xn)T ≥ 0.

or by using vectors and a matrix

min cTx ,
subject to Ax = b , x ≥ 0.
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Introduction

Main Result

The number of different basic feasible solutions (BFSs)
generated by the simplex method with Dantzig’s rule
(the most negative pivoting rule) is bounded by

n⌈m
γ

δ
log (m

γ

δ
)⌉,

where δ and γ are the minimum and the maximum
values of all the positive elements of primal BFSs and
⌈a⌉ denotes the smallest integer greater than a.
When the primal problem is nondegenerate, it

becomes a bound for the number of iterations.
The bound depends only on the constraints of LP.
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Introduction

Ye’s result for MDP

Our work is motivated by a recent research by Ye
(2010). He shows that the simplex method is strongly
polynomial for the Markov Decision Problem (MDP).
We utilize his analysis to general LPs and obtain the
upper bound.
Our results include his strong polynomiality.
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Introduction

LP with Unimodular Matrix

When we apply our result to an LP where a constraint
matrix is totally unimodular and a constant vector b is
integral, the number of different solutions generated by
the simplex method is at most

n⌈m∥b∥1 log (m∥b∥1)⌉.
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Simplex Method for LP

LP and Its Dual

The standard form of LP is

min cTx ,
subject to Ax = b , x ≥ 0.

The dual problem is

max b Ty ,
subject to A Ty + s = c , s ≥ 0.
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Simplex Method for LP

Assumptions

Assume that
...1 rank(A ) = m ,
...2 the primal problem has an optimal solution,
...3 an initial BFS x 0 is available.

Let x ∗ be an optimal BFS of the primal problem,
(y ∗, s∗) be an optimal solution of the dual problem, and
z∗ be the optimal value.
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Simplex Method for LP

Some Notations

Given a set of indices B ⊂ {1, 2, . . . , n}, we split A , c ,
and x according to B and N = {1, 2, . . . , n} − B like

A = [AB , AN], c =

[
cB

cN

]
, x =

[
xB

xN

]
.

Then the standard form of LP is written as

min cT
B

xB + cT
N

xN,

subject to AB xB + ANxn = b ,
xB ≥ 0, xN ≥ 0.
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Simplex Method for LP

Basic Feasible Solutions (BFSs)

Define the set of bases

B = {B ⊂ {1, 2, . . . , n}| |B | = m , det(AB) , 0}.

Then the primal problem for the basis B ∈ B and
N = {1, 2, . . . , n} − B can be written as

min cT
B

A −1
B

b + (cN − A T
N
(A −1

B
)TcB)TxN,

subject to xB = A −1
B

b − A −1
B

ANxN,

xB ≥ 0, xN ≥ 0

which is called a dictionary.
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Simplex Method for LP

Dictionary

Let c̄Nt = cNt − A T
Nt
(A −1

B t
)TcB t be the reduced cost

vector, then the dictionary can be written as

min cT
B

A −1
B

b + c̄T
N

xN,

subject to xB = A −1
B

b − A −1
B

ANxN ≥ 0,
xN ≥ 0.

The primal BFS is

xB = A −1
B

b ≥ 0, xN = 0.

KITAHARA & MIZUNO (TIT) Number of Solutions by Simplex Method December 12th, 2010 17 / 57



Simplex Method for LP

δ and γ

Let δ and γ be the minimum and the maximum values
of all the positive elements of BFSs. Then for any BFS
x̂ and any j ∈ {1, 2, . . . , n}, we have

δ ≤ x̂ j ≤ γ if x̂ j , 0.

The values of δ and γ depend only on A and b , but not
on c .
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figure of δ, γ, and BFSs (vertices)

1Nx

2Nx

δ
δ γ

γ

O



Simplex Method for LP

Pivoting

When c̄Nt ≥ 0, the current solution is optimal.
Otherwise we conduct a pivot. Under Dantzig’s rule, we
choose a nonbasic variable whose reduced cost is
minimum, i.e., we choose an index

j t = arg min
j∈Nt

c̄ j .

Set ∆t = −c̄ j t > 0, that is, −∆t is the minimum value
of the reduced costs.
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Simplex Method for LP

Notations

x ∗ : an optimal BFS of the primal
(y ∗, s∗) : an optimal solution of the dual

z∗ : the optimal value
x t : the t -th iterate of the simplex method
B t : the basis of x t

Nt : the nonbasis of x t

c̄Nt : the reduced cost vector at t -th iteration
∆t : −min j∈Nt c̄ j

j t : an index chosen by Dantzig’s rule
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Analysis

A lower bound of z∗

We get a lower bound of the optimal value at each
iteration of the simplex method.
.
Lemma..

.. ..

.

.

Let x t be the t -th iterate generated by the simplex
method with Dantzig’s rule. Then we have

z∗ ≥ cTx t −∆t mγ

or the gap (cTx t − z∗) is bounded as follows

∆t mγ ≥ cTx t − z∗.
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min cT
B t

A −1
B t

b + c̄T
Nt

xNt ,

subject to A −1
B t

b − A −1
B t

ANt xNt ≥ 0, xNt ≥ 0.

δ
δ

γ

γ

γm

γm

opt

Nc || 1Nc
|| 2Nc

1+tx

ttTT mxcxc ∆−= γ
γmxe NT =

1Nx

2Nx

z∗ ≥ cTx t −∆t mγ.



Analysis

Proof: Let x ∗ be a basic optimal solution of the primal
problem. Then we have

z∗ = cTx ∗

= cT
B t

A −1
B t

b + c̄T
Nt

x ∗
Nt

≥ cTx t −∆t eTx ∗
Nt

≥ cTx t −∆t mγ,

where the second inequality follows since x ∗ has at
most m positive elements and each element is
bounded above by γ. �
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Analysis

Reduction Rate of the Gap

We show a constant reduction of the gap (cTx − z∗)
when an iterate is updated. The reduction rate is
independent of c .
.
Theorem..

.. ..

.

.

Let x t and x t+1 be the t -th and (t + 1)-th iterates
generated by the simplex method with Dantzig’s rule. If
x t+1 , x t , then we have

cTx t+1 − z∗ ≤ (1 − δ
mγ

)(cTx t − z∗).
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min cT
B t

A −1
B t

b + c̄T
Nt

xNt ,

subject to A −1
B t

b − A −1
B t

ANt xNt ≥ 0, xNt ≥ 0.

δ
δ

γ

γ

γm

γm

opt

Nc || 1Nc
|| 2Nc

1+tx

ttTT mxcxc ∆−= γ
γmxe NT =

1Nx

2Nx

cTx t+1 − z∗ ≤ (1 − δ
mγ

)(cTx t − z∗).



Analysis

Proof. Let x t
j t

be the entering variable chosen at the

t -th iteration. If x t+1
j t

= 0, then we have x t+1 = x t , a

contradiction occurs. Thus x t+1
j t
, 0, and we have

x t+1
j t
≥ δ. Then we have

cTx t − cTx t+1 = ∆t x t+1
j t

≥ ∆tδ
≥ δ

mγ(c
Tx t − z∗).

The desired inequality readily follows from the above
inequality. �
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Analysis

Best Improvement Pivoting Rule

Under the best improvement pivoting rule, the objective
function reduces at least as much as that with Dantzig’s
rule. So the next corollary follows.
.
Corollary
..

.. ..

.

.

Let x t and x t+1 be the t -th and (t + 1)-th iterates
generated by the simplex method with the best
improvement rule. If x t+1 , x t , then we also have

cTx t+1 − z∗ ≤ (1 − δ
mγ

)(cTx t − z∗).
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Analysis

Number of solutions

From the constant reduction of the gap cTx − z∗, we
can get the following result.
.
Corollary
..

.. ..

.

.

Let x̄ be a second optimal BFS of the primal problem.
Then the number of different BFSs generated by the
simplex method with Dantzig’s rule (or the best
improvement rule) is bounded by

⌈m
γ

δ
log

cTx 0 − z∗

cT x̄ − z∗
⌉.
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Analysis

An Upper Bound for an Element of BFS

.
Lemma..

.. ..

.

.

Let x t be the t -th iterate generated by the simplex
method. If x t is not optimal, there exists j̄ ∈ B t such
that x t

j̄
> 0 and

x j̄ ≤
cTx − z∗

cTx t − z∗
mx t

j̄

for any feasible solution x .
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min cT
B ∗

A −1
B ∗

b + c̄T
N∗

xN∗,

subject to A −1
B ∗

b − A −1
B ∗

AN∗xN∗ ≥ 0, xN∗ ≥ 0.

δ
γ

Nc
tx

*zxcT −

O *1Nx

*2Nx *zxc tT −

tjmx
tjtT T xzxc zxcm **)( −−

x j̄ ≤
cTx − z∗

cTx t − z∗
mx t

j̄
.



Analysis

Proof. Since cTx t − z∗ = (x t )Ts∗ ≤ mx t

j̄
s∗

j̄
for some

j̄ ∈ B t , we have

s∗
j̄
≥ 1

mx t

j̄

(cTx t − z∗).

Since any feasible solution x satisfies
cTx − z∗ = x Ts∗ ≥ x j̄s

∗
j̄
, we have

x j̄ ≤
cTx − z∗

s∗
j̄

≤ cTx − z∗

cTx t − z∗
mx t

j̄
.
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Analysis

Element becomes Zero after Updates

.
Lemma..

.. ..

.

.

Let x t be the t -th iterate when we generate a sequence
of BFSs by the simplex method with Dantzig’s rule.
Assume that x t is not an optimal solution. Then there
exists j̄ ∈ B t satisfying

...1 x t

j̄
> 0.

...2 If the simplex method generates more than
⌈m γ

δ
log (m γ

δ
)⌉ different BFSs after t -th iterate,

then x j̄ is zero.
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Analysis

Proof. For k ≥ t + 1, let k̃ be the number of different
BFSs appearing between the t -th and k -th iterations.
Then there exists j̄ ∈ Bt which satisfies

x k

j̄
≤ m(1 − δ

mγ
)k̃ x t

j̄
≤ mγ(1 − δ

mγ
)k̃ .

Therefore, if k̃ > m γ

δ
log (m γ

δ
), we have x k

j̄
< δ, which

implies x k

j̄
= 0 from the definition of δ. �
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δ
# of iterationO basic non-basic

upper boundtjmx tjtk xmm −− )1( γδ

0k

actual value tjx

x k

j̄
= 0 if the number of different BFSs appearing

between the t -th and k -th iterations is more than
⌈m γ

δ
log (m γ

δ
)⌉.



Analysis

Bound for the Number of Solutions

Since the event described in Lemma can occur at most
once for each variable, we get the next result.
.
Theorem..

.. ..

.

.

When we apply the simplex method with Dantzig’s rule
(or the best improvement rule) for LP having optimal
solutions, for any c the number of different BFSs is
bounded by

n⌈m
γ

δ
log (m

γ

δ
)⌉.

Note that the result is valid even if the simplex method
fails to find an optimal solution because of a cycling.
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Analysis

Primal Nondegenerate Case

If the primal problem is nondegenerate, we have
x t+1 , x t for all t . This observation leads to a bound
for the number of iterations of the simplex method.
.
Corollary
..

.. ..

.

.

If the primal problem is nondegenerate, the simplex
method finds an optimal solution in at most

n⌈m
γ

δ
log (m

γ

δ
)⌉ iterations.
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Extension to other LPs

The Dual Problem

max b Ty ,
subject to A Ty + s = c , s ≥ 0.

.
Theorem..

.. ..

.

.

When we apply the (dual) simplex method with the
most positive pivoting rule for the dual problem above,
the number of different BFSs is bounded by

n⌈m
γD

δD
log (m

γD

δD
)⌉,

where δD and γD are the minimum and maximum
values of all the positive elements of dual BFSs.

KITAHARA & MIZUNO (TIT) Number of Solutions by Simplex Method December 12th, 2010 40 / 57



Extension to other LPs

LP with Bounded Variables

min cTx ,
subject to Ax = b , 0 ≤ x ≤ u,

.
Theorem..

.. ..

.

.

When we use the simplex method with Dantzig’s rule
for the LP above, the number of different BFSs is
bounded by

n⌈(n − m)
γ

δ
log ((n − m)

γ

δ
)⌉.

In this case, γ ≤ max i u i .
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Extension to other LPs

Primal Problem Again
.
Theorem..

.. ..

.

.

When we apply the simplex method with Dantzig’s rule
(or the best improvement rule) for the primal problem,
for any c the number of different BFSs is bounded by

(n − m)⌈min {m , n − m}
γ

δ
log (min {m , n − m}

γ

δ
)⌉.

Compare to the previous one

n⌈m
γ

δ
log (m

γ

δ
)⌉.
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Application to Special LPs

0-1 Vertices

Assume that all the elements of BFSs (such as an
assignment problem) is 0 or 1, that is, δ = γ = 1.
Then the number of different BFSs generated by the
simplex method with Dantzig’s rule is bounded by

n⌈m log m⌉.

Moreover, if m = 1, then the number is bounded by n.
In this case, if we apply Theorem of reduction rate
directly, then the number of updates is at most 1 (this
bound is obviously tight).
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Application to Special LPs

Reduction Rate of the Gap

We show a constant reduction of the gap (cTx − z∗)
when an iterate is updated. The reduction rate is
independent of c .
.
Theorem..

.. ..

.

.

Let x t and x t+1 be the t -th and (t + 1)-th iterates
generated by the simplex method with Dantzig’s rule. If
x t+1 , x t , then we have

cTx t+1 − z∗ ≤ (1 − δ
mγ

)(cTx t − z∗).
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Application to Special LPs

Shortest Path Problem

min
∑

(i ,j)∈E c ij x ij ,

s.t.
∑

j :(i ,j)∈E x ij −
∑

j :(j ,i)∈E x ij =

{
|V | − 1 for source
−1 other nodes

x ≥ 0.

Since the shortest path problem is nondegenerate,
n = |E|, m = |V |, γ ≤ |V | − 1, and δ ≥ 1, the number
of iterations of the simplex method with Dantzig’s rule is
bounded by

|E||V |2 log |V |2.
Here we omit ⌈·⌉ for simplicity.
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Application to Special LPs

Minimum Cost Flow Problem

min
∑

(i ,j)∈E c ij x ij ,
s.t.

∑
j :(i ,j)∈E x ij −

∑
j :(j ,i)∈E x ij = b i for i ∈ V

0 ≤ x ≤ u.

Assume that the capacities u ij and the supplies b i are
integral. Since n = |E|, m = |V |,
γ ≤ U = max (i ,j)∈E u ij , and δ ≥ 1, the number of
different solutions generated by the simplex method
with Dantzig’s rule is bounded by

(|E| − |V |)2U log ((|E| − |V |)U).
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Application to Special LPs

Minimum Cost Flow Problem (continue)

It is known that if we perturb the minimum cost flow
problem by adding −(|V | − 1)/|V | to b i for the root
node and 1/|V | for the other nodes, then the problem is
nondegenerate and we can solve the original problem
by solving this perturbed problem. Hence the number
of iterations of the simplex method with Dantzig’s rule
for solving a minimum cost flow problem is bounded by

(|E| − |V |)2|V |U log ((|E| − |V |)|V |U).
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Application to Special LPs

Maximum Flow Problem

max f
s. t.

∑
{j :(s ,j)∈E} xsj −

∑
{j :(j ,s)∈E} x js = f∑

{j :(i ,j)∈E} x ij −
∑
{j :(j ,i)∈E} x ji = 0 for i , s , t∑

{j :(t ,j)∈E} xtj −
∑
{j :(j ,t )∈E} x jt = −f

0 ≤ x ij ≤ u ij for ∀(i , j) ∈ E

Assume that all the capacities u ij are integral. The dual
is a minimum cut problem in which all the elements of
BFSs are 0 or 1. The number of different solutions
generated by the dual simplex method is bounded by

(|E| − |V |)2 log (|E| − |V |).
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Application to Special LPs

A Totally Unimodular Matrix

We consider an LP whose constraint matrix A is totally
unimodular and all the elements of b are integers. Then
all the elements of any BFS are integers, so δ ≥ 1.
Let (xB , 0) ∈ ℜm × ℜn−m be a BFS of the LP. Then we
have xB = A −1

B
b . Since A is totally unimodular, all the

elements of A −1
B

are ±1 or 0. Thus for any j ∈ B we
have x j ≤ ∥b∥1, which implies that γ ≤ ∥b∥1.
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Application to Special LPs

A Bound in Totally Unimodular Case

.
Corollary
..

.. ..

.

.

Assume that the constraint matrix A is totally
unimodular and the constraint vector b is integral.
When we apply the simplex method with Dantzig’s rule
or the best improvement rule, we encounter at most

nm∥b∥1 log (m∥b∥1)

different BFSs.
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Application to Special LPs

MDP

The Markov Decision Problem (MDP):

min cT
1

x1 + cT
2

x2,

subject to (I − θP1)x1 + (I − θP2)x2 = e,
x1, x2 ≥ 0,

where P1 and P2 are m × m Markov matrices, θ is a
discount rate, and e is the vector of all ones.
MDP has the following properties.

...1 MDP is nondegenerate.

...2 δ ≥ 1 and γ ≤ m/(1 − θ).
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Application to Special LPs

Number of Iterations for MDP

We obtain a similar result to Ye.
.
Corollary
..

.. ..

.

.

The simplex method with Dantzig’s rule for solving MDP
finds an optimal solution in at most

n
m2

1 − θ
log

m2

1 − θ
iterations, where n = 2m .
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Conclusion

Problems, Pivoting, and Assumptions

Problems:
...1 The standard form of LP.
...2 Its dual.

Pivoting rules:
...1 Dantzig’s rule (the most negative reduced cost rule)
...2 The best improvement rule.

Assumptions:
...1 rank(A ) = m .
...2 The primal problem has an optimal solution.
...3 An initial BFS is available.

KITAHARA & MIZUNO (TIT) Number of Solutions by Simplex Method December 12th, 2010 55 / 57



Results
...1 Constant reduction of the gap:

cTx t+1 − z∗ ≤ (1 − δ
mγ

)(cTx t − z∗).

...2 The number of BFSs is bounded by

n⌈m
γ

δ
log (m

γ

δ
)⌉.

...3 Totally unimodular case: It is bounded by

n
⌈
m∥b∥1 log (m∥b∥1)

⌉
.

...4 MDP case: The number of iterations is bounded by

n⌈ m2

1 − θ
log

m2

1 − θ
⌉.
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Thank You for Your Attention!
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