
JJIAM manuscript No.
(will be inserted by the editor)

Stability and competitive equilibria in multi-unit
trading networks with discrete concave utility
functions

Yoshiko T Ikebe · Yosuke Sekiguchi ·
Akiyoshi Shioura · Akihisa Tamura

Received: date / Accepted: date

Abstract Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp showed the
existence of stable outcomes and competitive equilibria in a model of trading
networks under the assumption that all agents’ preferences satisfy a condition
called the full substitutes condition. In this paper, we extend their model by
using discrete concave utility functions called twisted M�-concave functions.
We show that a valuation function of an agent is twisted M�-concave if and
only if the agent’s preference satisfies the generalized variant of the full sub-
stitutes condition. We also show that under the generalized full substitutes
condition, there exist stable outcomes and competitive equilibria in the ex-
tended model and the set of competitive equilibrium price vectors forms a
lattice. In addition, we discuss the connection among competitive equilibria,
stability, and efficiency. Finally, we investigate the relationship among stabil-
ity, strong group stability, and chain stability and verify these three stability
concepts are equivalent as long as valuation functions of all agents are twisted
M�-concave.
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1 Introduction

The two-sided market model is well known and well studied, with many known
results and extensions in such fields as economics, computer science, operations
research, and so on. It has also been successfully applied to many real world
problems.

All variants and extensions of the two-sided market model stem from two
basic models: the stable matching model due to Gale and Shapley [5], and the
assignment model due to Shapley and Shubik [21]. These two models differ in
that the assignment model allows commodity prices, while the stable matching
model does not. There are many extensions and generalizations of these two
models, not all of which can be clearly classified as being based on which
one; indeed, many can be viewed as common generalizations, and results on
one model have been successfully interpreted into results on the other. As
our model can be regarded as an extension in the “assignment direction” we
will introduce notable generalizations, with emphasis on those based on the
assignment model.

We first introduce the stable matching model and extensions which are re-
lated to our model. The stable matching model was proposed in 1962 by Gale
and Shapley [5]. They introduced the deferred acceptance algorithm by which
they proved the existence of stable matchings. Hatfield and Milgrom [11] in-
troduced the concept of contracts, which allows discrete prices to be implicitly
considered. They showed that under the condition called the substitutes con-
dition, stable outcomes always exist and that they form a lattice structure.
Ostrovsky [19] further generalized the Hatfield-Milgrom model by extending
the two-sidedness to general acyclic digraphs, and introduced two new con-
ditions, which he called same side substitutability (SSS) and cross side com-
plementarity (CSC). He showed the existence of chain stable allocations when
these conditions are satisfied.

We now turn to the assignment model and its extensions. The assignment
model was proposed by Shapley and Shubik [21] in a game-theoretic setting.
They proved the nonemptiness of the core and showed that the core has a
lattice structure. Sotomayor [23] extended this result to the multiple-partners
assignment model. Kelso and Crawford [13] showed the existence of core allo-
cations in the two-sided job matching model, if preferences of firms satisfy the
so-called gross substitutes condition1. The gross substitutes condition, which
is a well known and often prerequisite in economics, says that when the salary
of some worker increases, no firms can fire the workers whose salaries do not

1 The gross substitutes condition also appears in auction theory. Gul and Stacchetti [7]
proposed an ascending auction, which converges to the smallest Walrasian equilibrium prices
under the gross substitutes condition. Sun and Yang [24,25] introduced the gross substi-
tutability and complementarity (GSC) condition, which is a generalization of the gross
substitutes condition. They showed that there exists a Walrasian equilibrium in the auction
model under the GSC condition.
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change. Gul and Stacchetti [6] showed that the gross substitutes condition is
equivalent to each of the two conditions called the single improvement condi-
tion and the no complementarity condition. In the same way as Ostrovsky [19]
extended the two-sided stable matching model to acyclic digraphs, Hatfield et
al. [10] generalized the assignment model to general networks. They defined the
full substitutes condition and showed that there exists a competitive equilib-
rium when preferences of all agents satisfy the full substitutes condition. They
also studied the relationship between stability and competitive equilibria.

These above models basically consider single-unit trades, that is, all trades
are restricted to one unit of commodity. In the stable matching model, trades
can be generalized to multi-units by creating duplicate trades, however, as the
assignment model explicitly considers commodity prices, this technique does
not work. The motivation of our paper is to generalize the model of Hatfield
et al. [10] (we call this model the single-unit trading network model) to multi-
units. To accomplish this, we believe that the most useful tool at present is
discrete convex analysis due to Murota [15,16].

Discrete convex analysis, which is centered on M� and L�-convexity, has
been successfully utilized in various economic models, e.g. [1–3,14]. In par-
ticular, M�-concavity has many nice properties. For example, Fujishige and
Yang [4] showed the equivalence of the gross substitutes condition and M�-
concavity for the unit-trade case. Ikebe and Tamura [12] showed that twisted
M�-concave functions (a variant of M�-concave functions) satisfy the SSS and
CSC conditions proposed by Ostrovsky [19]. Recently, Shioura and Yang [22]
considered the auction model, and introduced the generalized gross substitutes
and complements (GGSC) condition, which is a generalization of the GSC
condition introduced by Sun and Yang [24,25]. They showed that the GGSC
condition is equivalent to twisted M�-concavity and that under the GGSC con-
dition, a Lyapunov function is a generalized L�-convex function and the set of
Walrasian equilibrium price vectors forms a generalized lattice.

In this paper, we introduce the multi-unit trading network model which is a
generalization of the single-unit trading network model of Hatfield et al. [10]. In
our model, valuation functions of each agent are twisted M�-concave functions
defined on the set of integer vectors. This allows us to consider multiple units of
contracts, which cannot be handled in the single-unit trading network model.
We also introduce the generalized full substitutes condition and show that this
condition is equivalent to twisted M�-concavity.

Our main results concern the existence and lattice structure of competi-
tive equilibria. We show that there exists a competitive equilibrium under the
generalized full substitutes condition and that the set of competitive equilib-
rium price vectors forms a lattice. We also consider the relationship among
competitive equilibria, stability, and efficiency. Although these concepts are
not equivalent, we prove that a competitive equilibrium is stable, and a com-
petitive equilibrium trade vector is efficient. Moreover, we show that we can
construct a competitive equilibrium from a stable outcome by changing the
price vector. Unlike the single-unit trading network model, there is an obvious
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gap between competitive equilibria and stable outcomes with respect to price
vectors in our model.

We further discuss the relation between the three stability concepts: sta-
bility, strong group stability, and chain stability. While these concepts are not
equivalent in general, we show that these concepts are equivalent under the
generalized full substitutes condition.

The rest of this paper is organized as follows. In Section 2, we introduce the
multi-unit trading network model and give some preliminaries. In Section 3,
we review the results on the single-unit trading network model introduced by
Hatfield et al. [10]. We define the generalized full substitutes condition in Sec-
tion 4. In Section 5, we explain twisted M�-concave functions and prove that
the generalized full substitutes condition is equivalent to twisted M�-concavity.
In Section 6, we discuss the existence and lattice structure of competitive equi-
libria. In Section 7, we consider the relationship among competitive equilibria,
stability, and efficiency. In Section 8, we consider three stability concepts un-
der the generalized full substitutes condition, and in Section 9, we give the
proofs of the results in Sections 7 and 8.

2 The multi-unit trading network model

In this section, we introduce our multi-unit trading network model as an exten-
sion of the (single-unit) trading network model introduced in [10]. We denote
by R the set of reals and by Z the set of integers. We also denote by R+ the
set of nonnegative reals and by Z+ the set of nonnegative integers.

Let I and Ω, respectively, be finite sets of agents and trades. Each agent
plays as a buyer or seller in some trades. Each trade t is associated with two
agents b(t) and s(t) in I, called the buyer and the seller, respectively. The
relationship among the agents can be represented by a directed graph, where
each node corresponds to an agent and each arc corresponds to a trade t and
goes from the buyer b(t) to the seller s(t). We denote by ωt ∈ Z+ the number
of units of t, and by pt ∈ R the unit price for t. Let ω = (ωt | t ∈ Ω) ∈ ZΩ

+

and p = (pt | t ∈ Ω) ∈ RΩ be a trade vector and a price vector, respectively.
A pair (ω, p) is called an outcome. For ω ∈ ZΩ

+ , we define

supp+(ω) = {t ∈ Ω : ωt > 0}.

For i ∈ I, we define

Ω→i = {t ∈ Ω : b(t) = i}, Ωi→ = {t ∈ Ω : s(t) = i}, Ωi = Ω→i ∪Ωi→.

For a subset T ⊆ Ω, ag(T ) represents the set of agents who are involved in
trades in T , that is, ag(T ) =

⋃
t∈T {b(t), s(t)}.

Each agent i ∈ I has a valuation function ui : Z
Ω → R∪{−∞}. We define

the effective domain of ui by

domui = {ω ∈ ZΩ : ui(ω) �= −∞}.



Multi-unit trading networks with discrete concavity 5

Throughout this paper, we assume that

ui(ω) = ui(ω
′) if ωt = ω′

t for all t ∈ Ωi. (1)

This assumption means that the value of ui depends only on trades in Ωi.

We also assume that

0 ∈ domui ⊆ {ω ∈ ZΩ : 0 ≤ ωt ≤M (∀t ∈ Ωi)} (2)

holds for some M ∈ Z+. It follows from (2) that max{ui(ω) : ω ∈ ZΩ} always
exists.

The utility function U : ZΩ × RΩ → R ∪ {−∞} associated with ui is
defined by

U(ω, p ;ui) = ui(ω) +
∑

t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt.

The indirect utility function V : RΩ → R associated with ui is defined by

V (p ;ui) = max{U(ω, p ;ui) : ω ∈ ZΩ}.

For a price vector p, we define i’s demand correspondence D(p ;ui) by

D(p ;ui) = argmax{U(ω, p ;ui) : ω ∈ ZΩ}.

Moreover, for an outcome (ω, p), we define i’s choice correspondence C(ω, p ;ui)
by

C(ω, p ;ui) = argmax{U(ω′, p ;ui) : ω′ ≤ ω, ω′ ∈ ZΩ}.
Since the model is determined by Ω and ui (i ∈ I), we represent the model by
the pair (Ω, {ui}i∈I), and call it an economy.

We next give definitions of stable outcomes and competitive equilibria. For
this, we introduce the concepts of individual rationality and blocking set.

Definition 2.1 An outcome (ω, p) is said to be individually rational if ω ∈
C(ω, p ;ui) for all i ∈ I.

Individual rationality means that no agent has an incentive to cancel some
trades when taking ω under the price p.

Definition 2.2 We say that a pair (z, p′) is a blocking set of (ω, p) in an
economy (Ω, {ui}i∈I) if the following conditions hold:

1. z ∈ ZΩ
+ \ {0}.

2. p′ ∈ RΩ and p′t = 0 for all t ∈ Ω with t �∈ supp+(z).
3. for all i ∈ ag(supp+(z)) and ω′ ∈ C(ω+z, p+p′ ;ui), we have ω′

t = (ω+z)t
for all t ∈ supp+(z) ∩Ωi.
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This definition means that when the number of available units of trade t
increases by zt and the unit price for t changes from pt to pt + p′t for all
t ∈ supp+(z), each agent i ∈ ag(supp+(z)) strictly prefer taking (ω + z)t
trades for all t ∈ supp+(z) ∩ Ωi, that is, all agents in ag(supp+(z)) take all
additional units of trades. Therefore we regard (ω, p) as blocked by the pair
(z, p′). The definition implies that if (z, p′) is a blocking set of (ω, p), then

U(ω′, p+ p′ ;ui) > U(ω, p+ p′ ;ui)

holds for all ω′ ∈ C(ω + z, p+ p′ ;ui).
We now define stable outcomes and competitive equilibria in an economy

(Ω, {ui}i∈I).

Definition 2.3 An outcome (ω, p) is stable in an economy (Ω, {ui}i∈I) if the
following conditions hold:

1. (ω, p) is individually rational.
2. (ω, p) does not have any blocking sets.

Definition 2.4 An outcome (ω, p) is said to be a competitive equilibrium in
an economy (Ω, {ui}i∈I) if ω ∈ D(p ;ui) for all i ∈ I. The vectors ω and p
are called a competitive equilibrium trade vector and a competitive equilibrium
price vector, respectively.

Finally, we give the definition of efficient trade vectors.

Definition 2.5 A trade vector ω is efficient on {ui}i∈I if∑
i∈I

ui(ω) ≥
∑
i∈I

ui(ω
′) (∀ω′ ∈ ZΩ).

Valuation functions are defined on ZΩ in the multi-unit trading network
model whereas they are defined on 2Ω in the single-unit trading network model
introduced by Hatfield et al. [10]. In the multi-unit trading network model, a
vector whose elements are 0 or 1 can be regarded as a subset of trades. In
fact, if domui ⊆ {0, 1}Ω for all i ∈ I, the multi-unit trading network model
represents the single-unit trading network model in [10] and the definitions
of stable outcomes and competitive equilibria in [10] coincide with the above
definitions in the multi-unit trading network model.

3 A review of the previous works

As mentioned in the last paragraph in Section 2, if domui ⊆ {0, 1}Ω for
all i ∈ I, we regard the multi-unit trading network model as the single-unit
trading network model. In this section, we describe the results concerning the
single-unit trading network model which was shown by Hatfield et al. [10].
First, we explain the definition of the full substitutes condition and the laws
of aggregate supply and demand.
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Definition 3.1 ([10]) A valuation function ui : {0, 1}Ω → R ∪ {−∞} of
agent i satisfies the full substitutes condition if the following conditions hold:

1. For any p ∈ RΩ , t ∈ Ωi→, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈
D(p+ δχt ;ui) such that

ωs ≥ τs (∀s ∈ Ωi→ \ {t}), ωs ≤ τs (∀s ∈ Ω→i).

2. For any p ∈ RΩ , t ∈ Ω→i, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈
D(p− δχt ;ui) such that

ωs ≥ τs (∀s ∈ Ω→i \ {t}), ωs ≤ τs (∀s ∈ Ωi→).

The first condition in Definition 3.1 says that when the price of t ∈ Ωi→
increases, i’s supply of trades other than t does not increase and i’s demand
does not decrease. Similarly, the second condition says that when the price of
t ∈ Ω→i decreases, i’s supply does not decrease and i’s demand of trades other
than t does not increase. In other words, all agents view trades in Ω→i(Ωi→)
as substitutes, and a trade in Ω→i and one in Ωi→ as complements.

Definition 3.2 ([10]) A valuation function ui : {0, 1}Ω → R ∪ {−∞} of
agent i satisfies the law of aggregate supply if for every p ∈ RΩ , t ∈ Ωi→,
ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p+ δχt ;ui) such that

∑
s∈Ωi→

τs −
∑

s∈Ωi→

ωs ≥
∑

s∈Ω→i

τs −
∑

s∈Ω→i

ωs.

Similarly, ui satisfies the law of aggregate demand if for every p ∈ RΩ , t ∈ Ω→i,
ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p− δχt ;ui) such that

∑
s∈Ω→i

τs −
∑

s∈Ω→i

ωs ≥
∑

s∈Ωi→

τs −
∑

s∈Ωi→

ωs.

The law of aggregate supply means that when the price of t ∈ Ωi→ in-
creases, the amount of increase of trades in Ω→i does not exceed that of
increasing trades in Ωi→. Similarly, the law of aggregate demand means that
when the price of t ∈ Ω→i decreases, the amount of increase of trades in Ωi→
does not exceed that of increasing trades in Ω→i.

The laws of aggregate supply and demand were first introduced by Hatfield
and Kominers [9] and Hatfield et al. [10] applied these concepts to the single-
unit trading network model. For the above conditions, the following statement
holds.

Theorem 3.1 ([10]) If ui satisfies the full substitutes condition it satisfies
the laws of aggregate supply and demand.

Under the full substitutes condition, there exists a competitive equilibrium
in the single-unit trading network model.
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Theorem 3.2 ([10]) Assume that every ui : {0, 1}Ω → R ∪ {−∞} satisfies
the full substitutes condition. Then there exists a competitive equilibrium in
the economy (Ω, {ui}i∈I).

We now explain the relationship between competitive equilibria and effi-
ciency of trade vectors.

Theorem 3.3 ([10]) Let (ω, p) be a competitive equilibrium in (Ω, {ui}i∈I).
Then ω is efficient on {ui}i∈I , that is,∑

i∈I

ui(ω) ≥
∑
i∈I

ui(ω
′) (∀ω′ ∈ {0, 1}Ω).

Theorem 3.4 ([10]) Suppose that every ui satisfies the full substitutes condi-
tion and consider the economy (Ω, {ui}i∈I). Then for any competitive equilib-
rium (ω, p) and efficient trade vector ω′ on {ui}i∈I , (ω

′, p) is also a competitive
equilibrium. Moreover, the set of competitive equilibrium price vectors forms a
lattice, that is, if p and q are competitive equilibrium price vectors, p ∧ q and
p ∨ q are also competitive equilibrium price vectors where

(p ∧ q)t = min{pt, qt}, (p ∨ q)t = max{pt, qt} (∀t ∈ Ω).

Finally, we describe the relationship between stable outcomes and compet-
itive equilibria in the single-unit trading network model.

Theorem 3.5 ([10]) If an outcome (ω, p) is a competitive equilibrium in
(Ω, {ui}i∈I), then it is stable.

Theorem 3.6 ([10]) Suppose that every ui satisfies the full substitutes con-
dition and (ω, p) is stable in (Ω, {ui}i∈I). Then there exists q ∈ RΩ such that
(ω, q) is a competitive equilibrium and qt = pt for all t ∈ supp+(ω).

Theorem 3.6 means that we can construct a competitive equilibrium from a
stable outcome by changing prices of trades which are not taken. We see that
stable outcomes and competitive equilibria are essentially equivalent in the
single-unit trading network model.

4 The generalized full substitutes condition

The full substitutes condition is defined for valuation functions whose effective
domains are included in {0, 1}Ω . In this section, we consider extending the full
substitutes condition to the multi-unit trading network model.

We now introduce the generalized full substitutes condition as a general-
ization of the full substitutes condition. For a nonempty finite set S ⊆ ZΩ , we
say that S is a discretely convex set if it satisfies

conv(S) ∩ ZΩ = S,

where conv(S) is the convex hull of S.
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Definition 4.1 A valuation function ui : Z
Ω → R∪{−∞} of agent i satisfies

the generalized full substitutes condition if the following conditions hold:

1. D(p ;ui) is a discretely convex set for all p ∈ RΩ .
2. For any p ∈ RΩ , t ∈ Ωi→, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈
D(p+ δχt ;ui) such that

ωs ≥ τs (∀s ∈ Ωi→ \ {t}), ωs ≤ τs (∀s ∈ Ω→i), (3)∑
s∈Ωi→

τs −
∑

s∈Ωi→

ωs ≥
∑

s∈Ω→i

τs −
∑

s∈Ω→i

ωs. (4)

3. For any p ∈ RΩ , t ∈ Ω→i, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈
D(p− δχt ;ui) such that

ωs ≥ τs (∀s ∈ Ω→i \ {t}), ωs ≤ τs (∀s ∈ Ωi→), (5)∑
s∈Ω→i

τs −
∑

s∈Ω→i

ωs ≥
∑

s∈Ωi→

τs −
∑

s∈Ωi→

ωs. (6)

The first condition is equivalent to the condition that ui is concave-extensible,
that is, there exists a concave function g : RΩ → R∪{−∞} such that g(ω) =
ui(ω) for all ω ∈ ZΩ . We see from Definition 4.1 that the generalized full
substitutes condition is a natural combination of the full substitutes condition
in Section 3 and the laws of aggregate supply and demand in Section 3.

Obviously, the generalized full substitutes condition implies the full sub-
stitutes condition. On the other hand, the converse does not hold in general,
while it turns out that the converse holds true for a valuation function ui with
domui ⊆ {0, 1}Ω .

5 Twisted M�-concave functions

In this section, we introduce twisted M�-concave functions and describe some
of their properties. Moreover, we show that a valuation function satisfies the
generalized full substitutes condition if and only if it is a twisted M�-concave
function.

The class of twisted M�-concave functions is a variant of the class of M�-
concave functions introduced by Murota and Shioura [17]. The concept of
twisted M�-concave functions was first introduced by Sun and Yang [24] as
GM-concave functions and applied to the single-unit auction model where
goods are substitutable or complementary. The result in [24] is extended to
the multi-unit auction model by Shioura and Yang [22]. Ikebe and Tamura [12]
showed that a twisted M�-concave function satisfies the SSS and CSC condi-
tions.

Let N = {1, . . . , n}. For a vector ω ∈ ZN , we define

supp+(ω) = {t ∈ N : ωt > 0}, supp−(ω) = {t ∈ N : ωt < 0}.
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For a function u : ZN → R ∪ {−∞}, we define the effective domain domu by

domu = {ω ∈ ZN : u(ω) �= −∞}.
Let χt ∈ {0, 1}N be the characteristic vector of t ∈ N , that is,

(χt)s =

{
1 if s = t,

0 otherwise.

We also consider an element 0( �∈ N) and define χ0 = 0. M�-concave functions
are defined as follows.

Definition 5.1 (Murota and Shioura [17]) A function u : ZN → R ∪
{−∞} with domu �= ∅ is an M�-concave function if for all ω, τ ∈ domu and
s ∈ supp+(ω − τ), there exists t ∈ supp−(ω − τ) ∪ {0} such that

u(ω) + u(τ) ≤ u(ω − χs + χt) + u(τ + χs − χt).

Let W be a subset of N . We define twist(ω ;W ) ∈ ZN as

(twist(ω ;W ))t =

{
ωt if t �∈W,

−ωt if t ∈W .

Definition 5.2 LetW be a subset of N . Then a function u : ZN → R∪{−∞}
is a W -twisted M�-concave function if there exists an M�-concave function
û : ZN → R ∪ {−∞} such that

u(ω) = û(twist(ω ;W )) (∀ω ∈ ZN ).

Note that if W is empty, a W -twisted M�-concave function is an M�-concave
function. Therefore the class of twisted M�-concave functions contains the class
of M�-concave functions.

Twisted M�-concave functions are closely related to the full substitutes
condition. In fact, Ikebe and Tamura [12] showed that if domui ⊆ {0, 1}Ω ,
an Ωi→-twisted M�-concave function satisfies the full substitutes condition. In
this paper, we prove a stronger result.

Theorem 5.1 A valuation function ui : Z
Ω → R∪ {−∞} of agent i satisfies

the generalized full substitutes condition if and only if it is an Ωi→-twisted
M�-concave function.

Recall that a valuation function ui satisfies (1). Therefore if ui is an Ωi→-
twisted M�-concave function it is also an A-twisted M�-concave function where
Ωi→ ⊆ A ⊆ Ω\Ω→i. From here, a valuation function of agent i is simply said to
be a twisted M�-concave function if it is an Ωi→-twisted M�-concave function.

The generalized full substitutes condition is closely related to the general-
ized gross substitutes and complements (GGSC) condition which was defined
by Shioura and Yang [22] in auction theory. They showed that a valuation func-
tion satisfies the GGSC condition if and only if it is twisted M�-concave. In the



Multi-unit trading networks with discrete concavity 11

proof they used the following property, (GGS±). Let ûi : Z
Ωi → R ∪ {−∞}

be a function whose effective domain is bounded.

(GGS±)

1. For all p ∈ RΩi , D̃(p ; ûi) is a discretely convex set where

D̃(p ; ûi) = argmax

{
ûi(ω)−

∑
s∈Ωi

ps · ωs : ω ∈ ZΩi

}
.

2. Let p ∈ RΩi , δ > 0, and ω ∈ D̃(p ; ûi).
(a) For all t ∈ Ωi→, there exists τ ∈ D̃(p+ δχt ; ûi) such that

τs ≥ ωs (∀s ∈ Ωi \ {t}),
∑
s∈Ωi

τs ≤
∑
s∈Ωi

ωs.

(b) For all t ∈ Ω→i, there exists τ ∈ D̃(p− δχt ; ûi) such that

τs ≤ ωs (∀s ∈ Ωi \ {t}),
∑
s∈Ωi

τs ≥
∑
s∈Ωi

ωs.

Theorem 5.2 (Shioura and Yang [22]) A function ûi : Z
Ωi → R∪{−∞}

whose effective domain is bounded satisfies (GGS±) condition if and only if it
is an M�-concave function.

By Theorem 5.2, we can easily verify that Theorem 5.1 holds.
Finally, we describe some properties of W -twisted M�-concave functions.

These properties are used in the proofs in this paper.

Proposition 5.1 (Murota [16]) Let u : ZN → R ∪ {−∞} be a W -twisted
M�-concave function. Then the following statements hold:

1. The sum of a W -twisted M�-concave function and a linear function is W -
twisted M�-concave, that is, for p ∈ RN ,

u(ω) +
∑
t∈N

pt · ωt

is W -twisted M�-concave.
2. For a, b ∈ (Z ∪ {±∞})N with a ≤ b,

u[a,b](ω) =

{
u(ω) if at ≤ ωt ≤ bt for all t ∈ N ,

−∞ otherwise,

is W -twisted M�-concave.
3. For A ⊆ N , define uA : ZA → R ∪ {−∞} as

uA(σ) = sup{u(ω) : ωt = σt (∀t ∈ A), ω ∈ ZN}.
If uA(σ) < +∞ for all σ ∈ ZA, uA is (W ∩A)-twisted M�-concave.
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6 Existence and lattice structure of competitive equilibria

In this section, we show the existence of competitive equilibria and discuss the
structure of the set of competitive equilibrium price vectors under the gen-
eralized full substitutes condition for each ui, which is equivalent to twisted
M�-concavity by Theorem 5.1. Since the concept of twisted M�-concave func-
tion is a variant of M�-concave function, the existing results for M�-concave
function in discrete convex analysis can be applied to derive the results in this
section.

First, we show the existence of competitive equilibria.

Theorem 6.1 Suppose that every ui satisfies the generalized full substitutes
condition, that is, ui is twisted M�-concave for all i ∈ I. Then there exists a
competitive equilibrium in the economy (Ω, {ui}i∈I).

To prove Theorem 6.1, we use the following property of the sum of M�-concave
functions.

Theorem 6.2 (Murota [16]) For M�-concave functions f1, f2 : ZN → R ∪
{−∞} and ω∗ ∈ dom f1 ∩ dom f2, we have

f1(ω
∗) + f2(ω

∗) ≥ f1(ω) + f2(ω)

for all ω ∈ ZN if and only if there exists p∗ ∈ RN such that

f1(ω
∗)−

∑
t∈N

ω∗
t · p∗t ≥ f1(ω)−

∑
t∈N

ωt · p∗t (∀ω ∈ ZN ),

f2(ω
∗) +

∑
t∈N

ω∗
t · p∗t ≥ f2(ω) +

∑
t∈N

ωt · p∗t (∀ω ∈ ZN ).

We now prove Theorem 6.1.

Proof First, we split each trade t ∈ Ω into two trades tb and ts, and define

Ω̃ =
⋃
t∈Ω

{tb, ts}, Ω̃i = {tb : t ∈ Ω→i} ∪ {ts : t ∈ Ωi→} (i ∈ I).

Since there are exactly one buyer and one seller for each trade t ∈ Ω, it follows
that Ω̃j ∩ Ω̃k = ∅ if j �= k.

For i ∈ I, we construct a function ũi : Z
Ω̃i → R ∪ {−∞} which satisfies

ũi(ω̃) = ui(Ti(ω̃)) (∀ω̃ ∈ ZΩ̃i),

where Ti(ω̃) ∈ ZΩ is defined by

(Ti(ω̃))t =

⎧⎪⎨
⎪⎩
ω̃tb if t ∈ Ω→i,

−ω̃ts if t ∈ Ωi→,

arbitrary if t �∈ Ωi.



Multi-unit trading networks with discrete concavity 13

By (1), ũi is well defined. By its definition, ũi is an M�-concave function. Let

u : ZΩ̃ → R ∪ {−∞} be defined by

u(ω̃) =
∑
i∈I

ũi(ω̃
Ω̃i) (ω̃ ∈ ZΩ̃), (7)

where ω̃Ω̃i is the restriction of ω̃ on Ω̃i. As Ω̃j ∩ Ω̃k = ∅ for all j, k ∈ I with

j �= k, u is also an M�-concave function. We further define f : ZΩ̃ → R∪{−∞}
by

f(ω̃) =

{
0 if ω̃tb + ω̃ts = 0 for all t ∈ Ω,

−∞ otherwise.
(8)

It is easy to check that f is an M�-concave function.
Since 0 ∈ domu ∩ dom f and domu is bounded, there exists a maximizer

of u+ f . Let ω̃∗ be such a maximizer. By Theorem 6.2, there exists p̃∗ ∈ RΩ̃

such that

u(ω̃∗)−
∑
k∈Ω̃

ω̃∗
k · p̃∗k ≥ u(ω̃)−

∑
k∈Ω̃

ω̃k · p̃∗k (∀ω̃ ∈ ZΩ̃), (9)

f(ω̃∗) +
∑
k∈Ω̃

ω̃∗
k · p̃∗k ≥ f(ω̃) +

∑
k∈Ω̃

ω̃k · p̃∗k (∀ω̃ ∈ ZΩ̃). (10)

By the definition of f , we have ω̃∗
tb
+ ω̃∗

ts = 0 for all t ∈ Ω. We claim p̃∗tb = p̃∗ts
for all t ∈ Ω. If p̃∗tb > p̃∗ts for some t ∈ Ω, we have

f(ω̃∗ + χtb − χts) +
∑
k∈Ω̃

(ω̃∗ + χtb − χts)k · p̃∗k > f(ω̃∗) +
∑
k∈Ω̃

ω̃∗
k · p̃∗k.

This contradicts (10). Similarly, p̃∗tb < p̃∗ts for some t ∈ Ω also leads to a
contradiction. Therefore ω̃∗

tb
+ ω̃∗

ts = 0 and p̃∗tb = p̃∗ts for all t ∈ Ω.
We define ω∗ ∈ ZΩ and p∗ ∈ RΩ by

ω∗
t = ω̃∗

tb
(= −ω̃∗

ts), p∗t = p̃∗tb (= p̃∗ts) (∀t ∈ Ω).

Finally, we show that ω∗ ∈ D(p∗ ;ui) for all i ∈ I. Since Ω̃j ∩ Ω̃k = ∅ for all
distinct j, k ∈ I, it holds that

∑
i∈I

ũi(ω̃
Ω̃i)−

∑
k∈Ω̃

ω̃k · p̃∗k =
∑
i∈I

⎛
⎝ũi(ω̃Ω̃i)−

∑
k∈Ω̃i

ω̃k · p̃∗k

⎞
⎠ .

This fact and (9) imply that

ũi(ω̃
∗Ω̃i)−

∑
k∈Ω̃i

ω̃∗
k · p̃∗k ≥ ũi(ω̃

Ω̃i)−
∑
k∈Ω̃i

ω̃k · p̃∗k (∀i ∈ I, ω̃Ω̃i ∈ ZΩ̃i). (11)
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Moreover, for all i ∈ I and ω̃ ∈ ZΩ̃ we have

ũi(ω̃
Ω̃i)−

∑
k∈Ω̃i

ω̃k · p̃∗k = ui(Ti(ω̃
Ω̃i)) +

∑
t∈Ωi→

Ti(ω̃
Ω̃i) · p∗t −

∑
t∈Ω→i

Ti(ω̃
Ω̃i) · p∗t

= U(Ti(ω̃
Ω̃i), p∗ ;ui). (12)

From (11) and (12), it follows that

U(ω∗, p∗ ;ui) ≥ U(ω, p∗ ;ui) (∀ω ∈ ZΩ).

Thus ω∗ ∈ D(p∗ ;ui) for all i ∈ I, that is, (ω∗, p∗) is a competitive equilibrium.
��

The next statement describes the structure of the set of competitive equi-
librium price vectors.

Theorem 6.3 Suppose that every ui satisfies the generalized full substitutes
condition and consider the economy (Ω, {ui}i∈I). Then the set of competitive
equilibrium price vectors forms a lattice.

To prove Theorem 6.3, we use the concept of polyhedral L�-convex function.

Definition 6.1 (Murota and Shioura [18], Murota [16]) A function g :
RN → R∪{+∞} is a polyhedral L�-convex function if it is a polyhedral convex
function and satisfies

g(p ∧ (q + α1)) + g((p− α1) ∨ q) ≤ g(p) + g(q)

for all p, q ∈ RN and α ∈ R+, where 1 is the all-one vector.

Polyhedral L�-convex functions satisfy the following properties.

Proposition 6.1 (Murota [16]) Let g1, g2 : ZN → R∪ {+∞} be polyhedral
L�-convex functions. Then g1 + g2 is a polyhedral L�-convex function.

Proposition 6.2 (Murota and Shioura [18], Murota [16]) The set of
minimizers of a polyhedral L�-convex function forms a lattice.

The concept of L�-convex function is deeply related to that of M�-concave
function.

Theorem 6.4 (Murota and Shioura [18], Murota [16]) Let f : ZN →
R ∪ {−∞} be an M�-concave function such that dom f is nonempty and
bounded. Then, the function g : RN → R ∪ {−∞} defined by

g(p) = sup

{
f(ω)−

∑
t∈N

ωt · pt : ω ∈ ZN

}

is a polyhedral L�-convex function.
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We now prove Theorem 6.3. We roughly describe the idea of the proof.
First, we show that

∑
i∈I V (· ;ui) is a polyhedral L�-convex function (Propo-

sition 6.3). Then we prove that p is a competitive equilibrium price vector
if and only if p is a minimizer of

∑
i∈I V (· ;ui) (Proposition 6.5). By using

Propositions 6.2, 6.3, and 6.5, we obtain Theorem 6.3.

Proposition 6.3 Suppose that ui is twisted M�-concave for all i ∈ I. Then∑
i∈I V (· ;ui) is a polyhedral L�-convex function.

Proof Since the sum of polyhedral L�-convex functions is also polyhedral L�-
convex (Proposition 6.1), it suffices to show that each V (· ;ui) is a polyhedral
L�-convex function. It holds that

V (p ;ui) = max
{
U(ω, p ;ui) : ω ∈ ZΩ

}
= max

{
ui(ω) +

∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt : ω ∈ ZΩ

}

= max

{
ui(Ti(ω̃)) +

∑
t∈Ωi→

(Ti(ω̃))t · pt −
∑

t∈Ω→i

(Ti(ω̃))t · pt : ω̃ ∈ ZΩ̃i

}

= max

⎧⎨
⎩ũi(ω̃)−

∑
k∈Ω̃i

ω̃k · p̃k : ω̃ ∈ ZΩ̃i

⎫⎬
⎭ ,

where p̃tb = p̃ts = pt for all t ∈ Ω and ũi is the function defined in the proof
of Theorem 6.1. Since ũi is an M�-concave function, by Theorem 6.4, V (· ;ui)
is a polyhedral L�-convex function. ��
Proposition 6.4 For all p ∈ RΩ, we have∑

i∈I

U(ω, p ;ui) =
∑
i∈I

ui(ω).

Proof It follows that

∑
i∈I

U(ω, p ;ui) =
∑
i∈I

(
ui(ω) +

∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt
)

=
∑
i∈I

ui(ω) +
∑
i∈I

( ∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt
)

=
∑
i∈I

ui(ω).

��
Proposition 6.5 Assume that there exists a competitive equilibrium. Then
p is a competitive equilibrium price vector if and only if p is a minimizer of∑

i∈I V (· ;ui).
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Proof Let (ω∗, p∗) be a competitive equilibrium and p ∈ RΩ . By the definition
of V (· ;ui), we have

V (p∗ ;ui) = U(ω∗, p∗ ;ui) (∀i ∈ I),

V (p ;ui) ≥ U(ω∗, p ;ui) (∀i ∈ I), (13)

from which follows that∑
i∈I

V (p ;ui) ≥
∑
i∈I

U(ω∗, p ;ui)

=
∑
i∈I

ui(ω
∗)

=
∑
i∈I

U(ω∗, p∗ ;ui)

=
∑
i∈I

V (p∗ ;ui), (14)

where the first and second equalities are by Proposition 6.4. This shows that
p∗ is a minimizer of

∑
i∈I V (· ;ui).

We then assume that p is a minimizer of
∑

i∈I V (· ;ui). Since p∗ is also a
minimizer, we have

∑
i∈I V (p ;ui) =

∑
i∈I V (p∗ ;ui). Hence, the inequalities

in (13) and (14) hold with equality. This implies that ω∗ ∈ D(p ;ui) for all
i ∈ I, that is, p is a competitive equilibrium price vector. ��
By Propositions 6.2, 6.3, and 6.5, the set of competitive equilibrium price
vectors forms a lattice. This concludes the proof of Theorem 6.3.

7 Competitive equilibria, stability, and efficiency

In this section, we discuss the connection among competitive equilibria, stabil-
ity, and efficiency in the multi-unit trading network model. We generalize most
of the results in Section 3 concerning the single-unit trading network model,
while Theorem 3.6 in Section 3 does not admit a generalization, as explained
below. Proofs of the results are given in Section 9.

We first show a relationship between competitive equilibria and efficiency
of trade vectors. The statements of the following two theorems can be regarded
as the first and second welfare theorems of economics, respectively.

Theorem 7.1 Let (ω, p) be a competitive equilibrium in (Ω, {ui}i∈I). Then ω
is efficient on {ui}i∈I .

Theorem 7.2 Let (ω, p) be a competitive equilibrium in (Ω, {ui}i∈I). For any
efficient trade vector ω′ on {ui}i∈I , (ω

′, p) is also a competitive equilibrium.

Note that no assumptions are required for preferences of agents in the two
theorems above.

We next show that a competitive equilibrium is always stable.
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Theorem 7.3 If an outcome (ω, p) is a competitive equilibrium in (Ω, {ui}i∈I),
then it is stable.

The converse of Theorem 7.3 does not hold, as shown in the following
example.

Example 7.1 Consider an economy with two agents, a and b, and only one
trade. Agent a is the buyer and agent b is the seller. Valuation functions of
each agent are given in Table 1.

Table 1 The valuations of agents in Example 7.1

ω ua(ω) ub(ω) U(ω, 2 ;ua) U(ω, 2 ;ub)

0 0 0 0 0
1 4 −1 2 1
2 7 −2 3 2
3 0 −3 −6 3
4 −∞ −∞ −∞ −∞

Table 2 The valuations of agents
in Example 7.2

(t1, t2) ua(·) ub(·) uc(·)
(0, 0) 0 0 0
(1, 0) 4 −1 0
(0, 1) 4 0 −1
(1, 1) 0 −1 −1

We can easily check that ua and ub are twisted M�-concave functions. Thus
preferences of all agents satisfy the generalized full substitutes condition. In
this example, we can verify that (ω, p) = (2, 2) is a stable outcome, while (2, 2)
is not a competitive equilibrium since

2 �∈ D(2 ;ub) = {3}.

We see from Example 7.1 that a stable outcome is not a competitive equi-
librium in general, even if preferences of all agents satisfy the generalized full
substitutes condition. Moreover, Example 7.1 shows that the following state-
ment, a generalization of Theorem 3.6, does not hold in the multi-unit trading
network model:

Statement A Suppose that every ui satisfies the generalized full
substitutes condition. If an outcome (ω, p) is stable in (Ω, {ui}i∈I),
then there exists q ∈ RΩ such that (ω, q) is a competitive equilibrium
and qt = pt for all t ∈ supp+(ω).

This shows an obvious gap between competitive equilibria and stable outcomes
with respect to price vectors in the multi-unit trading network model.

On the other hand, it can be shown that stability of an outcome implies
efficiency of a trade vector.

Theorem 7.4 Suppose that every ui satisfies the generalized full substitutes
condition. If an outcome (ω, p) is stable in (Ω, {ui}i∈I), then ω is efficient on
{ui}i∈I .

By Theorems 7.2 and 7.4, we have the following weaker statement than State-
ment A.
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Corollary 7.1 Suppose that every ui satisfies the generalized full substitutes
condition. If an outcome (ω, p) is stable in (Ω, {ui}i∈I), then there exists q ∈
RΩ such that (ω, q) is a competitive equilibrium in (Ω, {ui}i∈I).

Remark 7.1 We see from Theorem 7.4 that stability of an outcome implies
efficiency of a trade vector. The following example shows that the converse
does not hold, that is, an outcome (ω, p) may have a blocking set, even if it is
individually rational and ω is efficient on {ui}i∈I .

Example 7.2 Let a, b, and c be three agents, and t1 and t2 be two types of
trades such that b(t1) = a, s(t1) = b, b(t2) = a, and s(t2) = c. Valuation
functions of each agent are given in Table 2. Then (ω, p) = ((1, 0), (3, 0)) has a
blocking set (z, p′) = ((0, 1), (0, 2)) while ((1, 0), (3, 0)) is individually rational
and (t1, t2) = (1, 0) is efficient on {ui}i∈I .

8 The relationship among three stability concepts

We extend the concepts of strong group stability and chain stability in the
multi-unit trading network model. While these stability concepts are different
from the stability defined in Section 2 in general, they are equivalent in the
case where preferences of all agents satisfy the generalized full substitutes
condition. Proofs of the results are given in Section 9.

First, we consider the concept of strong group stability, originally intro-
duced by Hatfield et al. [10] in the single-unit trading network model, as a
combination of strong stability by Hatfield and Kominers [8] and group sta-
bility by Roth and Sotomayor [20].

For i ∈ I, an outcome (ω, p), z ∈ ZΩ
+ \ {0}, and p′ ∈ RΩ we define

Δ(z, p′ ;ui, (ω, p))

= max
{
U(ω′, p ;ui) : ω′ ≤ ω + z, ω′

t = (ω + z)t (t ∈ supp+(z))
}

+
∑

t∈Ωi→

zt · (p′t − pt)−
∑

t∈Ω→i

zt · (p′t − pt)− U(ω, p ;ui).

The value Δ(z, p′ ;ui, (ω, p)) can be understood as follows: when an agent
i takes zt more trades with price p′t for all t ∈ supp+(z) (and may cancel
some trades which are not in supp+(z)) she/he can increase her/his utility by
up to Δ(z, p′ ;ui, (ω, p)). The value Δ(z, p′ ;ui, (ω, p)) admits an alternative
formulation:

Δ(z, p′ ;ui, (ω, p))

= max

{
ui(ω

′) +
∑

t∈Ωi→

ω′
t · pt −

∑
t∈Ω→i

ω′
t · pt

: ω′ ≤ ω + z, ω′
t = (ω + z)t (t ∈ supp+(z))

}

+
∑

t∈Ωi→

zt · (p′t − pt)−
∑

t∈Ω→i

zt · (p′t − pt)− U(ω, p ;ui).
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We now extend the concept of strong group stability in the multi-unit
trading network model.

Definition 8.1 Let (ω, p) be an outcome. A pair (z, p′) is a strong group
blocking set of (ω, p) in (Ω, {ui}i∈I) if the following conditions hold:

1. z ∈ ZΩ
+ \ {0}.

2. p′ ∈ RΩ and p′t = pt for all t ∈ Ω with t �∈ supp+(z).
3. for all i ∈ ag(supp+(z)), Δ(z, p′ ;ui, (ω, p)) > 0.

Definition 8.2 An outcome (ω, p) is strong group stable in (Ω, {ui}i∈I) if the
following conditions hold:

1. (ω, p) is individually rational.
2. (ω, p) does not have any strong group blocking sets.

The strong group stability defined above coincides with the original strong
group stability in [10] when applied to the single-unit trading network model.

Strong group stability is a more restricted condition than stability.

Proposition 8.1 Let (ω, p) be an outcome.

(i) If (ω, p) has a blocking set, then it also has a strong group blocking set.
(ii) If (ω, p) is strong group stable, then it is stable.

It is shown by Hatfield et al. [10] that the converse of Proposition 8.1 (ii) holds
in single-unit trading network model.

Proposition 8.2 (Hatfield et al. [10]) For the single-unit trading network
model under the full substitutes condition, strong group stability is equivalent
to stability.

We show that the converse of Proposition 8.1 (ii) still holds in the multi-unit
trading network model under the generalized full substitutes condition.

Theorem 8.1 Suppose that every ui satisfies the generalized full substitutes
condition. Let (ω, p) be an outcome.

(i) Suppose that (ω, p) is individually rational. If (ω, p) has a strong group
blocking set, then it also has a blocking set.

(ii) If (ω, p) is stable, then it is strong group stable.

From Proposition 8.1 and Theorem 8.1, strong group stability and stability
are equivalent under the generalized full substitutes condition.

We now introduce chain stability in the multi-unit trading network model.
This concept was first introduced by Ostrovsky [19] on the supply chain net-
work, then extended to the single-unit trading network model by Hatfield et
al. [10]. Our definition of chain stability is similar to that in [10].
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Definition 8.3 A trade vector z ∈ {0, 1}Ω is a chain if there exists an or-
dering t1, . . . , tk of elements in supp+(z) such that s(tl+1) = b(tl) for all
l = 1, . . . , k − 1, where k = |supp+(z)|. A blocking set (z, p′) is called a
blocking chain if z is a chain.

Definition 8.4 An outcome (ω, p) is chain stable in (Ω, {ui}i∈I) if the fol-
lowing conditions hold:

1. (ω, p) is individually rational.
2. (ω, p) does not have any blocking chains.

Trivially, chain stability is a weaker condition than stability since a blocking
chain is a blocking set. The converse is also true under the generalized full
substitutes condition.

Theorem 8.2 Suppose that every ui satisfies the generalized full substitutes
condition. Let (ω, p) be an outcome.

(i) Suppose that (ω, p) is individually rational. If (ω, p) has a blocking set,
then it has a blocking chain.

(ii) (ω, p) is stable if and only if it is chain stable.

By Proposition 8.1 and Theorems 8.1 and 8.2, we obtain the equivalence among
the three stability concepts under the generalized full substitutes condition.

Corollary 8.1 Suppose that every ui satisfies the generalized full substitutes
condition. Then stability, strong group stability, and chain stability are equiv-
alent.

9 Proofs

9.1 Proof of Theorem 7.1

Since (ω, p) is a competitive equilibrium we have

ui(ω) +
∑

t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt = U(ω, p ;ui)

≥ U(ω′, p ;ui)

= ui(ω
′) +

∑
t∈Ωi→

ω′
t · pt −

∑
t∈Ω→i

ω′
t · pt

for all i ∈ I and ω′ ∈ ZΩ . Since {Ωi→ : i ∈ I} and {Ω→i : i ∈ I} are partitions
of Ω, by summing these inequalities over all i ∈ I we have∑

i∈I

ui(ω) ≥
∑
i∈I

ui(ω
′) (∀ω′ ∈ ZΩ).
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9.2 Proof of Theorem 7.2

Since ω′ is efficient on {ui}i∈I , by Proposition 6.4 we have∑
i∈I

U(ω′, p ;ui) =
∑
i∈I

ui(ω
′)

≥
∑
i∈I

ui(ω) =
∑
i∈I

U(ω, p ;ui).

On the other hand, since (ω, p) is a competitive equilibrium it follows that

U(ω, p ;ui) ≥ U(ω′, p ;ui)

for all i ∈ I. From these inequalities, we obtain

U(ω, p ;ui) = U(ω′, p ;ui) (∀i ∈ I).

Therefore ω′ ∈ D(p ;ui) for all i ∈ I, that is, (ω′, p) is a competitive equilib-
rium.

9.3 Proof of Theorem 7.3

Suppose that (ω, p) is not stable. To show that (ω, p) is not a competitive
equilibrium, we prove that ω �∈ D(p ;uj) holds for some j ∈ I.

First, we consider the case where (ω, p) is not individually rational. Then,
there exists j ∈ I such that ω �∈ C(ω, p ;uj). This implies ω �∈ D(p ;uj) since

U(ω′, p ;uj) > U(ω, p ;uj) (∀ω′ ∈ C(ω, p ;uj)).

We next consider the case where (ω, p) is individually rational and there
exists a blocking set (z, p′) of (ω, p). Denote J = ag(supp+(z)). For i ∈ J and
ωi ∈ C(ω + z, p+ p′ ;ui) we have

ωi
t = (ω + z)t (t ∈ supp+(z) ∩Ωi).

Therefore, we have ω �∈ C(ω + z, p+ p′ ;ui) for all j ∈ J , implying that

U(ω, p+ p′ ;ui) < U(ωi, p+ p′ ;ui) (∀i ∈ J).

By summing these inequalities over all i ∈ J , we obtain∑
i∈J

U(ω, p+ p′ ;ui) <
∑
i∈J

U(ωi, p+ p′ ;ui). (15)

As shown below, it holds that∑
i∈J

U(ω, p+ p′ ;ui) =
∑
i∈J

U(ω, p ;ui), (16)

∑
i∈J

U(ωi, p+ p′ ;ui) =
∑
i∈J

U(ωi, p;ui). (17)
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By (15), (16), and (17) we have

∑
i∈J

U(ω, p ;ui) <
∑
i∈J

U(ωi, p ;ui),

implying that there exists j ∈ J such that U(ωj , p ;uj) > U(ω, p ;uj). Hence,
ω �∈ D(p ;uj) holds and (ω, p) is not a competitive equilibrium.

We now prove the equation (16). By Proposition 6.4, we have

∑
i∈I

U(ω, p ;ui) =
∑
i∈I

ui(ω) =
∑
i∈I

U(ω, p+ p′ ;ui). (18)

Since p′t = 0 for all t ∈ Ω \ supp+(z), it holds that
∑

i∈I\J
U(ω, p ;ui) =

∑
i∈I\J

U(ω, p+ p′ ;ui). (19)

The equation (16) follows from (18) and (19).

We then prove the equation (17). We have ωi
t = (ω + z)t for all t ∈

supp+(z) ∩ Ωi and i ∈ J , and p′t = 0 for all t ∈ Ω \ supp+(z). Therefore,
it holds that

∑
i∈J

( ∑
t∈Ωi→

ωi
t · p′t −

∑
t∈Ω→i

ωi
t · p′t

)

=
∑
i∈J

( ∑
t∈Ωi→

(ω + z)t · p′t −
∑

t∈Ω→i

(ω + z)t · p′t
)

= 0.

Hence, we can obtain (17) as follows:

∑
i∈J

U(ωi, p ;ui) =
∑
i∈J

(
ui(ω

i) +
∑

t∈Ωi→

ωi
t · pt −

∑
t∈Ω→i

ωi
t · pt

)

=
∑
i∈J

(
ui(ω

i) +
∑

t∈Ωi→

ωi
t · pt −

∑
t∈Ω→i

ωi
t · pt

)

+
∑
i∈J

( ∑
t∈Ωi→

ωi
t · p′t −

∑
t∈Ω→i

ωi
t · p′t

)

=
∑
i∈J

(
ui(ω

i) +
∑

t∈Ωi→

ωi
t · (p+ p′)t −

∑
t∈Ω→i

ωi
t · (p+ p′)t

)

=
∑
i∈J

U(ωi, p+ p′ ;ui).
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9.4 Proof of Theorem 7.4

Suppose that (ω, p) is individually rational. We show that if ω is not efficient
on {ui}i∈I , then (ω, p) has a blocking set.

To prove this, we define a new valuation function. For a nonempty A ⊆ Ω
we define the valuation function uAi (· ; (ω, p)) : ZA → R∪ {−∞} of agent i by

uAi (τ ; (ω, p)) = max

{
ui(ω

′) +
∑

t∈Ωi→\A
ω′
t · pt −

∑
t∈Ω→i\A

ω′
t · pt

: ω′
t ≤ ωt (t ∈ Ω \A), ω′

t = τt (t ∈ A), ω′ ∈ ZΩ

}
.

For convenience, we define max{−∞} = −∞. By Proposition 5.1, uAi (· ; (ω, p))
is (Ωi→ ∩ A)-twisted M�-concave. Function uAi (· ; (ω, p)) is helpful in investi-
gating the relationship between efficiency and stability. Indeed, the following
lemma holds.

Lemma 9.1 Suppose that every ui is twisted M�-concave and (ω, p) is indi-
vidually rational in (Ω, {ui}i∈I). Then ω

A is not efficient on {uAi (· ; (ω, p))}i∈I

for some A ⊆ Ω if and only if there exists a blocking set of (ω, p). Further-
more, if ωA is not efficient on {uAi (· ; (ω, p))}i∈I , then there exists a blocking
set (z, p′) of (ω, p) such that z ∈ {0, 1}Ω and supp+(z) ⊆ A.

If ω is not efficient on {ui}i∈I , ω
Ω (= ω) is not efficient on {uΩi (· ; (ω, p))} (note

that uΩi (· ; (ω, p)) = ui). Therefore, Theorem 7.4 follows from Lemma 9.1. The
proof of Lemma 9.1 is given in Section 9.4.3.

Before showing Lemma 9.1, we discuss the inefficiency of trade vectors and
some properties of uAi (· ; (ω, p)) in Sections 9.4.1 and 9.4.2.

9.4.1 Inefficiency of trade vectors

We discuss the inefficiency of trade vectors. We show in Lemma 9.3 that if ω
is not efficient on {ui}i∈I , there exists ω′ such that

∑
i∈I ui(ω) <

∑
i∈I ui(ω

′)
and maxt∈Ω |ω′

t−ωt| ≤ 1. We define χT as the characteristic vector of T , that
is,

(χT )s =

{
1 if s ∈ T ,

0 otherwise.

The sum of two M�-concave functions has the following property.

Lemma 9.2 (Murota [16]) Let f1, f2 : ZN → R ∪ {−∞} be M�-concave
functions and ω ∈ dom f1 ∩ dom f2. If ω �∈ argmax{f1 + f2} then there exist
A,B ⊆ N such that A ∩B = ∅ and

f1(ω) + f2(ω) < f1(ω + χA − χB) + f2(ω + χA − χB).
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The next lemma follows from Lemma 9.2.

Lemma 9.3 Suppose that ui is twisted M�-concave for all i ∈ I and ω is not
efficient on {ui}i∈I . Then there exist A,B ⊆ Ω such that A ∩B = ∅, and

∑
i∈I

ui(ω) <
∑
i∈I

ui(ω + χA − χB).

Proof Let u and f be functions defined by (7) and (8), respectively. It is easy
to check that ∑

i∈I

ui(ω
′) = u(T̃ (ω′)) + f(T̃ (ω′)) (∀ω′ ∈ ZΩ), (20)

where T̃ (ω′) ∈ ZΩ̃ is defined by

(T̃ (ω′))tb = ω′
t, (T̃ (ω′))ts = −ω′

t (∀t ∈ Ω).

By (20), T̃ (ω) �∈ argmax{u+f}. Since u and f are M�-concave, by Lemma 9.2
there exist U,W ⊆ Ω̃ such that

u(T̃ (ω)) + f(T̃ (ω)) < u(T̃ (ω) + χU − χW ) + f(T̃ (ω) + χU − χW ).

This inequality implies, in particular, that f(T̃ (ω) + χU − χW ) > −∞. By
the definition of f , for each t ∈ Ω we have tb ∈ U if and only if ts ∈ W , and
tb ∈W if and only if ts ∈ U . Let

A = {t ∈ Ω : tb ∈ U}, B = {t ∈ Ω : ts ∈ U}.

By (20), we have ∑
i∈I

ui(ω) <
∑
i∈I

ui(ω + χA − χB).

��

9.4.2 Some properties of uAi

We next explain some properties of uAi (· ; (ω, p)) used in the proof of Lemma 9.1.
Let ωA ∈ ZA and pA ∈ RA be restrictions of ω and p on A, respectively. The
following propositions state the relation between two kinds of valuation func-
tions, ui and uAi (· ; (ω, p)). Note that U(·, · ;uAi (· ; (ω, p))) denotes the utility
function associated with uAi (· ; (ω, p)), that is,

U(τ, q ;uAi (· ; (ω, p))) = uAi (τ ; (ω, p)) +
∑

t∈Ωi→∩A

τt · qt −
∑

t∈Ω→i∩A

τt · qt. (21)
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Proposition 9.1 For τ ∈ ZA and q ∈ RA, it holds that

U(τ, q ;uAi (· ; (ω, p)))
= max

{
U(ω′, q′ ;ui) : ω′

t ≤ ωt (t ∈ Ω \A), ω′
t = τt (t ∈ A), ω ∈ ZΩ

}
, (22)

where q′ ∈ RΩ is the vector such that q′t = qt (∀t ∈ A) and q′t = pt (∀t ∈ Ω\A).
Moreover, the following statements hold.

(i) Suppose that (z, p′) is a blocking set of (ω, p) in the economy (Ω, {ui}i∈I)
and define A = supp+(z). Then, for i ∈ ag(A) and τ ≤ ωA + zA with
τ �= ωA + zA, it holds that

U(τ, (p+ p′)A ;uAi (· ; (ω, p))) < U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))).

(ii) If (ω, p) is individually rational in (Ω, {ui}i∈I), then for all A ⊆ Ω we
have

U(ωA, pA ;uAi (· ; (ω, p))) = U(ω, p ;ui), (23)∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

ui(ω). (24)

(iii) If Ωi ∩ A = ∅, then U(·, · ;uAi (· ; (ω, p))) is a constant function. That is,
U(τ, q ;uAi (· ; (ω, p))) does not depend on τ and q.
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Proof The equation (22) follows immediately from the definitions of U and
uAi (· ; (ω, p)). Indeed, we have

U(τ, q ;uAi (· ; (ω, p)))
= uAi (τ ; (ω, p)) +

∑
t∈Ωi→∩A

τt · qt −
∑

t∈Ω→i∩A

τt · qt

= max

{
ui(ω

′′) +
∑

t∈Ωi→\A
ω′′
t · pt −

∑
t∈Ω→i\A

ω′′
t · pt

: ω′′
t ≤ ωt (t ∈ Ω \A), ω′′

t = τt (t ∈ A), ω′′ ∈ ZΩ

}

+
∑

t∈Ωi→∩A

τt · pt −
∑

t∈Ω→i∩A

τt · pt

= max

{
ui(ω

′′) +
∑

t∈Ωi→\A
ω′′
t · pt −

∑
t∈Ω→i\A

ω′′
t · pt

+
∑

t∈Ωi→∩A

τt · qt −
∑

t∈Ω→i∩A

τt · qt

: ω′′
t ≤ ωt (t ∈ Ω \A), ω′′

t = τt (t ∈ A), ω′′ ∈ ZΩ

}

= max
{
U(ω′, q′ ;ui) : ω′

t ≤ ωt (t ∈ Ω \A),

ω′
t = τt (t ∈ A), ω′ ∈ ZΩ

}
.

The claim (i) follows from the fact that ω′
t = (ω+ z)t (∀t ∈ supp+(z)∩Ωi)

for all ω′ ∈ C(ω + z, p+ p′ ;ui) and the equation (22).
We next show the claim (ii). Suppose that (ω, p) is individually rational in

(Ω, {ui}i∈I), that is,

ω ∈ C(ω, p ;ui) = argmax{U(ω′, p ;ui) : ω′ ≤ ω, ω′ ∈ ZΩ} (∀i ∈ I).

Since

ω ∈ {ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \A), ω′

t = ωt (t ∈ A)} ⊆ {ω′ ∈ ZΩ : ω′ ≤ ω},
we have

ω ∈ argmax{U(ω′, p ;ui) : ω′
t ≤ ωt (t ∈ Ω \A),

ω′
t = ωt (t ∈ A), ω ∈ ZΩ} (∀i ∈ I).

Therefore

U(ωA, pA ;uAi (· ; (ω, p))) = max
{
U(ω′, p ;ui) : ω′

t ≤ ωt (t ∈ Ω \A),

ω′
t = ωt (t ∈ A), ω ∈ ZΩ

}
= U(ω, p ;ui).
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Summing these equations over all i ∈ I, we obtain from Proposition 6.4 that∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

U(ωA, pA ;uAi (· ; (ω, p)))

=
∑
i∈I

U(ω, p ;ui)

=
∑
i∈I

ui(ω).

We finally consider the case where Ωi ∩A = ∅. By (21), it holds that

U(τ, q ;uAi (· ; (ω, p))) = uAi (τ ; (ω, p)) (∀q ∈ RA).

By the definition of uAi (· ; (ω, p)) and the fact that the value of ui depends only
on trades in Ωi, the claim (iii) holds. ��
Proposition 9.2 Let A and A′ be subsets of Ω with A ⊇ A′. Then for all
τ ∈ ZΩ with τt ≤ ωt (∀t ∈ Ω \ A′) and q ∈ RΩ with qt = pt (∀t ∈ Ω \ A′), it
holds that

U(τ, q ;ui) ≤ U(τA, qA ;uAi (· ; (ω, p))) ≤ U(τA
′
, qA

′
;uA

′
i (· ; (ω, p))), (25)∑

i∈I

ui(τ) ≤
∑
i∈I

uAi (τ
A ; (ω, p)) ≤

∑
i∈I

uA
′

i (τA
′
; (ω, p)). (26)

Proof The equation (25) follows from the equation (22) in Proposition 9.1 and

τ ∈ {ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \A), ω′

t = τt (t ∈ A)}
⊆ {ω′ ∈ ZΩ : ω′

t ≤ ωt (t ∈ Ω \A′), ω′
t = τt (t ∈ A′)}

for all A ⊇ A′. The equation (26) follows from (25) and Proposition 6.4. ��
The next statement shows a useful inequality for the value

∑
i∈I u

A
i (· ; (ω, p))

under the individual rationality.

Lemma 9.4 Suppose that (ω, p) is individually rational in (Ω, {ui}i∈I). For
τ ≤ ωA, we have ∑

i∈I

uAi (τ ; (ω, p)) ≤
∑
i∈I

uAi (ω
A ; (ω, p)).

Proof By Proposition 6.4 and the equation (22) in Proposition 9.1, we have∑
i∈I

uAi (τ ; (ω, p)) =
∑
i∈I

U(τ, pA ;uAi (· ; (ω, p)))

=
∑
i∈I

max{U(ω′, p ;ui) : ω′
t ≤ ωt (t ∈ Ω \A),

ω′
t = τt (t ∈ A), ω′ ∈ ZΩ}

≤
∑
i∈I

max
{
U(ω′, p ;ui) : ω′ ≤ ω, ω′ ∈ ZΩ

}
,
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where the last inequality follows from

{ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \A), ω′

t = τt (t ∈ A)} ⊆ {ω′ ∈ ZΩ : ω′ ≤ ω}.
By the individual rationality, Proposition 6.4, and (26) in Proposition 9.2, we
have ∑

i∈I

max
{
U(ω′, p ;ui) : ω′ ≤ ω, ω ∈ ZΩ

}
=

∑
i∈I

U(ω, p ;ui)

=
∑
i∈I

ui(ω)

≤
∑
i∈I

uAi (ω
A ; (ω, p)).

Hence, we have ∑
i∈I

uAi (τ ; (ω, p)) ≤
∑
i∈I

uAi (ω
A ; (ω, p)).

��

9.4.3 Proof of Lemma 9.1

We now prove Lemma 9.1. First, we show the “if” part of Lemma 9.1.

Proposition 9.3 If (ω, p) has a blocking set, there exists A ⊆ Ω such that
ωA is not efficient on {uAi (· ; (ω, p))}i∈I .

Proof Let (z, p′) be a blocking set of (ω, p). We denote A = supp+(z). By the
claim (i) in Proposition 9.1, we have

U(ωA, (p+ p′)A ;uAi (· ; (ω, p))) < U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))) (27)

for all i ∈ ag(A). Since Ωi ∩A = ∅ for each i ∈ I \ ag(A), by the claim (iii) in
Proposition 9.1, we have

U(ωA, (p+ p′)A ;uAi (· ; (ω, p))) = U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))) (28)

for all i ∈ I \ ag(A). By (27), (28), and Proposition 6.4, we obtain∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

U(ωA, (p+ p′)A ;uAi (· ; (ω, p)))

<
∑
i∈I

U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p)))

=
∑
i∈I

uAi (ω
A + zA ; (ω, p)).

Hence, ωA is not efficient on {uAi (· ; (ω, p))}i∈I . ��
We then prove the “only if” part of Lemma 9.1.



Multi-unit trading networks with discrete concavity 29

Proposition 9.4 Suppose that every ui is twisted M�-concave and (ω, p) is
individually rational in (Ω, {ui}i∈I). If ω

A is not efficient on {uAi (· ; (ω, p))}i∈I

for some A ⊆ Ω, there exists a blocking set (z, p′) of (ω, p) with z ∈ {0, 1}Ω.

Proof For A ⊆ Ω, we define

μA
i (τ) ≡ uAi [0,ωA+1](τ ; (ω, p)) =

{
uAi (τ ; (ω, p)) if τ ∈ [0, ωA + 1],

−∞ otherwise.

We consider the economy (A, {μA
i }i∈I). By Proposition 5.1, μA

i is (Ωi→ ∩A)-
twisted M�-concave. Therefore, by Lemma 9.3 there exist U,W ⊆ ΩA such
that U ∩W = ∅ and∑

i∈I

μA
i (ω

A) =
∑
i∈I

uAi (ω
A ; (ω, p))

<
∑
i∈I

uAi (ω
A + χU − χW ; (ω, p)) =

∑
i∈I

μA
i (ω

A + χU − χW ).

This implies that ωA is not efficient on {μA
i }i∈I . Let A

∗ be a minimal subset
of Ω such that ωA∗

is not efficient on {μA∗
i }i∈I . Note that A∗ �= ∅. Since μA∗

i

is (Ωi→ ∩A∗)-twisted M�-concave, by Theorem 6.1, there exists a competitive
equilibrium (τ∗, p∗) in the economy (A∗, {μA∗

i }i∈I).
We now describe the outline of the rest of the proof. We first show that

τ∗ is uniquely given by τ∗ = ωA∗
+ 1. Then we introduce a new function ūi,

which is a perturbation of μA∗
i , and show that there exists q ∈ RA∗

such that
(τ∗, q) is a competitive equilibrium in (A∗, {ūi}i∈I). Finally, we construct a
blocking set of (ω, p) by using τ∗ and q.

We now show that τ∗ = ωA∗
+ 1. By Theorem 7.1, τ∗ is efficient on

{μA∗
i }i∈I . Since ω

A∗
is not efficient on {μA∗

i }i∈I by assumption, it holds that∑
i∈I

μA∗
i (ωA∗

) <
∑
i∈I

μA∗
i (τ∗). (29)

Let A′ = {t ∈ A∗ : τ∗t = ωt + 1}. Note that A′ �= ∅ by Lemma 9.4. Since
τ∗t ≤ ωt for all t ∈ A∗ \A′, by Proposition 9.2, we have∑

i∈I

μA∗
i (τ∗) ≤

∑
i∈I

μA′
i (τ∗A

′
). (30)

Furthermore, by the equation (24) in Proposition 9.1, we have∑
i∈I

μA∗
i (ωA∗

) =
∑
i∈I

ui(ω) =
∑
i∈I

μA′
i (ωA′

). (31)

From (29), (30), and (31), it follows that∑
i∈I

μA′
i (ωA′

) <
∑
i∈I

μA′
i (τ∗A

′
).
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That is, ωA′
is not efficient on {μA′

i }i∈I . Due to the minimality of A∗, we have
A′ = A∗. Thus τ∗ = ωA∗

+ 1.
We then define the new valuation function ūi as

ūi(τ) = μA∗
i (τ)− δ

∑
t∈A∗∩Ωi

τt (i ∈ I),

where δ is a sufficiently small positive number. Since τ∗ is the unique compet-
itive equilibrium trade vector in (A∗, {μA∗

i }i∈I), τ
∗ is also the unique efficient

trade vector by Theorem 7.2. We assume that δ is sufficiently small so that τ∗

is the unique efficient trade vector in (A∗, {ūi}i∈I). By Proposition 5.1, each
ūi is (Ωi→∩A∗)-twisted M�-concave. Therefore, by Theorem 6.1 there exists a
competitive equilibrium (ω̄∗, q) in the economy (A∗, {ūi}i∈I). By Theorem 7.1,
we have ω̄∗ = τ∗.

Finally, we claim that (z, p′) given by

zt =

{
1 if t ∈ A∗,
0 otherwise,

p′t =

{
qt − pt if t ∈ A∗,
0 otherwise,

is a blocking set of (ω, p). It suffices to show that for all j ∈ ag(A∗) and
φ ∈ C(ω + z, p+ p′ ;uj), we have φt = ωt + 1 = τ∗t for all t ∈ A∗ ∩Ωj .

Since φt ≤ ωt and p′t = 0 hold for all t ∈ Ω \ A∗, by Proposition 9.2 we
have

U(φ, p+ p′ ;uj) ≤ U(φA
∗
, (p+ p′)A

∗
;μA∗

j ) = U(φA
∗
, q ;μA∗

j ). (32)

Moreover, by the equation (22) in Proposition 9.1, there exists ψ ∈ ZΩ such
that ψ ≤ ω + z and

U(τ∗, q ;μA∗
j ) = U(ψ, p+ p′ ;uj). (33)

Since (τ∗, q) is a competitive equilibrium in (A∗, {ūi}i∈I), we have

U(τ∗, q ; ūj) ≥ U(φA
∗
, q ; ūj).

This can be rewritten as

U(τ∗, q ;μA∗
j )− δ

∑
t∈A∗∩Ωj

τ∗t ≥ U(φA
∗
, q ;μA∗

j )− δ
∑

t∈A∗∩Ωj

φt,

which, together with (32) and (33), implies that

δ
∑

t∈A∗∩Ωj

(φt − τ∗t ) ≥ U(φ, p+ p′ ;uj)− U(ψ, p+ p′ ;uj) ≥ 0,

where the last inequality follows from φ ∈ C(ω + z, p + p′ ;uj). Since φA
∗ ≤

ωA∗
+zA

∗
= τ∗, we have φt = τ∗t for all t ∈ A∗∩Ωj . Hence, (z, p

′) is a blocking
set of (ω, p) and we complete the proof of Proposition 9.4. ��
Lemma 9.1 follows from Propositions 9.3 and 9.4.
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9.5 Proof of Proposition 8.1

We give a proof of the claim (i) of Proposition 8.1, from which the claim (ii) of
Proposition 8.1 follows immediately. Let (z, p′) be a blocking set of (ω, p) and
define J = ag(supp+(z)). Then for i ∈ J and ω′ ∈ C(ω+z, p+p′ ;ui), we have
ω′
t = (ω+z)t for all t ∈ supp+(z)∩Ωi. Thus, U(ω′, p+p′ ;ui) > U(ω, p+p′ ;ui)

holds. It follows from the definition of a utility function that

U(ω′, p+ p′ ;ui)− U(ω, p+ p′ ;ui)

= ui(ω
′) +

∑
t∈Ωi→

ω′
t · (pt + p′t)−

∑
t∈Ω→i

ω′
t · (pt + p′t)

−
(
ui(ω) +

∑
t∈Ωi→

ωt · (pt + p′t)−
∑

t∈Ω→i

ωt · (pt + p′t)

)

= ui(ω
′)− ui(ω) +

∑
t∈Ωi→

(ω′
t − ωt) · pt +

∑
t∈Ωi→

zt · p′t

−
∑

t∈Ω→i

(ω′
t − ωt) · pt −

∑
t∈Ω→i

zt · p′t (34)

for all i ∈ J . On the other hand, we obtain

Δ(z, p+ p′;ui, (ω, p)) ≥ ui(ω
′) +

∑
t∈Ωi→

ω′
t · pt −

∑
t∈Ω→i

ω′
t · pt

+
∑

t∈Ωi→

zt · p′t −
∑

t∈Ω→i

zt · p′t

−
(
ui(ω) +

∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt
)

= ui(ω
′)− ui(ω) +

∑
t∈Ωi→

(ω′
t − ωt) · pt +

∑
t∈Ωi→

zt · p′t

−
∑

t∈Ω→i

(ω′
t − ωt) · pt −

∑
t∈Ω→i

zt · p′t (35)

for all i ∈ J . By (34) and (35), we have

Δ(z, p+ p′;ui, (ω, p)) ≥ U(ω′, p+ p′ ;ui)− U(ω, p+ p′ ;ui) > 0 (∀i ∈ J).

This means (z, p+ p′) is a strong group blocking set of (ω, p).

9.6 Proof of Theorem 8.1

We give a proof of the claim (i) of Theorem 8.1, from which the claim (ii)
of Theorem 8.1 follows immediately. We assume that (ω, p) is individually
rational.
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Let (z, p′) be a strong group blocking set of (ω, p) and define A = supp+(z)
and J = ag(A). Then by the definition of Δ(z, p′;ui, (ω, p)), the equation (22),
and the claim (ii) in Proposition 9.1, we have

Δ(z, p′;ui, (ω, p)) = U(ωA + zA, pA ;uAi (· ; (ω, p))) +
∑

t∈Ωi→

zt · (p′t − pt)

−
∑

t∈Ω→i

zt · (p′t − pt)− U(ω, p ;ui)

= U(ωA + zA, pA ;uAi (· ; (ω, p)))− U(ωA, pA ;uAi (· ; (ω, p)))
+

∑
t∈Ωi→

zt · (p′t − pt)−
∑

t∈Ω→i

zt · (p′t − pt).

Since Δ(z, p′;ui, (ω, p)) > 0, we obtain

U(ωA + zA, pA ;uAi (· ; (ω, p)))
> U(ωA, pA ;uAi (· ; (ω, p))) +

∑
t∈Ω→i

zt · (p′t − pt)−
∑

t∈Ωi→

zt · (p′t − pt).

(36)

Moreover, it holds that

∑
i∈J

( ∑
t∈Ω→i

zt · (p′t − pt)−
∑

t∈Ωi→

zt · (p′t − pt)

)
= 0. (37)

Hence, by (36) and (37) we have∑
i∈J

U(ωA + zA, pA ;uAi (· ; (ω, p))) >
∑
i∈J

U(ωA, pA ;uAi (· ; (ω, p))). (38)

On the other hand, Ωi ∩A = ∅ holds for all i ∈ I \ J . Thus, by the claim (iii)
in Proposition 9.1 we have

U(ωA + zA, pA ;uAi (· ; (ω, p))) = U(ωA, pA ;uAi (· ; (ω, p))) (∀i ∈ I \ J). (39)

It follows from (38) and (39) that∑
i∈I

uAi (ω
A + zA ; (ω, p)) =

∑
i∈I

U(ωA + zA, pA ;uAi (· ; (ω, p)))

>
∑
i∈I

U(ωA, pA ;uAi (· ; (ω, p)))

=
∑
i∈I

uAi (ω
A ; (ω, p)).

This inequality implies that ωA is not efficient on {uAi (· ; (ω, p))}i∈I . Since each
ui is twisted M�-concave, by Lemma 9.1, (ω, p) has a blocking set.
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9.7 Proof of Theorem 8.2

We give a proof of the claim (i) of Theorem 8.2, from which the claim (ii)
of Theorem 8.2 follows immediately. We assume that (ω, p) is individually
rational.

By Lemma 9.1, there exists a blocking set (z, p′) of (ω, p) with z ∈ {0, 1}Ω .
In addition, we assume that supp+(z) is minimal among all such blocking sets
of (ω, p). We will show that z is a chain. Let A = supp+(z). By regarding each
trade t ∈ A as a directed edge from seller s(t) to buyer b(t), (ag(A), A) forms a
directed graph with vertex set ag(A) and edge set A. We note that the graph
(ag(A), A) is connected by the minimality of A.

We first consider the case where

|Ω→i ∩A| = |Ωi→ ∩A| (∀i ∈ ag(A)).

In this case, (ag(A), A) is an Eulerian graph, that is, z is a chain.
In the sequel, we deal only with the case where there exists k ∈ ag(A) with

|Ω→k ∩A| < |Ωk→ ∩A|, (40)

because we can similarly show that z is a chain when |Ω→k ∩A| > |Ωk→ ∩A|
for some k ∈ ag(A). We define Ui : Z

A → R ∪ {−∞} by

Ui(τ) = U(τ, (p+ p′)A ;uAi (· ; (ω, p))) (i ∈ I).

By Proposition 5.1, Ui is (Ωi→ ∩ A)-twisted M�-concave. We then consider
the following algorithm, FIND CHAIN, which always returns a chain z∗. By
showing z = z∗, we prove that z is a chain. Validity of the algorithm is shown
Propositions 9.6 and 9.8.

FIND CHAIN

Step 1. Take k ∈ ag(A) with (40) and t ∈ Ωk→ ∩A with Uk(ω
A) < Uk(ω

A +
χt). Set j := b(t) and ẑ := χt (ẑ ∈ {0, 1}A).

Step 2. While Uj(ω
A) ≥ Uj(ω

A + ẑ) do {
Take t ∈ supp+(zA − ẑ) ∩Ωj→ so that Uj(ω

A) < Uj(ω
A + ẑ + χt)

holds, and set j := b(t) and ẑ := ẑ + χt.
}.

Step 3. Set z∗t = ẑt for each t ∈ A and z∗t = 0 for each t �∈ A, and return z∗.

FIND CHAIN terminates in a finite number of iterations because supp+(zA−
ẑ) is strictly reduced in each update of ẑ.

We first show that Step 1 works, where the following property of M�-
concave functions is used.

Proposition 9.5 ([17, Theorem 4.2]) Let u : ZN → R ∪ {−∞} be an
M�-concave function. For every ω, τ ∈ domu with

∑
t∈N ωt <

∑
t∈N τt, there

exists s ∈ supp−(ω − τ) such that

u(ω) + u(τ) ≤ u(ω + χs) + u(τ − χs).
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By Proposition 9.5, the following statement holds.

Proposition 9.6 For k ∈ ag(A) satisfying (40), there exists t ∈ Ωk→ ∩ A
such that

Uk(ω
A) < Uk(ω

A + χt).

Proof Since Uk is (Ωk→ ∩ A)-twisted M�-concave, there exists an M�-concave
function Ûk such that

Uk(τ) = Ûk(twist(τ ;Ωk→ ∩A)) (∀τ ∈ ZA).

By (40), we have∑
s∈A

(twist(ωA + zA ;Ωk→ ∩A))s <
∑
s∈A

(twist(ωA ;Ωk→ ∩A))s.

Moreover, it holds that ωA, ωA + zA ∈ domUk and

supp−(twist(ωA + zA ;Ωk→ ∩A)− twist(ωA ;Ωk→ ∩A)) = Ωk→ ∩A.
Therefore, by Proposition 9.5, there exists t ∈ Ωk→ ∩A such that

Ûk(twist(ω
A + zA ;Ωk→ ∩A)) + Ûk(twist(ω

A ;Ωk→ ∩A))
≤ Ûk(twist(ω

A + zA ;Ωk→ ∩A) + χt) + Ûk(twist(ω
A ;Ωk→ ∩A)− χt).

This implies that

Uk(ω
A + zA) + Uk(ω

A) ≤ Uk(ω
A + zA − χt) + Uk(ω

A + χt). (41)

By the claim (i) in Proposition 9.1, it holds that

Uk(ω
A + zA) > Uk(ω

A + zA − χt). (42)

Therefore, by (41) and (42), we have

Uk(ω
A) < Uk(ω

A + χt).

��
By Proposition 9.6, Step 1 works.

We next show that Step 2 works. The following proposition is a direct
consequence of the definition of twisted M�-concavity.

Proposition 9.7 Let τ ∈ ZA be an integer vector with ωA ≤ τ ≤ ωA + zA.
Then for any t ∈ supp+(ωA + zA − τ) ∩ Ω→i there exists s ∈ (supp+(ωA +
zA − τ) ∩Ωi→) ∪ {0} such that

Ui(ω
A + zA) + Ui(τ) ≤ Ui(ω

A + zA − χs − χt) + Ui(τ + χs + χt). (43)
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Proof Since Ui is (Ωi→ ∩ A)-twisted M�-concave, there exists an M�-concave
function Ûi such that

Ui(τ) = Ûi(twist(τ ;Ωi→ ∩A)) (∀τ ∈ ZA).

The equation (43) follows from the definition of M�-concavity and

supp+(twist(ωA + zA ;Ωi→ ∩A)− twist(τ ;Ωi→ ∩A))
= supp+(ωA + zA − τ) ∩Ω→i,

supp−(twist(ωA + zA ;Ωi→ ∩A)− twist(τ ;Ωi→ ∩A))
= supp+(ωA + zA − τ) ∩Ωi→.

��
The following proposition guarantees that Step 2 works.

Proposition 9.8 FIND CHAIN preserves the following properties:

(a) at the beginning of each while-loop of Step 2, if Uj(ω
A) ≥ Uj(ω

A + ẑ)
there exists t ∈ supp+(zA−ẑ)∩Ωj→ such that Uj(ω

A) < Uj(ω
A+ẑ+χt);

(b) at the end of Step 1 and each while-loop,

Ui(ω
A) = Ui(ω

A + ẑ) (∀i ∈ I \ ag(supp+(ẑ))), (44)

Ui(ω
A) < Ui(ω

A + ẑ) (∀i ∈ ag(supp+(ẑ)) \ {j}). (45)

Proof Since Ωi ∩ supp+(ẑ) = ∅ for all i ∈ I \ ag(supp+(ẑ)), (44) always holds
by the claim (iii) in Proposition 9.1. At the end of Step 1, (45) holds because of
the definition of k and ag(supp+(ẑ)) \ {j} = {k}. If property (a) is preserved,
we obtain (45). Therefore it suffices to show property (a).

We assume that Uj(ω
A) ≥ Uj(ω

A+ẑ) and (45) holds before the last update
of ẑ and j. Let t′ ∈ Ω→j be the trade which is added to ẑ in the last update
of ẑ; such t′ always exists. From the above assumption, it follows that

Uj(ω
A) ≤ Uj(ω

A + ẑ − χt′). (46)

By Proposition 9.7, there exists t ∈ (supp+(z − ẑ) ∩Ωj→) ∪ {0} such that

Uj(ω
A + zA) + Uj(ω

A + ẑ − χt′)

≤ Uj(ω
A + zA − χt′ − χt) + Uj(ω

A + ẑ + χt). (47)

On the other hand, by the claim (i) in Proposition 9.1, we have

Uj(ω
A + zA) > Uj(ω

A + zA − χt′ − χt). (48)

By (46), (47), and (48), we have

Uj(ω
A) ≤ Uj(ω

A + ẑ − χt′) < Uj(ω
A + ẑ + χt).

Since Uj(ω
A) ≥ Uj(ω

A + ẑ), t �= 0 must hold. ��
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We now prove z∗ = z. At Step 3, it holds by Proposition 9.8 that

Ui(ω
A) = Ui((ω + z∗)A) (∀i ∈ I \ ag(supp+(z∗))), (49)

Ui(ω
A) < Ui((ω + z∗)A) (∀i ∈ ag(supp+(z∗))). (50)

We define A∗ = supp+(z∗). Then we have∑
i∈I

uA
∗

i (ωA∗
; (ω, p)) =

∑
i∈I

uAi (ω
A ; (ω, p)) [by (ii) in Proposition 9.1]

=
∑
i∈I

Ui(ω
A) [by Proposition 6.4]

<
∑
i∈I

Ui((ω + z∗)A) [by (49) and (50)]

=
∑
i∈I

uAi ((ω + z∗)A ; (ω, p)) [by Proposition 6.4]

≤
∑
i∈I

uA
∗

i ((ω + z∗)A
∗
; (ω, p)). [by Proposition 9.2]

Therefore ωA∗
is not efficient on {uA∗

i (· ; (ω, p))}i∈I . By Lemma 9.1, there
exists a blocking set (z̃, p̃) of (ω, p) such that z̃ ∈ {0, 1}Ω and supp+(z̃) ⊆ A∗.
By the minimality of A, we have supp+(z̃) = A∗ = A. Hence, z∗ = z.
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