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We consider the maximization of a gross substitutes utility function under budget constraints. This problem
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1. Introduction. We consider the problem of maximizing a nonlinear utility function under a con-
stant number of budget (or knapsack) constraints, which is formulated as

Maximize f(X) subject to X ∈ 2N , ci(X) ≤ Bi (i = 1, 2, . . . , k), (1)

where N is a set of n items, f : 2N → R is a nonlinear utility function1 of a consumer (or buyer) with
f(∅) = 0, k is a positive integer, and ci ∈ RN+ , Bi ∈ R+ (i = 1, 2, . . . , k). For a vector a ∈ RN and
a set X ⊆ N , we denote a(X) =

∑
v∈X a(v). The problem (1) is a natural generalization of budgeted

combinatorial optimization problems ([22, 24, 43], etc.), and naturally arises in applications such as
exchange economies with indivisible objects in mathematical economics ([20, 21], etc.) and combinatorial
auctions in (algorithmic) game theory ([5, 10, 25], etc.).

A function f : 2N → R is said to be submodular if it satisfies the following condition:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (∀X,Y ∈ 2N ).

The problem (1) with a submodular objective function f is extensively discussed in the literature of
combinatorial optimization, and constant-factor approximation algorithms have been proposed. Wolsey
[44] considered the problem (1) with a monotone submodular f and k = 1, and proposed the first
constant-factor approximation algorithm with the ratio 1 − e−β ' 0.35, where β satisfies eβ = 2 − β.
Later, Sviridenko [43] improved the approximation ratio to 1− 1/e, which is the best possible under the
assumption that P 6= NP [12]. For the case of a monotone submodular f and a general constant k, Kulik
et al. [22] proposed a (1− 1/e)-approximation algorithm by using the approach of Calinescu et al. [6] for
the submodular function maximization under a matroid constraint. For a non-monotone submodular f
and a general constant k, a (0.2 − ε)-approximation local-search algorithm was given by Lee et al. [24].
The approximation ratio is then improved in [9, 14, 23]; the best approximation ratio so far is 1/e − ε
recently shown by Feldman et al. [14].

1 Monotonicity of f is not assumed throughout this paper, although utility functions are often assumed to be monotone.
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Submodularity for set functions is known to be equivalent to the concept of decreasing marginal
utility in mathematical economics. In this paper, we focus on a more specific subclass of decreasing
marginal utilities, called gross substitutes utilities, and show that the problem (1) admits a polynomial-
time approximation scheme (PTAS) if f is a gross substitutes utility.

Gross substitutes utilities. A gross substitutes utility (GS utility, for short) function is defined as a
function f : 2N → R satisfying the following condition:

∀p, q ∈ RN with p ≤ q, ∀X ∈ arg max
U⊆N
{f(U)− p(U)},

∃Y ∈ arg max
U⊆N
{f(U)− q(U)} such that {v ∈ X | p(v)=q(v)} ⊆ Y ,

where p and q represent price vectors. This condition means that a consumer still wants to get items that
do not change in price after the prices on other items increase. The concept of GS utility is introduced
in Kelso and Crawford [21], where the existence of a Walrasian (or competitive) equilibrium is shown in
a fairly general two-sided matching model. Since then, this concept plays a central role in mathematical
economics and in auction theory, and is widely used in various models such as matching, housing, and
labor market (see, e.g., [1, 4, 5, 10, 17, 20, 25]). While GS utility is a sufficient condition for the existence
of a Walrasian equilibrium [21], it is also a necessary condition in some sense [20]. GS utility is also related
to desirable properties in the auction design (see [5, 10]); for example, an optimal allocation of items in
a combinatorial auction with GS utilities can be computed in polynomial time using a value oracle for
utility functions (see [3] and [25, Th. 9]; see also [32, Ch. 11] and [36] for a more general result2).

M\-concave functions. Various characterizations of gross substitutes utilities are given in the litera-
ture of mathematical economics [1, 17, 20]. Among them, Fujishige and Yang [17] revealed the relationship
between GS utilities and discrete concave functions called M\-concave functions, which is a function on
matroid independent sets. It is known that a family F ⊆ 2N of matroid independent sets satisfies the
following property [34]:

(B\-EXC) ∀X,Y ∈ F , ∀u ∈ X \ Y , at least one of (i) and (ii) holds:
(i) X − u ∈ F , Y + u ∈ F ,
(ii) ∃v ∈ Y \X: X − u+ v ∈ F , Y + u− v ∈ F ,

where X − u+ v is a short-hand notation for (X \ {u})∪ {v}. We consider a function f : F → R defined
on matroid independent sets F . A function f is said to be M\-concave [34] (read “M-natural-concave”)
if it satisfies the following:3

(M\-EXC) ∀X,Y ∈ F , ∀u ∈ X \ Y , at least one of (i) and (ii) holds:
(i) X − u ∈ F , Y + u ∈ F , and f(X) + f(Y ) ≤ f(X − u) + f(Y + u),
(ii) ∃v ∈ Y \X: X−u+v ∈ F , Y +u−v ∈ F , and f(X)+f(Y ) ≤ f(X−u+v)+f(Y +u−v).

The concept of M\-concave function is introduced by Murota and Shioura [34] (independently of GS
utilities) as a class of discrete concave functions. It is an extension of the concept of M-concave function
introduced by Murota [29, 31]. In turn, M-concave functions generalize valuated matroids introduced by
Dress and Wenzel [11]. The concepts of M\-concavity/M-concavity play primary roles in the theory of
discrete convex analysis [32], which provides a framework for tractable nonlinear discrete optimization
problems.

It is shown by Fujishige and Yang [17] that GS utilities are essentially equivalent to M\-concave func-
tions; the only difference is that M\-concave functions are defined more generally on matroid independent
sets.

Theorem 1.1 A function f : 2N → R defined on 2N is a gross substitutes utility if and only if f is an
M\-concave function.

2 In the optimal allocation problem discussed in [3, 25], we aim at optimally allocating items to consumers, where each

item is available by only one unit (see Example 2.5 for details). In contrast, in the problem discussed in [36] and [32,

Ch. 11] we consider producers of items in addition to consumers, and allow to have multiple units of items. It is shown in

[36] and [32, Ch. 11] that there exists an optimal allocation (equilibrium, more precisely) and such an allocation can be

found efficiently under the assumptions such as the gross substitute condition of consumers’ utility functions.
3 The concept of M\-concavity is originally introduced for a function defined on (the set of integral vectors in) an integral

generalized polymatroid (see [34]). In this paper a restricted class of M\-concave functions is considered; see Section 2.
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This result initiated a strong interaction between discrete convex analysis and mathematical economics;
the results obtained in discrete convex analysis are used in mathematical economics ([4, 25], etc.), while
mathematical economics provides interesting applications in discrete convex analysis ([36, 37], etc.).

In this paper, we consider the k-budgeted M\-concave maximization problem:

(kBM\M) Maximize f(X) subject to X ∈ F , ci(X) ≤ Bi (i = 1, 2, . . . , k),

where f : F → R is an M\-concave function with f(∅) = 0 defined on matroid independent sets F , k
is a positive integer, and ci ∈ RN+ , Bi ∈ R+ (i = 1, 2, . . . , k). Note that the problem (kBM\M) has an
additional constraint X ∈ F , and if F = 2N , then the problem (kBM\M) coincides with (1). We assume
that the objective function f is given by a value oracle which, given a subset X ∈ 2N , checks if X ∈ F
or not, and returns the value f(X) if X ∈ F . The class of M\-concave functions includes, as its subclass,
linear functions on matroid independent sets. Hence, the problem (kBM\M) is a nonlinear generalization
of the max-weight matroid independent set problem with budget constraints, for which Grandoni and
Zenklusen [18] have proposed a simple deterministic PTAS using the polyhedral structure of matroids.
Note that for a more general problem called the max-weight matroid intersection problem with budget
constraints, a randomized PTAS is proposed by Chekuri et al. [8].

Remark 1.1 As mentioned above, the problem (1) with a GS utility function is a special case of the
problem (kBM\M). On the other hand, the problem (kBM\M) can be reduced to the problem (1) with
an appropriately defined GS utility function; that is, these two problems are equivalent. Indeed, given
an instance of (kBM\M) with an M\-concave function f : F → R, the function f̃ : 2N → R given by

f̃(X) = max{f(Y ) | Y ∈ F , Y ⊆ X} (X ∈ 2N ) (2)

is a GS utility function, and every minimal optimal solution of the problem (1) with the objective function
f̃ is an optimal solution of (kBM\M). See Appendix A for more details. 2

Our main result. In this paper, we propose a PTAS for (kBM\M) by extending the approach of
Grandoni and Zenklusen [18]. In the following, we assume that numbers such as ci(j), Bi, and f(X) in
the problem (kBM\M) are all rational numbers. For a rational number r, we denote by 〈r〉 its encoding
length4. To describe the running time of our algorithms, we use two parameters Φ and Ψ representing
the input size of the problem (kBM\M):

Φ = max
X∈F
〈f(X)〉, Ψ = max

[
max

1≤i≤k,j∈N
〈ci(j)〉, max

1≤i≤k
〈Bi〉

]
. (3)

To obtain a PTAS for (kBM\M), we show the following property. We may assume that the following
condition holds (see Proposition 3.1 for the validity of this assumption):

{v} is a feasible solution to (kBM\M) such that f({v}) > 0 (∀v ∈ N). (4)

We denote by opt the optimal value of (kBM\M).

Theorem 1.2
(i) Suppose that f is an integer-valued function. Then, a feasible solution X̃ ∈ 2N to (kBM\M) satisfying

f(X̃) ≥ opt− 2kmax
v∈N

f({v})

can be computed deterministically in time polynomial in n, k, Φ, and Ψ.
(ii) For a general f and a real number ε with 0 < ε < 1, a feasible solution X̃ ∈ 2N to (kBM\M) satisfying

f(X̃) ≥ (1− ε)opt− 2kmax
v∈N

f({v})

can be computed deterministically in time polynomial in n, k, Φ, Ψ, and log(1/ε).

4 For an integer h, its encoding length 〈h〉 is given by 〈h〉 = 1 + dlog2(|h| + 1)e; for a rational number r = p/q with

p, q ∈ Z, its encoding length 〈r〉 is given by 〈r〉 = 〈p〉 + 〈q〉 (see, e.g., [19, Ch. 1] for a precise definition).
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Proofs of the claims (i) and (ii) are given in Sections 3.2 and 3.3, respectively. Although the bound in
the statement (ii) is slightly weaker than the bound in (i), it is sufficient to obtain a PTAS for (kBM\M).

The algorithm used in Theorem 1.2 can be converted into a PTAS by using a standard technique called
partial enumeration, which reduces the original problem to a family of problems with “small” elements,
which is done by guessing a constant number of “large” elements contained in an optimal solution (see
Appendix B; see also [2, 18, 22, 39]). Hence, we obtain the following:

Theorem 1.3 For every fixed positive integer k and every fixed real number ε with 0 < ε < 1, a (1− ε)-
approximate solution of (kBM\M) can be computed deterministically in time polynomial in n, Φ, and
Ψ.

To prove Theorem 1.2, we use the following algorithm, which is a natural extension of the one in [18]:

Step 1: Construct a continuous relaxation problem of (kBM\M).

Step 2: Compute a vertex optimal solution x̂ ∈ [0, 1]N to the continuous relaxation problem.

Step 3: Round down the non-integral components of the optimal solution x̂.

In [18], linear programming (LP) relaxation is used as a continuous relaxation of the budgeted max-
weight matroid independent set problem, where it is shown that a vertex optimal solution (i.e., an optimal
solution which is a vertex of the feasible region) of the resulting LP is nearly integral. Since the LP
relaxation problem can be solved in polynomial time by the ellipsoid method, rounding down a vertex
optimal solution yields a near-optimal solution of the original problem.

These techniques in [18], however, cannot be applied directly since the objective function in (kBM\M) is
nonlinear while it is linear in [18]. Indeed, our continuous relaxation problem is a nonlinear programming
problem formulated as

(CR) Maximize f(x) subject to x ∈ F , c>i x ≤ Bi (i = 1, 2, . . . , k),

where F (⊆ [0, 1]N ) is the matroid polytope of the matroid (N,F) and f : F → R is the concave closure
of the function f (see Section 2 for definitions). Since the objective function of the continuous relaxation
problem (CR) is nonlinear, there may be no optimal solution which is a vertex of the feasible region.

To extend the approach in [18], we first modify the definition of vertex optimal solution appropriately.
With the new definition, we show that a vertex optimal solution of (CR) is nearly integral by using the
polyhedral structure of M\-concave functions.

We then show that if f is an M\-concave function, then the continuous relaxation problem can be
solved (almost) optimally in polynomial time by using the ellipsoid method of Grötschel et al. [19]. Note
that the function f in (CR) is given implicitly, and the evaluation of the function value is still a nontrivial
task. It is known that the evaluation of f is NP-hard for a monotone submodular function f [6].

To solve the problem (CR), we use the following new algorithmic property concerning the concave
closure of M\-concave functions, which is proven by making full use of conjugacy results in the theory of
discrete convex analysis. For x ∈ F , we call a vector p ∈ RN a subgradient of f at x ∈ F if it satisfies

f(y)− f(x) ≤ p>(y − x) (∀y ∈ F).

We denote by ∂f(x) the set of subgradients of f at x, i.e.,

∂f(x) = {p ∈ RN | f(y)− f(x) ≤ p>(y − x) (∀y ∈ F)}
=
{
p ∈ RN | f(x)− p>x = max{f(y)− p>y | y ∈ F}

}
. (5)

Theorem 1.4 Let x ∈ F .
(i) If f is an integer-valued function, then the exact value of f(x) and a subgradient of f at x ∈ F can
be computed in time polynomial in n and Φ.
(ii) For a general f and a real number δ > 0, a value η ∈ R and a vector p ∈ RN satisfying

f(x) ≤ η ≤ f(x) + δ, f(y)− f(x) ≤ p>(y − x) + δ (∀y ∈ F)

can be computed in time polynomial in n, Φ, and log(1/δ).
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Proof of Theorem 1.4 is given in Section 3.1, where we devise polynomial-time “combinatorial” algo-
rithms for computing a function value and a subgradient of f̄ . Polynomiality results in Theorem 1.4 also
follow from the following known facts: by LP duality and ellipsoid method, the evaluation of the concave
closure f̄ is polynomially equivalent to implementing the “demand oracle” of f , i.e., solving the problem
max{f(Y )− p(Y ) | Y ∈ F} for a given p ∈ RN (see Remark 3.1 for more details), and the demand oracle
for M\-concave functions can be implemented to run in polynomial time (see Theorem 2.1). We show
in Section 3.1 that Theorem 1.4 can be proven in a simpler way without using ellipsoid method, by the
reduction to the minimization of a certain discrete convex function.

Our second result. We also consider another type of budgeted optimization problem, which we call
the budgeted M\-concave intersection problem:

(1BM\I) Maximize f1(X) + f2(X) subject to X ∈ F1 ∩ F2, c(X) ≤ B,
where fj : Fj → R (j = 1, 2) are M\-concave functions with fj(∅) = 0 defined on matroid independent
sets Fj , c ∈ RN+ , and B ∈ R+. This is a nonlinear generalization of the budgeted max-weight matroid
intersection problem. Indeed, if each fj is a linear function on matroid independent sets Fj , then the
problem (1BM\I) is nothing but the budgeted max-weight matroid intersection problem, for which Berger
et al. [2] proposed a deterministic PTAS using Lagrangian relaxation and a novel patching operation.
For the budgeted max-weight matroid intersection problem with (a constant number of) multiple budget
constraints, a randomized PTAS is proposed by Chekuri et al. [8].

In this paper, we show that the approach of Berger et al. [2] can be extended to (1BM\I).

Theorem 1.5 For every fixed real number ε with 0 < ε < 1, a (1− ε)-approximate solution of (1BM\I)
can be computed deterministically in strongly-polynomial time (i.e., in time polynomial in n).

The following is the key property to prove Theorem 1.5, where opt denotes the optimal value of
(1BM\I). As in the problem (kBM\M), we may assume, without loss of generality, that

{v} is a feasible solution to (1BM\I) such that f1({v}) + f2({v}) > 0 (∀v ∈ N).

Theorem 1.6 A set X̃ ∈ F1 ∩ F2 satisfying

f1(X̃) + f2(X̃) ≥ opt− 2 ·max
v∈N
{f1({v}) + f2({v})}, c(X̃) ≤ B + max

v∈N
c(v)

can be computed in strongly-polynomial time.

Proof of this theorem is given in Section 4. This result, combined with the partial enumeration technique
(see Appendix B), implies Theorem 1.5.

To extend the approach in [2], we use techniques in Murota [30] which are developed for M\-concave
intersection problem without budget constraints. An important tool for our algorithm and its analysis is
a weighted auxiliary graph defined by local information around the current solution, while an unweighted
auxiliary graph is used in [2]. This makes it possible, in particular, to analyze how much amount the
value of the objective function changes after update of a solution.

Both of our PTASes for (kBM\M) and (1BM\I) are based on novel approaches in Grandoni and
Zenklusen [18] and in Berger et al. [2], respectively. The adaption of these approaches in the present
settings, however, are not trivial as they involve nonlinear discrete concave objective functions. The
main technical contribution of this paper is to show that those previous techniques for budgeted linear
maximization problems can be extended to budgeted nonlinear maximization problems by using some
results in the theory of discrete convex analysis.

Organization of this paper. In Section 2, we review fundamental concepts and known results in
discrete convex analysis, which will be used in the following discussion. A proof of Theorem 1.2 for the
problem (kBM\M) is given in Section 3, while Theorem 1.6 is proven in Section 4.

2. Preliminaries. In this section we review the discrete concavity concepts called M\-concavity and
L\-concavity; these concepts play primary role in the theory of discrete convex analysis. We also present
some fundamental results concerning these discrete concavity concepts, which will be used in the following
discussion.
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2.1 Definitions and notation. We denote by Z+ (resp., by R+) the set of nonnegative integers
(resp., nonnegative real numbers). Also, we denote 0 = (0, 0, . . . , 0) ∈ ZN and 1 = (1, 1, . . . , 1) ∈ ZN . For
x = (x(1), x(2), . . . , x(n)) ∈ RN and Y ∈ 2N , denote x(Y ) =

∑
j∈Y x(j). For X ⊆ N the characteristic

vector of X is denoted by χX ∈ {0, 1}N , i.e.,

χX(j) =

{
1 (if j ∈ X),
0 (otherwise).

In particular, we denote χj = χ{j} for each j ∈ N . For a nonempty set family F ⊆ 2N , we denote by

F ⊆ [0, 1]N the convex hull of vectors {χX | X ∈ F}.

For a function f : F → R defined on a nonempty set family F ⊆ 2N , the concave closure f : F → R
of f is given by

f(x) = max

{ ∑
Y ∈F

λY f(Y )

∣∣∣∣ ∑
Y ∈F

λY χY = x,
∑
Y ∈F

λY = 1, λY ≥ 0 (Y ∈ F)

}
(x ∈ F). (6)

By LP duality, the concave closure f is also given as follows:

f(x) = min
{
p>x+ α

∣∣ p ∈ RN , α ∈ R, p(Y ) + α ≥ f(Y ) (Y ∈ F)
}

(x ∈ F). (7)

Note that for every function f , the concave closure f is a polyhedral concave function satisfying f(χX) =
f(X) for all X ∈ F . Here, f : F → R is said to be polyhedral concave if the set {(x, α) | x ∈ F , α ∈
R, f̄(x) ≥ α} is a polyhedron.

2.2 Matroids and polymatroids. Let M = (N,F) be a matroid with the family of independent
sets F (⊆ 2N ). Recall that a pair (N,F) of a finite set N and a set family F is a matroid if and only if
the set family F is given as

F = {X ∈ 2N | |X ∩ Y | ≤ ρ(Y ) (Y ∈ 2N )}

by using a nondecreasing submodular function ρ : 2N → Z+ such that ρ(Y ) ≤ |Y | (Y ∈ 2N ) (see, e.g.,
[38, 41]); such a function ρ is called the rank function of M. We note that if we are given a family F
of matroid independent sets, then the function value ρ(X) can be computed easily in a greedy way in
strongly-polynomial time for every X ∈ 2N . The matroid polytope P (M) is defined as P (M) = F , i.e.,
the convex hull of vectors {χX | X ∈ F}; it is also given in terms of rank function as

P (M) = {x ∈ RN+ | x(Y ) ≤ ρ(Y ) (Y ∈ 2N )}.

A generalized polymatroid (g-polymatroid, for short) [15] is a polyhedron

Q = {x ∈ RN | µ(X) ≤ x(X) ≤ ρ(X) (X ∈ 2N )}

given by a pair of submodular/supermodular functions ρ : 2N → R ∪ {+∞}, µ : 2N → R ∪ {−∞}
satisfying the inequality

ρ(X)− µ(Y ) ≥ ρ(X \ Y )− µ(Y \X) (∀X,Y ∈ 2N ).

If ρ and µ are integer-valued, then Q is an integral polyhedron; in such a case, we say that Q is an integral
g-polymatroid.

2.3 M\-concave functions. We review the definition of M\-concavity and show some fundamental
properties and examples.

Let F be a family of independent sets of a matroid. A function f : F → R is said to be M\-concave
if it satisfies the condition (M\-EXC). The concept of M\-concavity is originally introduced for functions
defined on integer lattice points (see, e.g., [32]), and the present definition of M\-concavity for set functions
can be obtained by specializing the original definition through the one-to-one correspondence between
set functions and functions defined on {0, 1}-vectors.

M\-concave functions have various desirable properties as discrete concavity. Global optimality is
characterized by local optimality, which implies the validity of a greedy algorithm for M\-concave function
maximization. Maximization of an M\-concave function can be done efficiently (see, e.g., [32, 34]).
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Theorem 2.1 For an M\-concave function f : F → R defined on a family F ⊆ 2N of matroid indepen-
dent sets, a maximizer of f can be computed in O(n2) time.

Maximization of the sum of two M\-concave functions is a nonlinear generalization of the max-weight
matroid intersection problem, and can be solved in strongly-polynomial time as well (see Appendix D).
A budget constraint with uniform cost is equivalent to a cardinality constraint. Hence, (1BM\M) (i.e.,
(kBM\M) with k = 1) and (1BM\I) with uniform cost can be solved in polynomial time as well.

It is known that every M\-concave function is a submodular function in the following sense (cf. [32]):

Theorem 2.2 ([32, Th. 6.19]) Let f : F → R be an M\-concave function defined on a family F ⊆ 2N

of matroid independent sets. For X,Y ∈ F with X ∪ Y ∈ F , we have

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

In particular, for X,Y ∈ F with X ⊆ Y and u ∈ X, we have

f(X)− f(X − u) ≥ f(Y )− f(Y − u).

Note that the sum of an M\-concave function and a linear function is again an M\-concave function,
while the sum of two M\-concave functions is not M\-concave in general.

The concept of g-polymatroid is closely related to that of M\-concavity (see [32, 35]).

Theorem 2.3 Let f : F → R be an M\-concave function defined on a family F ⊆ 2N of matroid
independent sets, and f : F → R be the concave closure of f given by (6). Then, the set arg max{f(x)−
p>x | x ∈ F} is an integral g-polymatroid for every p ∈ RN .

We give some examples of M\-concave functions and gross substitutes (GS) utility functions. Recall
that a function is GS utility if and only if it is an M\-concave function defined on 2N (see Theorem 1.1).

A simple example of M\-concave function is a linear function f(X) = w(X) (X ∈ F) defined on a
family F ⊆ 2N of matroid independent sets, where w ∈ RN . In particular, if F = 2N then f is a GS
utility function. Below we give some nontrivial examples. See [32, 33] for more examples of M\-concave
functions.

Example 2.1 (Weighted rank functions) Let I ⊆ 2N be the family of independent sets of a ma-
troid, and w ∈ RN+ . Define a function f : 2N → R+ by

f(X) = max{w(Y ) | Y ⊆ X, Y ∈ I} (X ∈ 2N ),

which is called the weighted rank function [6, 7]. If w(v) = 1 (v ∈ N), then f is an ordinary rank function
of the matroid (N, I). Every weighted rank function is a GS utility function [42]. 2

Example 2.2 (Laminar concave functions) Let T ⊆ 2N be a laminar family, i.e., X ∩ Y = ∅ or
X ⊆ Y or X ⊇ Y holds for every X,Y ∈ T . For Y ∈ T , let ϕY : Z+ → R be a univariate concave
function. Define a function f : 2N → R by

f(X) =
∑
Y ∈T

ϕY (|X ∩ Y |) (X ∈ 2N ),

which is called a laminar concave function [32, Sec. 6.3] (also called an S-valuation in [4]). Every laminar
concave function is a GS utility function. 2

Example 2.3 (Maximum-weight bipartite matching) Consider a bipartite graph G with two ver-
tex sets N, J and an edge set E (⊆ N × J), where N and J correspond to workers and jobs, respectively.
An edge (u, v) ∈ E means that worker u ∈ N has ability to process job v ∈ J , and profit p(u, v) ∈ R+

can be obtained by assigning worker u to job v. Consider a matching between workers and jobs which
maximizes the total profit, and define F ⊆ 2N by

F = {X ⊆ N | ∃M : matching in G s.t. ∂NM = X},
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where ∂NM denotes the set of vertices in N covered by edges in M . It is well known that F is a family
of independent sets in a transversal matroid. Define f : F → R by

f(X) = max

{ ∑
(u,v)∈M

p(u, v)

∣∣∣∣ M : matching in G s.t. ∂NM = X

}
(X ∈ F).

Then, f is an M\-concave function [33, Sec. 11.4.2]. In particular, if G is a complete bipartite graph,
then F = 2N holds, and therefore f is a GS utility function. 2

Example 2.4 (M\-concave function maximization under matroid constraint) We show that
the problem of maximizing an M\-concave function under an additional matroid constraint can be refor-
mulated as the maximization of the sum of two M\-concave functions.

Let f : F → R be an M\-concave function defined on the family F ⊆ 2N of matroid independent sets,
and G ⊆ 2N be another family of matroid independent sets. We consider the problem of maximizing f
under the constraint given by G:

max{f(X) | X ∈ F ∩ G},
which is equivalent to max{f(X) + g(X) | X ∈ F ∩ G}, where g : G → R is the function of G defined by
g(X) = 0 (X ∈ G). Since g is an M\-concave function, the latter problem is the maximization of the sum
of two M\-concave functions. 2

It should be noted that in Example 2.4, the function f ′ : F ∩G → R given by f ′(X) = f(X) (X ∈ F ∩G)
is not M\-concave in general, even if F = 2N and f is a GS utility function.

The reduction in Example 2.4 shows that the maximization of an M\-concave function under an
additional matroid constraint can be solved exactly in polynomial time. On the other hand, if the
objective function is replaced with the sum of two M\-concave functions, then the problem is NP-hard
(see [32]).

Example 2.5 (Optimal allocation problem in combinatorial auction) Given a set of items N
and m monotone utility functions fi : 2N → R (i = 1, 2, . . . ,m), the optimal allocation problem (also
referred to as the welfare maximization problem) in combinatorial auction is formulated as follows (see,
e.g., [25]):

Maximize

m∑
i=1

fi(Xi) subject to {X1, X2, . . . , Xm} is a partition of N.

Due to the monotonicity assumption for fi, we may relax the condition in the constraint to the following
weaker one:

{X1, X2, . . . , Xm} is a subpartition of N (i.e., Xi ∩Xi′ = ∅ whenever i 6= i′).

We show that if each fi is a GS utility function, then this problem can be reformulated as the maximization
of the sum of two M\-concave functions.

Suppose that each fi in the optimal allocation problem is a GS utility function. By Example 2.4,
it suffices to show that the optimal allocation problem can be reduced to the maximization of an M\-
concave function under a matroid constraint. For i = 1, 2, . . . ,m, let Ñi = {(i, j) | j ∈ N}, and denote

Ñ =
⋃m
i=1 Ñi. We define a function f̃ : 2Ñ → R by

f̃(X̃) =

m∑
i=1

fi(Xi),

where Xi = {j ∈ N | (i, j) ∈ X̃ ∩ Ñi} (i = 1, 2, . . . ,m). (8)

Then, f̃ is an M\-concave function (GS utility function, in particular). For X̃ ⊆ Ñ , the set family

{X1, X2, . . . , Xm} given by (8) is a subpartition of N if and only if X̃ ∈ G̃, where

G̃ = {Ỹ ⊆ Ñ | |Ỹ ∩ {(i, j) | 1 ≤ i ≤ m}| ≤ 1 (∀j ∈ N)}.

Note that G̃ is the family of independent sets of a partition matroid. Hence, the optimal allocation
problem is reduced to the maximization of the M\-concave function f̃ under the matroid constraint given
by G̃. 2
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2.4 Valuated matroids. We explain the concept of valuated matroid and its equivalence with M\-
concave function. Let B ⊆ 2N be the family of bases in a matroid, which is characterized by the following
property (see, e.g., [32]):

(B-EXC) ∀X,Y ∈ B, ∀u ∈ X \ Y , ∃v ∈ Y \X: X − u+ v ∈ B, Y + u− v ∈ B.

Note that |X| = |Y | for every X,Y ∈ B. We consider a function g : B → R defined on the base family B,
which is called a valuated matroid [11] if it satisfies the following property:

(VM) ∀X,Y ∈ B, ∀u ∈ X \ Y , ∃v ∈ Y \X:

X − u+ v, Y + u− v ∈ B, and g(X) + g(Y ) ≤ g(X − u+ v) + g(Y + u− v).

To see the equivalence between valuated matroid and M\-concave function, we show that every M\-
concave function defined on a family of matroid independent sets can be transformed to a valuated
matroid which has the same information, and vice versa. It should be noted that the equivalence shown
below is just a restatement of a more general result on the equivalence between M-concavity and M\-
concavity for functions defined on integer lattice points (see [32, Sec. 6.1]), where we use the fact that
valuated matroid is a special case of M-concave function.

From M\-concave function to valuated matroid. Let f : F → R be an M\-concave function
defined on matroid independent sets F . We define a valuated matroid g : B → R having the same
information as f as follows. Let k = max{|X| | X ∈ F}. Also, let s1, s2, . . . , sk be elements not in N ,

S = {s1, s2, . . . , sk}, and Ñ = N ∪ S. Define B ⊆ 2Ñ and a function g : B → R by

B = {X̃ ⊆ Ñ | |X̃| = k, X̃ ∩N ∈ F},
g(X̃) = f(X̃ ∩N) (X̃ ∈ B).

Then, B is the base family of a matroid and g is a valuated matroid; see Appendix C for a proof.

From valuated matroid to M\-concave function. Let g : B → R be a valuated matroid defined on
matroid bases B. We define a function f : F → R as follows:

F = {X ⊆ N | ∃Y ∈ B s.t. X ⊆ Y }, f(X) = max{g(Y ) | Y ⊇ X, Y ∈ B} (X ∈ F).

Note that the restriction of f on B is equal to the original function g. Since B is the base family of a
matroid, F is the independent set family of a matroid (see, e.g., [38, 41]). Moreover, f is an M\-concave
function; see Appendix C for a proof.

From the transformations explained above, we see that the maximization of (the sum of) M\-concave
functions can be reduced to the maximization of (the sum of) valuated matroids, and vice versa.

2.5 L\-convex functions. We explain the concept of L\-convexity, which is deeply related to the
concept of M\-concavity. A function g : ZN → R ∪ {+∞} defined on the integer lattice points is said to
be L\-convex if it satisfies the following inequality:

g(p) + g(q) ≥ g((p− λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ ZN , ∀λ ∈ Z+),

where p ∨ q and p ∧ q denote the vectors obtained by component-wise maximum and minimum of two
vectors p, q ∈ Rn, respectively. This inequality with λ = 0 implies the submodularity of g, in particular.

Minimization of an L\-convex function can be solved efficiently.

Theorem 2.4 ([32]) For an L\-convex function g : ZN → R ∪ {+∞} such that the set domZ g = {p ∈
ZN | g(p) < +∞} is bounded, its minimizer can be computed in time polynomial in n and log max{‖p−
q‖∞ | p, q ∈ domZ g}.

L\-convexity is also defined for polyhedral convex functions. A function g : RN → R ∪ {+∞} is said
to be polyhedral convex if the set {(x, α) | x ∈ RN , α ∈ R, g(x) ≤ α} is a polyhedron. A function
g : RN → R ∪ {+∞} is said to be polyhedral L\-convex if it is a polyhedral convex function satisfying

g(p) + g(q) ≥ g((p− λ1) ∨ q) + g(p ∧ (q + λ1)) (∀p, q ∈ RN , ∀λ ∈ R+).

The next property states the conjugacy relationship between L\-convexity and M\-concavity.
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Theorem 2.5 ([32, 35]) Let f : F → R be an M\-concave function defined on a family F ⊆ 2N of
matroid independent sets. Then, the function g : RN → R defined by

g(p) = max{f(Y )− p(Y ) | Y ∈ F} (p ∈ RN )

is a polyhedral L\-convex function.

Below we present some properties of (polyhedral) L\-convex functions which will be used in the follow-
ing discussion. The next theorem shows that an L\-convex function in integer variables can be obtained
from the restriction of a polyhedral L\-convex function.

Theorem 2.6 ([31, 32]) Let g : RN → R ∪ {+∞} be a polyhedral L\-convex function. Then, function
gZ : ZN → R ∪ {+∞} given by

gZ(p) = g(p) (p ∈ ZN ) (9)

is an L\-convex function if {p ∈ ZN | g(p) < +∞} 6= ∅.

The next property shows that (polyhedral) L\-convexity of a function is preserved by the restriction
on an interval.

Theorem 2.7 ([31, 32]) Let a, b ∈ RN be vectors with a ≤ b.
(i) For an L\-convex function g : ZN → R ∪ {+∞}, the function gba : ZN → R ∪ {+∞} given by

gba(p) =

{
g(p) (p ∈ ZN , a ≤ p ≤ b),
+∞ (otherwise)

is an L\-convex function if {p ∈ ZN | a ≤ p ≤ b, g(p) < +∞} 6= ∅.
(ii) For a polyhedral L\-convex function g : RN → R∪{+∞}, the function gba : RN → R∪{+∞} given by

gba(p) =

{
g(p) (p ∈ RN , a ≤ p ≤ b),
+∞ (otherwise)

is a polyhedral L\-convex function if {p ∈ RN | a ≤ p ≤ b, g(p) < +∞} 6= ∅.

The following property is so-called proximity theorem, stating that a minimizer of a polyhedral L\-
convex function and a minimizer of its restriction on ZN are close to each other.

Theorem 2.8 ([28]) Let g : RN → R ∪ {+∞} be a polyhedral L\-convex function such that {p ∈ ZN |
g(p) < +∞} 6= ∅, and gZ : ZN → R ∪ {+∞} be an L\-convex function given by (9). For every minimizer
p̂ of gZ, there exists a minimizer p∗ of g such that ‖p∗ − p̂‖∞ ≤ n.

3. PTAS for k-budgeted M\-concave maximization. Recall that our first problem is formulated
as follows:

(kBM\M) Maximize f(X) subject to X ∈ F , ci(X) ≤ Bi (i = 1, 2, . . . , k),

where F ⊆ 2N is the family of independent sets of a matroid and f : F → R is an M\-concave function
defined on F . We show that the problem (kBM\M) admits a PTAS by using continuous relaxation and
rounding. The continuous relaxation of (kBM\M) used in this paper is given as follows:

(CR) Maximize f(x) subject to x ∈ F , c>i x ≤ Bi (i = 1, 2, . . . , k).

As mentioned in Introduction, it suffices to prove Theorem 1.2, a key property to show the existence of
a PTAS for (kBM\M). We first give a proof of Theorem 1.2 (i) for the case where f is an integer-valued
function in Section 3.2, and a more complicated proof for the general case (Theorem 1.2 (ii)) is given in
Section 3.3. The proof for the integer-valued case is much simpler, but gives an idea of our algorithm for
the general case.

Throughout this section, we assume that the condition (4) holds, i.e., for each v ∈ N , the set {v} is
a feasible solution to (kBM\M) satisfying f({v}) > 0. Indeed, if some element v does not satisfy this
condition, then such v can be removed from N , as shown in the following property.
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Proposition 3.1 Let v ∈ N . If {v} is not a feasible solution to (kBM\M) or f({v}) ≤ 0, then there
exists an optimal solution X∗ ∈ 2N to (kBM\M) with v 6∈ X∗.

Proof. For X,Y ∈ 2N with X ⊆ Y , if Y is a feasible solution to (kBM\M), then, X is also a
feasible solution. Hence, if {v} is not a feasible solution to (kBM\M), then no feasible solution contains
the element v; in particular, no optimal solution contains v.

We then assume that {v} is a feasible solution to (kBM\M) such that f({v}) ≤ 0. Let X∗ be an
optimal solution to (kBM\M). If v 6∈ X∗, then we are done. Hence, we assume v ∈ X∗. Since f is an
M\-concave function, we have

f({v})− f(∅) ≥ f(X∗)− f(X∗ − v)

by Theorem 2.2. By assumption, we have f({v})−f(∅) = f({v}) ≤ 0. Hence, it holds that f(X∗ \{v}) ≥
f(X∗). This implies that X∗ \ {v} is an optimal solution to (kBM\M) that does not contain v. 2

3.1 Computing the concave closure of M\-concave functions. In this section, we prove The-
orem 1.4, stating that for the concave closure f of an M\-concave function f , the function value and a
subgradient can be computed in polynomial time. The proof is given by using conjugacy results of M\-
concave functions. The algorithms given in this section play key roles in solving the continuous relaxation
problem (CR).

We define a function g : RN → R by

g(p) = max{f(Y )− p(Y ) | Y ∈ F} (p ∈ RN ). (10)

By the definition (6) of the concave closure f , we have

g(p) = max{f(y)− p>y | y ∈ F} (p ∈ RN ). (11)

The next lemma states that the function value and a subgradient of f at a vector x can be obtained by
solving a certain minimization problem.

Lemma 3.1 For x ∈ F , we have

f(x) = min{p>x+ g(p) | p ∈ RN}, (12)

∂f(x) = arg min{p>x+ g(p) | p ∈ RN}. (13)

Proof. These equations follow from known results in convex analysis and the conjugacy relationship
between f and g (see, e.g., [40]). We give direct and simpler proofs below.

We first prove the formula (12) for f(x). Recall the second formula (7) for the concave closure f :

f(x) = min
{
p>x+ α

∣∣ p ∈ RN , α ∈ R, p(Y ) + α ≥ f(Y ) (Y ∈ F)
}

(x ∈ F). (14)

Since the right-hand side of (14) is a minimization problem, we may assume α = g(p), from which (12)
follows. It is noted that the minimization problem min{p>x + g(p) | p ∈ RN} has an optimal solution
since this problem is essentially equivalent to the LP in the right-hand side of (14).

To prove the formula (13), we show that p∗ ∈ ∂f(x) holds if and only if p∗ ∈ arg min{p>x+ g(p) | p ∈
RN}. By the definition (5) of ∂f(x), we have p∗ ∈ ∂f(x) if and only if

f(x)− p>∗ x = max{f(y)− p>∗ y | y ∈ F} = g(p∗),

where the last equality is by (11). Using (12), this equation can be rewritten as

p>∗ x+ g(p∗) = f(x) = min{p>x+ g(p) | p ∈ RN},
which is equivalent to p∗ ∈ arg min{p>x+ g(p) | p ∈ RN}. 2

In the following, we show that the problem min{p>x + g(p) | p ∈ RN} in Lemma 3.1 can be solved
exactly in polynomial time if f is an integer-valued function, and that an approximate solution of this
problem can be computed in polynomial time for a general f ; such an approximate solution gives ap-
proximate value and subgradient of f , as shown later.

By definition, the evaluation of the function value g(p) for a given p ∈ RN can be done by computing
the value max{f(Y )− p(Y ) | Y ∈ F}, which is M\-concave function maximization and can be solved in
O(n2) time by Theorem 2.1. It is not difficult to see that the function g is a (polyhedral) convex function
in p. Moreover, M\-concavity of f implies a nice combinatorial property of g as follows.
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Lemma 3.2 The function g : RN → R given by (10) is a polyhedral L\-convex function. Moreover, its
restriction gZ : ZN → R given by gZ(x) = g(x) (x ∈ ZN ) is an L\-convex function (in integer variables).

Proof. The claims follow immediately from Theorems 2.5 and 2.6. 2

The next lemma shows that there exists some subgradient of f contained in a bounded finite interval.

Lemma 3.3 For every x ∈ F , there exists p∗ ∈ ∂f(x) such that

|p∗(v)| ≤ 2nmax
X∈F

|f(X)| (∀v ∈ N). (15)

Moreover, if f is an integer-valued function, then there exists such integral p∗.

Proof. By the assumption (4), the polyhedron F contains the vectors 0 and χv for all v ∈ N ,
implying that the polyhedron F is full-dimensional. It follows that the set

{(x, α) | x ∈ F , α ∈ R, α ≤ f(x)}

is a full-dimensional polyhedron since f̄ is a polyhedral concave function. Hence, there exists a subgradient
p∗ ∈ ∂f(x) such that the set

D = {y ∈ F | f(y)− f(x) = p>∗ (y − x)}

is a full-dimensional polyhedron. We show that such p∗ satisfies the inequality (15).

By p∗ ∈ ∂f(x) and (5), the set D can be represented as

D = arg max{f(y)− p>∗ y | y ∈ F}.

Hence, D is an integral g-polymatroid by Theorem 2.3 since f is an M\-concave function. In particular,
each vertex of D is a {0, 1}-vector since D ⊆ [0, 1]N .

Let x0 be a {0, 1}-vector which is a vertex of D. We consider the tangent cone of D at x0, which is
generated by vectors in the following set W (cf. [16, Th. 3.28]):

W = {+χv | v ∈ N, x0 + χv ∈ D} ∪ {−χv | v ∈ N, x0 − χv ∈ D}
∪ {+χu − χv | u, v ∈ N, x0 + χu − χv ∈ D}.

Since D is full-dimensional, its tangent cone is also full-dimensional, which implies that W contains n
linear independent vectors. Hence, the vector p∗ is a (unique) solution of the system of the following
linear equations, where X0 = {v ∈ N | x0(v) = 1} and q ∈ RN is a variable vector:

+q(v) = f(x0 + χv)− f(x0) (= f(X0 + v)− f(X0)) (v ∈ N, x0 + χv ∈ D),

−q(v) = f(x0 − χv)− f(x0) (= f(X0 − v)− f(X0)) (v ∈ N, x0 − χv ∈ D),

+q(u)− q(v) = f(x0 + χu − χv)− f(x0) (= f(X0 + u− v)− f(X0))
(u, v ∈ N, x0 + χu − χv ∈ D).

 (16)

Recall that for every X ∈ F we have f(X) = f(χX).

We show that the unique solution p∗ of the system (16) of linear equations is integral if f is an integer-
valued function. For this, we define a directed graph G = (V,A) as follows: the node set V is given by
{r} ∪N , where r is an element not in N , and the arc set A is given as

A = {(r, v) | v ∈ N, x0 + χv ∈ D} ∪ {(v, r) | v ∈ N, x0 − χv ∈ D}
∪ {(v, u) | u, v ∈ N, x0 + χu − χv ∈ D}.

Then, the coefficient matrix of the system (16) is a submatrix of the incidence matrix of G obtained
by removing the row corresponding to the node r. Recall that the incidence matrix of a directed graph
is totally unimodular (see, e.g., [41, Th. 13.9]), and a submatrix of a totally unimodular matrix is also
totally unimodular. Hence, the coefficient matrix of the system (16) is totally unimodular, and therefore
the system (16) has an integral solution (i.e., p∗ ∈ Zn) if f is an integer-valued function.

We finally derive the inequality (15). From (16) follows that

|p∗(v)| ≤ 2 max
X∈F

|f(X)| (v ∈ N, x0 + χv ∈ D or x0 − χv ∈ D), (17)

|p∗(u)− p∗(v)| ≤ 2 max
X∈F

|f(X)| (u, v ∈ N, x0 + χu − χv ∈ D). (18)
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Since the coefficient matrix of the system (16) has rank n = |V | − 1, the incidence matrix of G also has
rank |V | − 1. Hence, the directed graph G is weakly connected, i.e., the undirected graph obtained by
replacing all directed arcs in G with undirected ones is connected. Therefore, for every node v in G, there
exists a sequence of nodes v0 = v, v1, v2, . . . , vh, vh+1 = r such that (vj , vj+1) ∈ A or (vj+1, vj) ∈ A holds
for all j = 0, 1, . . . , h, where h+ 1 ≤ |V | − 1 = n. By (17) and (18), it holds that

|p∗(v)| ≤ |p∗(v0)− p∗(v1)|+ |p∗(v1)− p∗(v2)|+ · · ·+ |p∗(vk−1)− p∗(vh)|+ |p∗(vh)|
≤ 2(h+ 1) max

X∈F
|f(X)| ≤ 2nmax

X∈F
|f(X)|.

2

Below we give a proof of Theorem 1.4. We denote γ = maxX∈F |f(X)|; note that log γ = O(Φ) holds
by the definition of Φ in (3).

Suppose that f is an integer-valued function. By Lemmas 3.1 and 3.3, there exists an optimal solution
p∗ to the problem min{p>x+ g(p) | p ∈ RN} such that

p∗ ∈ ZN , |p∗(v)| ≤ 2nγ (v ∈ N).

Hence, our problem can be reduced to

min{p>x+ gZ(p) | p ∈ ZN , |p(v)| ≤ 2nγ (v ∈ N)},

where the function gZ : ZN → R is given by gZ(x) = g(x) (x ∈ ZN ). This problem is the minimization of
an L\-convex function by Theorem 2.7 and Lemma 3.2. Therefore, its optimal solution can be computed
in time polynomial in n and log γ by Theorem 2.4. This concludes the proof of Theorem 1.4 (i).

We then consider the case of general f , and prove Theorem 1.4 (ii); i.e., we show that a value η ∈ R
and a vector p̂ ∈ RN satisfying

f(x) ≤ η ≤ f(x) + δ, (19)

f(y)− f(x) ≤ p̂>(y − x) + δ (∀y ∈ F) (20)

can be computed in time polynomial in n, log γ, and log(1/δ). The next lemma shows that such η and
p̂ can be computed easily if we obtain a vector which is sufficiently close to an optimal solution of the
problem min{p>x+ g(p) | p ∈ RN}.

Lemma 3.4 Let p̂ ∈ RN be a vector satisfying the condition that

||p̂− p∗||∞ ≤ δ/n for some p∗ ∈ arg min{p>x+ g(p) | p ∈ RN}. (21)

Then, the vector p̂ satisfies (20) and the value η = p̂>x+ g(p) satisfies (19).

Proof. We have p∗ ∈ ∂f(x) by (13) in Lemma 3.1. For y ∈ F (⊆ [0, 1]N ), it holds that

f(y)− f(x) ≤ p>∗ (y − x)

= p̂>(y − x) + (p∗ − p̂)>(y − x)

≤ p̂>(y − x) + ‖p∗ − p̂‖∞
∑
i∈N
|y(i)− x(i)| ≤ p̂>(y − x) + δ,

where the first inequality is by p∗ ∈ ∂f(x) and the last inequality by ‖p∗− p̂‖∞ ≤ δ/n and |y(i)−x(i)| ≤ 1
for i ∈ N . Hence, (20) holds.

We then prove (19). Since p∗ ∈ arg min{p>x+ g(p) | p ∈ RN}, we have

η = p̂>x+ g(p̂) ≥ p>∗ x+ g(p∗) = f(x),

where the last equality follows from (12) in Lemma 3.1. Let Y ∈ F be a set with f(Y ) − p̂(Y ) = g(p̂).
Then,

η = p̂>x+ g(p̂) = p̂>x+ f(Y )− p̂(Y )

= p>∗ x+ f(Y )− p∗(Y ) + (p̂− p∗)>(x− χY )

≤ p>∗ x+ (f(Y )− p∗(Y )) + ‖p̂− p∗‖∞
∑
i∈N
|x(i)− χY (i)| ≤ p>∗ x+ g(p∗) + δ,
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where the last inequality is by the definition of g, ||p̂− p∗||∞ ≤ δ/n, and |x(i)−χY (i)| ≤ 1 (i ∈ N). 2

The next property shows that p̂ in Lemma 3.4 can be computed by solving the following problem:

min{p>x+ g(p) | p ∈ (δ/n2)ZN , |p(v)| ≤ 2nγ (v ∈ N)}, (22)

where (δ/n2)ZN denotes the set of vectors with each component being an integer multiple of δ/n2.

Lemma 3.5
(i) Every optimal solution p̂ to the problem (22) satisfies the condition (21).
(ii) An optimal solution to the problem (22) can be obtained in time polynomial in n, log γ, and log(1/δ).

Proof. [Proof of (i)] Let p̂ be an optimal solution to the problem (22). By Lemma 3.3, it suffices
to show that p̂ satisfies the condition that

||p̂− p∗||∞ ≤ δ/n for some p∗ ∈ arg min{p>x+ g(p) | p ∈ RN , |p(v)| ≤ 2nγ (v ∈ N)}. (23)

Define a function h : RN → R defined by

h(q) = g((δ/n2)q) (q ∈ RN ).

Since g is polyhedral L\-convex, the function h is also a polyhedral L\-convex function. We consider the
following problem:

min{(δ/n2)q>x+ h(q) | q ∈ ZN , |q(v)| ≤ (2n3/δ)γ (v ∈ N)}. (24)

It is easy to see that this problem and the problem (22) are equivalent, and the vector q̂ = (n2/δ)p̂ is an
optimal solution to the problem (24). Hence, the condition (23) for p̂ can be rewritten as the following
condition for q̂:

||q̂ − q∗||∞ ≤ n for some q∗ ∈ arg min{(δ/n2)q>x+ h(q) | q ∈ RN , |q(v)| ≤ (2n3/δ)γ (v ∈ N)}. (25)

We now show that the condition (25) holds. The restriction of h on Zn is an L\-convex function by
Theorem 2.6, and therefore Theorem 2.8 implies that there exists some optimal solution q∗ ∈ RN to the
continuous relaxation of (24) such that ‖q∗ − q̂‖∞ ≤ n. Hence, the condition (25) holds.

[Proof of (ii)] From the discussion above, it suffices to show that the problem (24) can be solved in
polynomial time. Since (24) is an L\-convex function minimization in a bounded interval, Theorem 2.4
implies that it can be solved in time polynomial in n and log(2n3/δ)γ. Hence, the claim follows. 2

This concludes the proof of Theorem 1.4 (ii); recall that log γ = O(Φ).

Remark 3.1 Theorem 1.4 can be also proven by using the result in [19] that the strong optimization on
a polyhedron is polynomially equivalent to the strong separation for the same polyhedron. Note that the
proof of this equivalence in [19] is based on the ellipsoid method.

By the equation (14), the evaluation of f(x) can be done by solving an optimization problem, and it
can be done in polynomial time if and only if the separation problem for the polyhedron

{(p, α) ∈ RN × R | p(Y ) + α ≥ f(Y ) (∀Y ∈ F)}

can be done in polynomial time. The separation problem can be reduced to the problem of checking the
inequality α ≥ max{f(Y )− p(Y ) | Y ∈ F}, which is solvable in polynomial time by Theorem 2.1. Hence,
we obtain Theorem 1.4.

Although the approach using the ellipsoid method makes it possible to compute the exact value of
f(x) and a subgradient of f at x, even in the case where f is not an integer-valued function, it has a
drawback that the algorithm is not “combinatorial” and the running time is much bigger than that of
the approach based on L\-convex function minimization used in Section 3.1. 2
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3.2 Algorithm for integer-valued functions. We give a proof of Theorem 1.2 (i) for the case
where f is an integer-valued M\-concave function. That is, we present a deterministic algorithm for
computing a feasible solution X̃ to (kBM\M) satisfying

f(X̃) ≥ opt− 2kmax
v∈N

f({v}). (26)

Recall that numbers such as ci(j) and Bi are assumed to be rational; this assumption is essential in the
ellipsoid method [19] used in this section.

The outline of the proof is as follows. It is firstly shown that the continuous relaxation problem (CR)
can be solved exactly in polynomial time; moreover, it is shown by using Theorem 1.4 (i) that a vertex
optimal solution to (CR) can be computed in polynomial time. We call an optimal solution to (CR) a
vertex optimal solution if it is a vertex of the set of optimal solutions to (CR); note that the set of optimal
solutions to (CR) is a bounded polyhedron and therefore contains a vertex.

Lemma 3.6 If f is an integer-valued function, then a vertex optimal solution to (CR) can be computed
in time polynomial in n, k, Φ, and Ψ.

Proof. Proof is given in Section 3.2.1. 2

It is noted that a similar statement is shown in Shioura [42] for a monotone M\-concave function defined
on 2N ; we here extend the result to the case of non-monotone M\-concave function defined on a subset
of 2N .

We then prove that every vertex optimal solution is nearly integral in the following sense:

Lemma 3.7 Let x̂ ∈ [0, 1]N be a vertex optimal solution to (CR). Then, x̂ has at most 2k non-integral
components.

Proof. Proof is given in Section 3.2.2. 2

Lemma 3.7 generalizes a corresponding result in [18] for the budgeted matroid independent set problem.

We finally show by using Lemma 3.7 that a feasible solution X̃ to (kBM\M) satisfying (26) can be
obtained by rounding down non-integral components of a vertex optimal solution to (CR).

Lemma 3.8 Let x̂ ∈ [0, 1]N be a vertex optimal solution to (CR). Then, the set X̃ = {v ∈ N | x̂(v) = 1}
is a feasible solution to (kBM\M) satisfying (26).

Proof. Proof is given in Section 3.2.3. 2

From Lemmas 3.6 and 3.8 follows Theorem 1.2 (i).

3.2.1 Solving continuous relaxation. Let S∗ be the set of optimal solutions to (CR); note that
S∗ is a bounded polyhedron. To prove Lemma 3.6, we consider the problem of finding a vertex of S∗.
This problem can be solved by using the result in [19, Sec. 6.5], which implies that the ellipsoid method
finds a vertex of S∗ in time polynomial in n, k, Φ, and Ψ, provided that the following conditions hold:

(C-1) the (strong) separation problem for the feasible region of (CR) (i.e., for a given
x ∈ [0, 1]N , check if x is a feasible solution or not, and if x is not feasible, then output a
hyperplane separating the feasible region and x) can be solved in polynomial time,
(C-2) a subgradient of f can be computed in polynomial time.

These conditions mean that a (strong) separation oracle for S∗ is available.

The condition (C-2) follows immediately from Theorem 1.4 (i). The condition (C-1) can be shown as
follows. Since we can easily check the inequalities c>i x ≤ Bi, it suffices to solve the separation problem
for the matroid polytope F , which can be done in polynomial time, provided that the rank function
ρ : 2N → Z+ of the matroid (N,F) is available (see, e.g., [19, 41]). Since we have an oracle to check
in constant time whether X ∈ F or not, we can compute a function value of ρ in polynomial time (see
Section 2.2). Hence, the condition (C-1) holds. This concludes the proof of Lemma 3.6.
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3.2.2 Near-integrality of vertex optimal solutions. We prove Lemma 3.7. Let x̂ ∈ [0, 1]N be a
vertex optimal solution to (CR). Then, x̂ is a vertex of a polyhedron given as the intersection of a set

Q = arg max{f(x)− p>x | x ∈ F}
for some p ∈ RN and the set

K = {x ∈ RN | c>i x ≤ Bi (i = 1, 2, . . . , k)}.
By Theorem 2.3, the set Q is an integral g-polymatroid. Hence, the vertex x̂ is contained in a d-
dimensional face F of Q for some d ≤ k. The statement of Lemma 3.7 follows immediately from the next
property, which is a generalization of [18, Theorem 3]:

Lemma 3.9 Let Q ⊆ RN be an integral g-polymatroid and F ⊆ Q be a face of Q with dimension d. Then,
every x ∈ F has at most 2d non-integral components.

To prove Lemma 3.9, we use the concept of base polyhedron [16] which is deeply related to the concept
of g-polymatroid. A base polyhedron is a polyhedron given by

P = {x ∈ RN | x(X) ≤ ρ(X) (X ⊆ N), x(N) = ρ(N)}
with a submodular function ρ : 2N → R ∪ {+∞} such that ρ(∅) = 0 and ρ(N) < +∞. If ρ is integer-
valued, then P is an integral polyhedron, which is called an integral base polyhedron. It is shown (see,
e.g., [16, Sec. 3.5 (a)]) that a polyhedron Q ⊆ RN is a g-polymatroid if and only if the set

Q̃ = {(−x(N), x) ∈ R{0}∪N | x ∈ Q}, (27)

is a base polyhedron, where 0 is a new element not in N . Note that faces of Q̃ have a natural one-to-one
correspondence with faces of Q, and the corresponding faces have the same dimension. Hence, Lemma
3.9 for g-polymatroids can be restated in terms of base polyhedra as follows.

Lemma 3.10 Let P ⊆ RN be an integral base polyhedron and F ⊆ P be a face of dimension d. Then,
every x ∈ F has at most 2d non-integral components.

Proof. Suppose that the integral base polyhedron P is associated with an integer-valued submodular
function ρ : 2N → Z ∪ {+∞} satisfying ρ(∅) = 0 and ρ(N) < +∞. Since the dimension of F is d and
every x ∈ F satisfies x(N) = ρ(N), there exist n− d− 1 distinct sets Y1, Y2, . . . , Yn−d−1 ⊂ N such that

F = {x ∈ P | x(Yj) = ρ(Yj) (j = 1, 2, . . . , n− d)},
where Yn−d = N . By a standard uncrossing argument (see, e.g., [16, 19]), we can assume that ∅ 6= Y1 ⊂
Y2 ⊂ · · · ⊂ Yn−d = N holds. Let x̂ ∈ RN be an arbitrarily chosen vector in F . Putting Dj = Yj \Yj−1 (6=
∅) (j = 1, 2, . . . , n − d), it holds that x̂(Dj) = ρ(Yj) − ρ(Yj−1) ∈ Z, where Y0 = ∅. This implies that
if |Dj | = 1 then x̂(v) ∈ Z for the unique element v in Dj . Since |N | = n, at least n − 2d sets among
D1, D2, . . . , Dn−d are singleton sets. Hence, x̂ has at most 2d non-integral components. 2

3.2.3 Rounding of continuous solution. We prove Lemma 3.8. Given a vertex optimal solution
x̂ ∈ [0, 1]N to (CR), let x̃ ∈ {0, 1}N be a vector obtained by rounding down the non-integral components
of x̂, i.e., x̃(v) = 1 if x̂(v) = 1 and x̃(v) = 0 otherwise. Note that x̃ is the characteristic vector of X̃ in
the statement of Lemma 3.8, and therefore satisfies f(x̃) = f(X̃).

We first show that X̃ is a feasible solution to (kBM\M). Since x̂ is a vector in the matroid polytope
F and 0 ≤ x̃ ≤ x̂, the vector x̃ is also in F . Since F ∩ ZN = {χY | Y ∈ F} and x̃ is the characteristic
vector of X̃, we have X̃ ∈ F . We also have ci(X̃) = c>i x̃ ≤ c>i x̂ ≤ Bi for all i = 1, . . . , k since 0 ≤ x̃ ≤ x̂.
Hence, X̃ is a feasible solution to (kBM\M).

We next show the inequality f(X̃) ≥ opt− 2kmaxv∈N f({v}). We use the following property of the
concave closure f of an M\-concave function f .

Lemma 3.11 ([32, 35, 42])
(i) Let x, y ∈ F be vectors with x ≤ y, v ∈ N , and α ∈ R+ be a real number such that y + αχv ∈ F .
Then, it holds that

x+ αχv ∈ F , f(x+ αχv)− f(x) ≥ f(y + αχv)− f(y).

(ii) For every v ∈ N and α ∈ [0, 1], it holds that

f(αχv)− f(0) = α{f({v})− f(∅)}.
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Let u ∈ N be any element with 0 < x̂(u) < 1, and consider the vector x̂ − x̂(u)χu which is obtained
from x̂ by rounding down the component x̂(u). It holds that

f(x̂) ≤ f(x̂− x̂(u)χu) + f(x̂(u)χu)− f(0) = f(x̂− x̂(u)χu) + x̂(u)f({u})
≤ f(x̂− x̂(u)χu) + max

v∈N
f({v}),

where the first inequality is by Lemma 3.11 (i) and the equality is by Lemma 3.11 (ii). By repeated
application of this argument, we obtain the inequality

opt ≤ f(x̂) ≤ f(x̃) + 2kmax
v∈N

f({v}) = f(X̃) + 2kmax
v∈N

f({v});

recall that there exist at most 2k non-integral components in x̂ by Lemma 3.7.

3.3 Algorithm for general functions. We give a proof of Theorem 1.2 (ii) for the general case
where f is not necessarily an integer-valued M\-concave function. That is, we show that for a fixed ε > 0,
a feasible solution X̃ to (kBM\M) satisfying

f(X̃) ≥ (1− ε)opt− 2kmax
v∈N

f({v}) (28)

can be computed deterministically in time polynomial in n, k, Φ, Ψ, and log(1/ε).

We give the outline of the proof. In this case, we can compute the function value and a subgradient
of f only approximately (see Theorem 1.4 (ii)). Although this makes it difficult to solve (CR) exactly
in polynomial time, we can still compute an almost-optimal solution in polynomial time. We denote by
opt the optimal value of (CR).

Lemma 3.12 For every ε > 0, we can compute a feasible solution x to (CR) with f(x) ≥ (1− ε)opt in
time polynomial in n, k, Φ, Ψ, and log(1/ε).

Proof of this lemma is given in Section 3.3.1.

Note that Lemma 3.7 concerning the near-integrality of a vertex optimal solution to (CR) still holds
in the case of general f . Hence, we can compute a feasible solution X̃ to (kBM\M) satisfying (26) in the
same way as in Section 3.2 once a vertex optimal solution to (CR) is obtained. It is, however, difficult
to compute a vertex optimal solution in this case. Instead, we will compute an almost-optimal solution
which is nearly integral by using Lemma 3.12.

Lemma 3.13 For every ε > 0, we can compute a feasible solution x̂ to (CR) such that f(x̂) ≥ (1− ε)opt
and x̂ has at most 2k non-integral components, in time polynomial in n, k, Φ, Ψ, and log(1/ε).

A possible approach to prove Lemma 3.13 is as follows: firstly compute a feasible solution to (CR)
which is sufficiently close to a vertex optimal solution, and then appropriately round up or down non-
integral components of the obtained feasible solution. Although the first step in this approach can be
done in the same way as in the proof of Lemma 3.6, the second step requires a careful analysis in detecting
which components to round up or down.

An alternative approach we use in this paper is to find a desired feasible solution x̂ in Lemma 3.13 in
a more direct way by fixing some components of a feasible solution to (CR) to 0 or 1. This can be done
by approximately solving the problem (CR) with an extra constraint x(v) = 0 or x(v) = 1. A detailed
proof is given in Section 3.3.2.

We finally show that a feasible solution X̃ to (kBM\M) satisfying (28) can be obtained by rounding
down non-integral components of a vector x̂ in Lemma 3.13. In the same way as in Section 3.2.3, we can
show that the set X̃ = {v ∈ N | x̂(v) = 1} satisfies the inequality

f(X̃) ≥ f(x̂)− 2kmax
v∈N

f({v}).

Since f(x̂) ≥ (1− ε)opt ≥ (1− ε)opt, the desired inequality (28) follows immediately.
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3.3.1 Solving continuous relaxation approximately. We give a proof of Lemma 3.12. In the
proof we use the following lemma.

Lemma 3.14 There exists an algorithm which, for given β ∈ Q and ε′ > 0, either asserts β > opt − ε′
or finds a feasible solution x to (CR) such that β ≤ f(x) + ε′, and its running time is polynomial in n,
k, Φ, Ψ, log(1/ε′), and the encoding length of β.

Proof. We prove the claim by using the ellipsoid method of Grötschel et al. [19]. Define

L(β) = {(y, α) ∈ [0, 1]N × R | y is a feasible solution to (CR), β ≤ α ≤ f(y)}.
By the result in [19, Ch. 4] on the polynomial-time equivalence between the weak optimization and the
weak separation, it suffices to prove that the following weak separation problem for the set L(β) is solvable
in polynomial time:

for given (y, α) ∈ [0, 1]N × Q and a rational number δ > 0, either assert that y is a
feasible solution to (CR) with β ≤ α ≤ f(y) + δ, or find a vector (s, ξ) ∈ QN × Q with
‖(s, ξ)‖∞ = 1 such that

s>(y′ − y) + ξ(α′ − α) ≤ δ (∀(y′, α′) ∈ L(β)).

Let (y, α) ∈ [0, 1]N ×Q. We first check whether y is a feasible solution to (CR) or not, and if not, then
output a hyperplane separating y from the feasible region of (CR). This can be done in the same way as
in the case of integer-valued f (see Section 3.2.1).

Suppose that y is a feasible solution to (CR). If α < β, then (y, α) is not in L(β), and we output
the vector (s, ξ) = (0,−1). If α ≥ β, then we compute an approximate value of f(y). By Theorem 1.4
(ii), we can compute in polynomial time η ∈ Q satisfying f(y) ≤ η ≤ f(y) + δ. If η ≥ α, then we have
α ≤ f(y) + δ, and therefore assert that y is a feasible solution to (CR) with β ≤ α ≤ f(y) + δ. Otherwise
(i.e., η < α), the vector (y, α) is not in L(β), and we compute an “approximate” subgradient of f at y.
By Theorem 1.4 (ii), we can compute in polynomial time a vector p ∈ QN satisfying

f(y′)− f(y) ≤ p>(y′ − y) + δ (∀y′ ∈ F).

It holds that f(y) ≤ η < α and α′ ≤ f(y′) for all (y′, α′) ∈ L(β). Hence, we have

α′ − α < f(y′)− f(y) ≤ p>(y′ − y) + δ (∀(y′, α′) ∈ L(β)).

This shows that as the output (s, ξ) of the oracle, we can use the vector (−p, 1) with each component
divided by ‖(−p, 1)‖∞. This concludes the proof of Lemma 3.14. 2

To compute a feasible solution x to (CR) with f(x) ≥ (1− ε)opt in polynomial time, we use Lemma
3.14 combined with binary search with respect to β. During the binary search, we maintain an interval
[β, β] and a feasible solution x• to (CR) such that

β ≤ f(x•) +
ε

3
·max
v∈N

f({v}), β ≥ opt− ε

3
·max
v∈N

f({v}).

Initially, we set β = 0, β =
∑
v∈N f({v}), and x• = 0; note that we have

∑
v∈N f({v}) ≥ opt since the

value
∑
v∈N f({v}) is an upper bound of the function values of f and also of f .

In each iteration of binary search, we use Lemma 3.14 with β = (β+β)/2 and ε′ = (ε/3) maxv∈N f({v}).
If β > opt − ε′ holds, then we update β = β, and proceed to the next iteration. If we find a feasible
solution x to (CR) such that β ≤ f(x) + ε′, then we update β = β, x• = x, and proceed to the next
iteration.

Suppose that β − β ≤ ε′ holds in some iteration. Then, it holds that

f(x•) ≥ β − ε′ ≥ β − 2ε′ ≥ opt− 3ε′ = opt− ε ·max
v∈N

f({v}) ≥ (1− ε)opt;

note that maxv∈N f({v}) ≤ opt since for each v ∈ N the vector χv is a feasible solution to (CR) by
assumption (4). Hence, the current x• is a desired feasible solution to (CR). The number of iterations
required by binary search is

O

(
log

∑
v∈N f({v})

(ε/3) maxv∈N f({v})

)
= O

(
log

3n

ε

)
.

This concludes the proof of Lemma 3.12.
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3.3.2 Detecting integral components. To prove Lemma 3.13, we will show that there exists a
polynomial-time algorithm which finds a pair of disjoint sets F0, F1 ⊆ N with |F0 ∪ F1| ≥ n − 2k such
that some (1− ε)-approximate solution x̂ of (CR) satisfies x̂(v) = 0 for v ∈ F0 and x̂(v) = 1 for v ∈ F1.

For a pair of disjoint sets S, T ∈ 2N , we denote by (CR[S, T ]) the problem (CR) with the additional
constraints that x(v) = 0 for v ∈ S and x(v) = 1 for v ∈ T . Similarly, we denote by (P[S, T ]) the problem
(kBM\M) with the additional constraints that X ∩ S = ∅ and T ⊆ X. That is, (P[S, T ]) is the problem
formulated as

Maximize fS,T (X) subject to X ∈ FS,T , ci(X) ≤ Bi − ci(T ) (1 ≤ i ≤ k),

where FS,T ⊆ 2N\(S∪T ) and fS,T : FS,T → R are given as

FS,T = {X ⊆ N \ (S ∪ T ) | X ∪ T ∈ F},
fS,T (X) = f(X ∪ T )− f(T ) (X ∈ FS,T ).

It can be shown that (N \ (S∪T ),FS,T ) is a matroid and fS,T is an M\-convex function. Hence, (P[S, T ])
is an instance of (kBM\M). Note that (CR[S, T ]) coincides with the continuous relaxation of (P[S, T ]),
which follows from the fact that F is the family of matroid independent sets and f is an M\-concave
function. This observation and Lemma 3.12 shown in Section 3.3.1 imply that for every ε > 0 we can
compute (1 − ε)-approximate solution of (CR[S, T ]) in polynomial time. We denote by opt[S, T ] the
optimal value of (CR[S, T ]); note that opt = opt[∅, ∅].

We now explain an algorithm to compute the sets F0 and F1. The algorithm maintains a pair of
disjoint sets S, T ∈ 2N and a feasible solution x̂ to (CR[S, T ]) satisfying the following condition:

f(x̂) ≥
(

1− |S ∪ T |+ 1

n+ 1
· ε
)
opt. (29)

Initially, we set S = ∅, T = ∅, and the vector x̂ is obtained by applying Lemma 3.12 to (CR). In the
following iterations, an element in N \ (S ∪ T ) is repeatedly added to either S or T (and x̂ is updated)
until |S ∪ T | ≥ n− 2k holds, as explained below.

Let S, T, x̂ be those obtained in the previous iteration. In each iteration of the algorithm, we check
whether an element u ∈ N \ (S ∪ T ) can be added to S or T . For each u ∈ N \ (S ∪ T ), we compute a
feasible solution xu0 to (CR[S ∪ {u}, T ]) and a feasible solution xu1 to (CR[S, T ∪ {u}]) such that

f(xu0 ) ≥
(

1− ε

n+ 1

)
opt[S ∪ {u}, T ], f(xu1 ) ≥

(
1− ε

n+ 1

)
opt[S, T ∪ {u}].

Suppose that f(xu0 ) ≥ (1− ε/(n+ 1))f(x̂) holds for some u ∈ N \ (S ∪ T ). Then, we have

f(xu0 ) ≥
(

1− ε

n+ 1

)
f(x̂)

≥
(

1− ε

n+ 1

)(
1− |S ∪ T |+ 1

n+ 1
· ε
)
opt ≥

(
1− |S ∪ T |+ 2

n+ 1
· ε
)
opt.

Hence, we add the element u to S, replace x̂ with xu0 , and proceed to the next iteration. Similarly, if
f(xu1 ) ≥ (1− ε/(n+ 1))f(x̂) holds for some u ∈ N \ (S ∪ T ), then we add u to T , replace x̂ with xu1 , and
proceed to the next iteration.

Suppose that max{f(xu0 ), f(xu1 )} < (1− ε/(n+ 1))f(x̂) hold for all u ∈ N \ (S ∪ T ). Then, we have(
1− ε

n+ 1

)
opt[S ∪ {u}, T ] ≤ f(xu0 ) <

(
1− ε

n+ 1

)
f(x̂) ≤

(
1− ε

n+ 1

)
opt,(

1− ε

n+ 1

)
opt[S, T ∪ {u}] ≤ f(xu1 ) <

(
1− ε

n+ 1

)
f(x̂) ≤

(
1− ε

n+ 1

)
opt,

implying that

max{opt[S ∪ {u}, T ],opt[S, T ∪ {u}]} < opt (∀u ∈ N \ (S ∪ T )).

This means that any optimal solution of the problem (CR[S, T ]) has no more integral component. On
the other hand, the problem (CR[S, T ]) has n′ = n − |S ∪ T | free variables, and Lemma 3.7 applied to
(CR[S, T ]) implies that there exists an optimal solution of (CR[S, T ]) which has at least (n′−2k) integral
components. Hence, we must have n′ ≤ 2k, i.e., |S ∪ T | ≥ n − 2k holds. By (29), the current vector x̂
satisfies f(x̂) ≥ (1− ε)opt. This concludes the proof of Lemma 3.13.
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4. PTAS for 1-budgeted M\-concave intersection. We give a proof of Theorem 1.6 for (1BM\I),
i.e., we show that a set X̃ ∈ F1 ∩ F2 satisfying the condition

f1(X̃) + f2(X̃) ≥ opt− 2 ·max
v∈N
{f1({v}) + f2({v})}, c(X̃) ≤ B + max

v∈N
c(v) (30)

can be computed in strongly-polynomial time. Recall the assumption that for all v ∈ N , the set X = {v}
is a feasible solution to (1BM\I) and satisfies f1({v}) + f2({v}) > 0.

4.1 Lagrangian relaxation approach. To obtain a set X̃ ∈ F1 ∩F2 satisfying the condition (30),
we apply the Lagrangian relaxation approach to (1BM\I) in a similar way as in [2, 39]. With a parameter
λ ∈ R+ called Lagrangian multiplier, the Lagrangian relaxation problem of (1BM\I) is given by

(LR(λ)) Maximize f1(X) + f2(X) + λ(B − c(X)) subject to X ∈ F1 ∩ F2.

The problem (LR(λ)) is an instance of the M\-concave intersection problem without budget constraint.
Indeed, the function f̂1 : F1 → R defined by

f̂1(X) = f1(X) + λ(B − c(X)) (X ∈ F1) (31)

is an M\-concave function, and therefore the objective function of (LR(λ)) can be regarded as the sum
of two M\-concave functions f̂1 and f2.

Since an M\-concave function can be transformed to a valuated matroid which has the same information
(see Section 2.4 and Appendix C), the M\-concave intersection problem can be reduced to the valuated
matroid intersection problem discussed in [29]. Hence, the theorems and algorithms in [29] for the valuated
matroid intersection problem can be applied to (LR(λ)) with slight modification. In particular, (LR(λ))
can be solved in strongly-polynomial time (see Appendix D).

We denote by zLR(λ) the optimal value of (LR(λ)), i.e.,

zLR(λ) = max{f1(X) + f2(X) + λ(B − c(X)) | X ∈ F1 ∩ F2} (λ ∈ R). (32)

By definition, zLR is a piecewise-linear convex function given as the upper envelope of many linear
functions f1(X) + f2(X) +λ(B− c(X)) (X ∈ F1∩F2), where λ is a variable. Therefore, for each interval
[η, ζ] such that the function zLR is linear in [η, ζ], there exists some X̂ ∈ F1 ∩ F2 such that

zLR(λ) = f1(X̂) + f2(X̂) + λ(B − c(X̂)) (∀λ ∈ [η, ζ])

and X̂ is an optimal solution to the problem (LR(λ)) for every λ ∈ [η, ζ].

A value λ = λ∗ minimizing zLR(λ) is called an optimal Lagrangian multiplier. Since zLR is a convex
function in λ, an optimal Lagrangian multiplier λ∗ is characterized by the condition that

(zLR)′+(λ∗) ≥ 0, (zLR)′−(λ∗) ≤ 0. (33)

Here, (zLR)′+(λ) and (zLR)′−(λ) denote the left derivative and the right derivative of the convex function
zLR at λ ∈ R+, respectively, which are defined by

(zLR)′+(λ) = lim
λ′↓λ

zLR(λ′)− zLR(λ)

λ′ − λ
, (zLR)′−(λ) = lim

λ′↑λ

zLR(λ′)− zLR(λ)

λ′ − λ
.

The next lemma shows that left and right derivatives of zLR can be computed in strongly-polynomial
time.

Lemma 4.1 Let λ ∈ R+, and δ be a sufficiently small positive real number. Also, let X∗ and Y∗ be
optimal solution to the problems (LR(λ + δ)) and (LR(λ − δ)), respectively. Then, X∗ and Y∗ have the
minimum value of c(X∗) and the maximum value of c(Y∗) among all optimal solutions to (LR(λ)), and
satisfy

(zLR)′+(λ) = B − c(X∗), (zLR)′−(λ) = B − c(Y∗). (34)

Proof. We give a proof of the statement for X∗ only since the statement for Y∗ can be shown
similarly. Since zLR is a piecewise-linear function and δ is a sufficiently small number, the function zLR
is linear in the interval [λ, λ+ 2δ]. Hence, there exists some X̂ ∈ F1 ∩ F2 such that

zLR(λ′) = f1(X̂) + f2(X̂) + λ′(B − c(X̂)) (∀λ′ ∈ [λ, λ+ 2δ]). (35)
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Since X∗ is an optimal solution to the problem (LR(λ+ δ)) and the function zLR is linear in the interval
[λ, λ+ 2δ], the set X∗ is also an optimal solution to the problem (LR(λ′)) for every λ′ ∈ [λ, λ+ 2δ], which
implies that X̂ = X∗ satisfies the equation (35). Hence, we have (zLR)′+(λ) = B − c(X∗).

Suppose, to the contrary, that there exists some optimal solution X ′ to (LR(λ)) such that c(X ′) <
c(X∗). Since both of X ′ and X∗ are optimal to (LR(λ)), we have

f1(X ′) + f2(X ′) + λ(B − c(X ′)) = f1(X∗) + f2(X∗) + λ(B − c(X∗)),

which, combined with the inequality c(X ′) < c(X∗), implies that

f1(X ′) + f2(X ′) + (λ+ δ)(B − c(X ′)) > f1(X∗) + f2(X∗) + (λ+ δ)(B − c(X∗)),

a contradiction to the fact that X∗ is an optimal solution to (LR(λ + δ)). Therefore, X∗ minimizes the
value c(X∗) among all optimal solutions to (LR(λ)). 2

An optimal Lagrangian multiplier can be computed in polynomial time. Indeed, since the optimality
condition (33) can be checked in polynomial time by Lemma 4.1, an optimal Lagrangian multiplier can
be found in weakly-polynomial time by binary search, provided that the input numbers such as c(j), B,
f1(X), and f2(X) are all rational numbers. Moreover, this can be done in strongly-polynomial time by
using the parametric approach of Megiddo [27] in the same way as in [2, 39] (see Appendix E for details).

Lemma 4.2 An optimal Lagrangian multiplier can be computed in time polynomial in n.

We show some properties of optimal solutions to (LR(λ∗)) with an optimal Lagrangian multiplier λ∗.

Lemma 4.3 Let λ∗ be an optimal Lagrangian multiplier and X ∈ 2N an optimal solution to (LR(λ∗)).
Then, it holds that

f1(X) + f2(X) + λ∗(B − c(X)) ≥ opt. (36)

Moreover, the following properties hold according to the value of c(X):
(i) if c(X) < B, then f1(X) + f2(X) ≤ opt holds,
(ii) if c(X) = B, then X satisfies the condition (30),
(iii) if c(X) > B, then f1(X) + f2(X) ≥ opt holds.

Proof. We have (36) since (LR(λ∗)) is a relaxation of (1BM\I) and X is an optimal solution to
(LR(λ∗)). If c(X) < B, then the set X is a feasible solution to (1BM\I), and therefore f1(X∗)+f2(X∗) ≤
opt holds. If c(X) = B, then the inequality (36) implies that f1(X) + f2(X) ≥ opt, and therefore the
condition (30) holds. If c(X) > B, then (36) implies f1(X) + f2(X) ≥ opt since λ∗ ≥ 0. 2

4.2 Algorithm. We present an algorithm for computing a set X̃ ∈ F1 ∩F2 satisfying the condition
(30). In the following, we explain each step of the algorithm in detail, and prove the validity of the
algorithm as well as the strong polynomiality of the running time.

Step 0: Compute an optimal Lagrangian multiplier λ∗ and optimal solutions X∗, Y∗ of the problem
(LR(λ∗)) with c(X∗) ≤ B ≤ c(Y∗). If c(X∗) = B then output X∗ and stop; if c(Y∗) = B then
output Y∗ and stop; otherwise, set X := X∗ and Y := Y∗.

Step 1: Construct an auxiliary graph GYX (definition is given below). Find a zero-length cycle C in GYX
with the minimum number of arcs and set X ′ := X ⊕ C.

Step 2: If X ′ = Y , then apply an additional patching operation explained in Section 4.3 to obtain a
new set X̃ ∈ F1 ∩ F2 satisfying the condition (30). Output X̃ and stop.

Step 3: If c(X ′) = B, then output X ′ and stop.

Step 4: If c(X ′) < B, then set X := X ′; if c(X ′) > B, then set Y := X ′. Go to Step 1.

In Step 0, we compute an optimal Lagrangian multiplier λ∗, which can be done in strongly-polynomial
time by Lemma 4.2. We also compute two optimal solutions X∗ and Y∗ to (LR(λ∗)) satisfying c(X∗) ≤
B ≤ c(Y∗). This can be done in strongly-polynomial time by solving the problems (LR(λ∗ + δ)) and
(LR(λ∗− δ)). Indeed, if X∗ and Y∗ are optimal solutions to (LR(λ∗+ δ)) and (LR(λ∗− δ)), respectively,
then Lemma 4.1 and the optimality condition (33) imply that

(zLR)′+(λ∗) = B − c(X∗) ≥ 0, (zLR)′−(λ∗) = B − c(Y∗) ≤ 0,
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i.e., c(X∗) ≤ B ≤ c(Y∗) holds. If c(X∗) = B (resp., c(Y∗) = B), then X∗ (resp., Y∗) satisfies the condition
(30) by Lemma 4.3 (ii). Otherwise (i.e., c(X∗) < B < c(Y∗)), we set X = X∗, Y = Y∗ and start the loop
of Steps 1–4.

We note that at the beginning of the loop, the condition c(X) < B < c(Y ) is always satisfied (see the
description of Step 4 below). In each iteration of the loop, we repeatedly apply a “patching” operation
to increase the value of c(X) (or to decrease c(Y )) while keeping the condition that X and Y are optimal
solutions to the Lagrangian relaxation problem (LR(λ∗)).

The patching operation is done by using a cycle in an auxiliary graph; given X,Y ∈ F1∩F2, we define
an auxiliary graph GYX = (V,A) by

V = (X \ Y ) ∪ (Y \X) ∪ {sa, sd},
A = E1 ∪ E2 ∪A1 ∪A2 ∪D1 ∪D2,

E1 = {(u, v) | u ∈ X \ Y, v ∈ Y \X, X − u+ v ∈ F1},
E2 = {(v, u) | v ∈ Y \X, u ∈ X \ Y, X + v − u ∈ F2},
A1 = {(sa, v) | v ∈ Y \X, X + v ∈ F1},
A2 = {(v, sa) | v ∈ Y \X, X + v ∈ F2},
D1 = {(u, sd) | u ∈ X \ Y, X − u ∈ F1},
D2 = {(sd, u) | u ∈ X \ Y, X − u ∈ F2}.

where sa, sd are new elements not in N . We define the arc length ω(a) of each arc a ∈ A by

ω(a) =



f̂1(X − u+ v)− f̂1(X) (a = (u, v) ∈ E1),
f2(X + v − u)− f2(X) (a = (v, u) ∈ E2),

f̂1(X + v)− f̂1(X) (a = (sa, v) ∈ A1),
f2(X + v)− f2(X) (a = (v, sa) ∈ A2),

f̂1(X − u)− f̂1(X) (a = (u, sd) ∈ D1),
f2(X − u)− f2(X) (a = (sd, u) ∈ D2),

where the function f̂1 is given by (31). The auxiliary graph defined here is a variant of the one for
the valuated matroid intersection problem used in [30] (see also Appendix D). Hence, properties of the
auxiliary graph for the valuated matroid intersection problem can be used for the auxiliary graph GYX
with some appropriate modification.

A cycle in the graph GYX is a directed closed walk which visits each node at most once. In every cycle
in GYX , arcs in E1 ∪ A1 ∪ D1 and arcs in E2 ∪ A2 ∪ D2 appear alternately, and therefore every cycle
contains an even number of arcs. We call a cycle in GYX admissible if the cycle does not visit both of of
sa and sd. An admissible cycle in GYX with the maximum length with respect to ω is called a maximum
admissible cycle in GYX .

For an admissible cycle C in GYX , we define an operation X ⊕ C (⊆ N) by

X ⊕ C = X \ {u ∈ X \ Y | (u, v) ∈ C ∩ (E1 ∪D1)} ∪ {v ∈ Y \X | (u, v) ∈ C ∩ (E1 ∪A1)}.

The following properties are easy to see:

• if C visits neither of sa and sd, then C ⊆ E1 ∪ E2 and |X ⊕ C| = |X|,
• if C visits sa but not sd, then C ⊆ E1 ∪ E2 ∪A1 ∪A2 and |X ⊕ C| = |X|+ 1,
• if C visits sd but not sa, then C ⊆ E1 ∪ E2 ∪D1 ∪D2 and |X ⊕ C| = |X| − 1.

The next property follows from the results in [30, Part I] for the valuated matroid intersection problem.

Lemma 4.4 Let X,Y ∈ F1 ∩ F2.
(i) Let C be a maximum admissible cycle in GYX with the minimum number of arcs, and ω(C) be the total
length of the cycle C. Then, we have

X ⊕ C ∈ F1 ∩ F2, f̂1(X ⊕ C) + f2(X ⊕ C) = f̂1(X) + f2(X) + ω(C).

(ii) If X is an optimal solution to (LR(λ∗)), then there exists no positive-length admissible cycle in GYX .
(iii) If Y is an optimal solution to (LR(λ∗)) and X is not optimal, then there exists a positive-length
admissible cycle in GYX .
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From this lemma we can obtain the following property.

Lemma 4.5 Let X and Y be two distinct optimal solutions to (LR(λ∗)). Then, the length of a maximum
admissible cycle in GYX is zero.

Proof. By Lemma 4.4 (ii), the length of every admissible cycle C in GYX is non-positive, i.e,
ω(C) ≤ 0. Hence, it suffices to show that there exists an admissible cycle with zero length. We prove
this by contradiction.

Assume, to the contrary, that every admissible cycle in GYX has negative length, i.e., ω(C) < 0 for
every admissible cycle C. We consider a slight perturbation of the objective function in (LR(λ∗)) so that
Y is a unique optimal solution and X is not optimal. This can be done by replacing the function f̂1 with
a function f̂δ1 : F1 → R given by

f̂δ1 (Z) = f̂1(Z) + δ|Z ∩ Y | − δ|Z \ Y | (Z ∈ F1),

where δ is a sufficiently small positive real number; note that f̂δ1 is an M\-concave function. By this
perturbation the auxiliary graph does not change, whereas the arc length changes; we denote by ωδ(a)
(a ∈ A) the arc length after the perturbation.

By applying Lemma 4.4 (iii) to the perturbed problem, there exists an admissible cycle C in the
auxiliary graph GYX which has positive length with respect to ωδ (i.e., ωδ(C) > 0) since Y is optimal and
X is not optimal in the perturbed problem. On the other hand, we have

ωδ(C) ≤ ω(C) + 2δ · (|C|/2) = ω(C) + δ|C|; (37)

this follows from the observation that arcs in E1 ∪A1 ∪D1 and arcs in E2 ∪A2 ∪D2 appear alternately
in C and

ωδ(a) ≤ ω(a) + 2δ (∀a ∈ E1 ∪A1 ∪D1), ωδ(a) = ω(a) (∀a ∈ E2 ∪A2 ∪D2).

In addition, it follows from the inequality ω(C) < 0 and the choice of δ that ω(C) + δ|C| < 0, which
together with (37), implies ωδ(C) < 0, a contradiction. 2

We show that the patching operation generates a new optimal solution to (LR(λ∗)).

Lemma 4.6 Let X and Y be two distinct optimal solutions to (LR(λ∗)), and C be a zero-length admissible
cycle in GYX with the minimum number of arcs. Then, X ⊕ C is an optimal solution to (LR(λ∗)) such
that X ⊕ C 6= X.

Proof. The statement follows from Lemma 4.4 (i) and Lemma 4.5. 2

We now explain each step of the loop in detail. Recall that X and Y are optimal solutions to the
problem (LR(λ∗)) satisfying c(X) < B < c(Y ).

In Step 1, we compute a zero-length cycle C in GYX with the minimum number of arcs to obtain a
new set X ′ = X ⊕ C, which a new optimal solution X ′ to the problem (LR(λ∗)) by Lemma 4.6. Note
that such a cycle C can be computed in strongly-polynomial time by using an appropriate shortest-path
algorithm since a zero-length cycle is a maximum cycle by Lemma 4.5.

In Step 2, we check if X ′ = Y or not. If X ′ = Y , then we apply an additional patching operation to
obtain a new set X̃ ∈ F1 ∩ F2 satisfying the condition (30). This additional patching operation updates
in strongly-polynomial time the current set X by using the cycle C found in Step 1, in a similar way as in
the original patching operation; the difference is that we use only a part of C in the additional patching
operation. Details are given in the next section.

In Steps 3 and 4, we compare the value c(X ′) with B. If c(X ′) = B, then X ′ satisfies the condition
(30) by Lemma 4.3 (ii). Hence, we output X ′ in such a case. Otherwise, we have either c(X ′) < B or
c(X ′) > B; in the former case we replace X with X ′ and in the latter case we replace Y with X ′. In
either case the condition c(X) < B < c(Y ) is maintained after the update of X or Y . We note that if
X ′ 6= Y , then we have

|(X ′ \ Y ) ∪ (Y \X ′)| < |(X \ Y ) ∪ (Y \X)|, |(X \X ′) ∪ (X ′ \X)| < |(X \ Y ) ∪ (Y \X)|,
which implies that the loop of Steps 1–4 are repeated at most n times. Therefore, the algorithm terminates
in strongly-polynomial time.
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4.3 Additional patching operation. We finally explain the additional patching operation used in
the case where X ⊕ C = Y . In this case, the cycle C contains all nodes in (X \ Y ) ∪ (Y \X). The cycle
may contain the node sa or sd; in such a case we have |X| − |Y | = ±1.

Let a1, a2, . . . , a2h ∈ A be a sequence of arcs in the cycle C, where 2h is the number of arcs in C. It
is assumed that aj ∈ E1 ∪A1 ∪D1 if j is odd and aj ∈ E2 ∪A2 ∪D2 if j is even. For j = 1, 2, . . . , h, let

αj = ω(a2j−1) + ω(a2j). Since C is a zero-length cycle, we have
∑h
j=1 αj = 0.

The following property of a sequence of real numbers, known as Gasoline Lemma (cf. [26]), is useful
in design and analysis of our patching operation.

Lemma 4.7 Let α1, α2, . . . , αh ∈ R be a sequence of real numbers satisfying
∑h
j=1 αj = 0. Then, there

exists some t ∈ {1, 2, . . . , h} such that

t+i∑
j=t

αj(modh) ≥ 0 (i = 0, 1, . . . , h− 1),

where α0 = αh.

From this lemma, we may assume that

i∑
j=1

αj ≥ 0 (∀i = 1, 2, . . . , h). (38)

In the following, we assume that C ⊆ E1∪E2 for simplicity of the description; the remaining cases can
be shown similarly. For j = 1, 2, . . . , h, denote a2j−1 = (uj , vj) and a2j = (vj , uj+1); note that a2j−1 ∈ E1

and a2j ∈ E2. Since C contains all nodes in (X \ Y ) ∪ (Y \X), we have

X \ Y = {u1, u2, . . . , uh}, Y \X = {v1, v2, . . . , vh};
For j = 1, 2, . . . , h, we define ηj ∈ R by

ηj = c(vj)− c(uj).
Then, we have

αj = (f1(X − uj + vj)− f1(X)) + (f2(X + vj − uj+1)− f2(X))− λ∗ηj . (39)

Let t ∈ {1, 2, . . . , h} be the minimum integer such that

c(X) +

t∑
j=1

ηj > B. (40)

Since

c(X) < B < c(Y ) = c(X) +

h∑
j=1

ηj ,

we have t ≥ 1. In addition, the choice of t implies that

c(X) +

t−1∑
j=1

ηj ≤ B. (41)

We define X̃, X̃1, X̃2 ⊆ N by

X̃ = X \ {u1, u2, . . . , ut, ut+1} ∪ {v1, . . . , vt},
X̃1 = X̃ ∪ {ut+1} = X \ {u1, u2, . . . , ut} ∪ {v1, . . . , vt},
X̃2 = X̃ ∪ {u1} = X \ {u2, . . . , ut, ut+1} ∪ {v1, . . . , vt}.

Note that X̃ = X̃1 ∩ X̃2 holds. Putting C ′ = {a1, a2, . . . , a2t−1, a2t}, we have

C ′ ∩ E1 = {a1, a3, . . . , a2t−1}, X̃1 = X \ {u | (u, v) ∈ C ′ ∩ E1} ∪ {v | (u, v) ∈ C ′ ∩ E1},
C ′ ∩ E2 = {a2, a4, . . . , a2t}, X̃2 = X \ {u | (v, u) ∈ C ′ ∩ E2} ∪ {v | (v, u) ∈ C ′ ∩ E2}.

Below we show that the set X̃ satisfies X̃ ∈ F1 ∩ F2 and the condition (30).
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Lemma 4.8 It holds that

X̃1 ∈ F1, X̃2 ∈ F2, (42)

f1(X̃1) = f1(X) +

t∑
j=1

(f1(X − uj + vj)− f1(X)), (43)

f2(X̃2) = f2(X) +

t∑
j=1

(f2(X − uj+1 + vj)− f2(X)). (44)

Proof. By using the fact that C ′ is a subpath of a zero-length admissible cycle with the smallest
number of arcs, we can show the claims by using a similar proof technique as in [30]. Below we give an
outline of the proof for X̃1 ∈ F1 and the equation (43); proof of X̃2 ∈ F2 and (44) is similar and omitted.

We consider a subgraph G′1 = (V ′1 , E
′
1) of the graph GYX such that

V ′1 = {u1, u2, . . . , ut} ∪ {v1, v2, . . . , vt} = (X1 \ X̃1) ∪ (X̃1 \X1),

E′1 = {(u, v) | u, v ∈ V ′1 , (u, v) ∈ E1}.

Note that G′1 is a bipartite graph, and the arc set C ′ ∩ E1 = {(uj , vj) | j = 1, 2, . . . , t} is a perfect
matching of G′1. It can be shown by using the fact that C ′ is a subpath of a maximum admissible cycle
that C ′ ∩ E1 is a maximum-length matching in G′1. Moreover, we can show that C ′ ∩ E1 is a unique
maximum-length matching in G′1; this follows from the fact that C ′ is a subpath of a maximum admissible
cycle with the smallest number of arcs (cf. [30, Part II, Sec. 2.1]). By using this fact, we can prove, as in
the “unique-max lemma” in [30], that

X̃1 = X \ {u | (u, v) ∈ C ′ ∩ E1} ∪ {v | (u, v) ∈ C ′ ∩ E1} ∈ F1,

f1(X̃1) = f1(X) +

t∑
j=1

ω(uj , vj) = f1(X) +

t∑
j=1

(f1(X − uj + vj)− f1(X)).

That is, we have X̃1 ∈ F1 and (43). 2

Since F1 and F2 are the families of matroid independent sets and X̃ is a common subset of X̃1 and
X̃2, we have X̃ ∈ F1 ∩ F2 by (42).

We then prove the first inequality in the condition (30). It holds that

opt ≤ f1(X) + f2(X) + λ∗(B − c(X)) +

t∑
j=1

αj

=

[
f1(X) +

t∑
j=1

(f1(X − uj + vj)− f1(X))

]

+

[
f2(X) +

t∑
j=1

(f2(X − uj+1 + vj)− f2(X))

]
+ λ∗

[
(B − c(X))−

t∑
j=1

ηj

]

= f1(X̃1) + f2(X̃2) + λ∗

[
(B − c(X))−

t∑
j=1

ηj

]
< f1(X̃1) + f2(X̃2), (45)

where the first inequality is by (36) in Lemma 4.3 and (38), the first equality is by (39), the second equality
is by (43) and (44), and the last inequality is by (40). Since X̃1 = X̃ ∪ {ut+1} and X̃2 = X̃ ∪ {u1}, the
submodularity of f1 and f2 (see Theorem 2.2) implies that

f1(X̃) + f2(X̃) = f1(X̃1)− (f1(X̃1)− f1(X̃)) + f2(X̃2)− (f2(X̃2)− f2(X̃))

≥ f1(X̃1)− (f1({ut+1})− f1(∅)) + f2(X̃2)− (f2({u1})− f2(∅))
≥ f1(X̃1) + f2(X̃2)− 2 ·max

v∈N
(f1({v}) + f2({v}))

≥ opt− 2 ·max
v∈N

(f1({v}) + f2({v})),
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where the last inequality is by (45). Hence, the set X̃ satisfies the first inequality in (30).

Finally, we have

c(X̃) = c(X) +

t∑
j=1

ηj − c(ut+1) ≤
(
c(X) +

t−1∑
j=1

ηj

)
+ c(vt) ≤ B + max

v∈N
c(v),

where the second inequality is by (41). Hence, X̃ satisfies the second inequality in (30). This concludes
the proof of Theorem 1.6.
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[9] Chekuri, C., J. Vondrák, R. Zenklusen. 2011. Submodular function maximization via the multilinear
relaxation and contention resolution schemes. Proc. 43rd Annual ACM Symposium on Theory of
Computing, ACM, New York, NY, 783–792.

[10] Cramton, P., Y. Shoham, R. Steinberg. 2006. Combinatorial Auctions. MIT Press, Cambridge, MA.

[11] Dress, A.W.M., W. Wenzel. 1982. Valuated matroids. Adv. Math. 93 214–250.

[12] Feige, U. 1998. A threshold of lnn for approximating set cover. J. ACM 45 634–652.

[13] Feige, U. 2009. On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39
122–142.

[14] Feldman, M., J. Naor, R. Schwartz. 2011. A unified continuous greedy algorithm for submodular
maximization. Proc. 52th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
IEEE Computer Society, Washington, DC, 580–579.
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Appendix A. Reduction of budgeted M\-concave maximization to budgeted GS utility
maximization. We show that the k-budgeted M\-concave maximization problem (kBM\M) can be
reduced to the k-budgeted GS utility maximization problem (1).

Given an instance of (kBM\M) with an M\-concave function f : F → R, let f̃ : 2N → R be a function
given by (2), i.e.,

f̃(X) = max{f(Y ) | Y ∈ F , Y ⊆ X} (X ∈ 2N ).

It should be noted that the function value of f̃ can be evaluated in polynomial time (see Theorem 2.1)
since the value f̃(X) is given as the maximization of an M\-concave function fX : FX → R defined by

FX = {Y | Y ∈ F , Y ⊆ X}, fX(Y ) = f(Y ) (Y ∈ FX).

Proposition A.1 The function f̃ : 2N → R is a GS utility function.

Proof. By Theorem 1.1, it suffices to show that the function f̃ satisfies the condition (M\-EXC) in
the definition of M\-concave functions. Take X,Y ∈ 2N and u ∈ X \ Y . Let I, J ∈ F be subsets of X
and Y , respectively, such that f̃(X) = f(I) and f̃(Y ) = f(J).

If u 6∈ I, then
f̃(X − u) ≥ f(I) = f̃(X), f̃(Y + u) ≥ f(J) = f̃(Y ),

which implies (i) in (M\-EXC).

We then assume u ∈ I. Since u ∈ X \ Y , we have u ∈ I \ J . By (M\-EXC) applied to f , I, J , and u,
at least one of (a) and (b) holds, where

(a) I − u ∈ F , J + u ∈ F , and f(I) + f(J) ≤ f(I − u) + f(J + u),
(b) ∃v ∈ J \I: I−u+v ∈ F , J+u−v ∈ F , and f(I)+f(J) ≤ f(I−u+v)+f(J+u−v).

If (a) holds, then we have

f̃(X − u) + f̃(Y + u) ≥ f(I − u) + f(J + u) ≥ f(I) + f(J) = f̃(X) + f̃(Y ),

i.e., (i) in (M\-EXC) holds.

We then consider the case where (b) holds. If v ∈ X, then I − u+ v ⊆ X − u, J + u− v ⊆ Y + u, and
hence

f̃(X − u) ≥ f(I − u+ v), f̃(Y + u) ≥ f(J + u− v),

which implies

f̃(X − u) + f̃(Y + u) ≥ f(I − u+ v) + f(J + u− v) ≥ f(I) + f(J) = f̃(X) + f̃(Y ),

i.e., (i) in (M\-EXC) holds. If v 6∈ X, then we have v ∈ Y \X and

f̃(X − u+ v) ≥ f(I − u+ v), f̃(Y + u− v) ≥ f(J + u− v),

which implies

f̃(X − u+ v) + f̃(Y + u− v) ≥ f(I − u+ v) + f(J + u− v) ≥ f(I) + f(J) = f̃(X) + f̃(Y ),

i.e., (ii) in (M\-EXC) holds. 2

We consider the k-budgeted GS utility maximization problem (1) with the objective function f̃ :

Maximize f̃(X) subject to X ∈ 2N , ci(X) ≤ Bi (i = 1, 2, . . . , k). (46)

The following property shows that an optimal solution to (kBM\M) can be obtained by solving the
problem (46).

Proposition A.2 Every minimal optimal solution to the problem (46) is an optimal solution to
(kBM\M).

Proof. Let X∗ ∈ 2N be a minimal optimal solution to the problem (46). Since f(Y ) ≤ f̃(Y ) for
every Y ∈ F , it suffices to show that X∗ ∈ F and f̃(X∗) = f(X∗). Let Y∗ ∈ F be a subset of X∗ such
that f̃(X∗) = f(Y∗). We have

ci(Y∗) ≤ ci(X∗) ≤ Bi (i = 1, 2, . . . , k),

and it holds that f̃(Y∗) = f(Y∗) by the definition of f̃ . Hence, the set Y∗ is also an optimal solution to
(46). By the minimality of X∗, we have X∗ = Y∗ ∈ F , which implies f̃(X∗) = f(X∗). 2
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Appendix B. Partial enumeration technique for PTAS. Theorems 1.2 and 1.6 state that
there exist polynomial-time algorithms which compute high-quality solutions which are almost feasible
to (kBM\M) and to (1BM\I), respectively. We show that by using a standard technique called “partial
enumeration” (see, e.g., [2, 18, 39]), these algorithms can be transformed into PTASes for (kBM\M) and
for (1BM\I), respectively.

We here consider a more general setting. Let F ⊆ 2N be an independence system, i.e., F satisfies the
condition that if X ∈ F and Y ⊆ X then Y ∈ F . Let f : F → R be a function defined on F satisfying
f(∅) = 0, and suppose that f is a submodular function in the following sense:

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (∀X,Y ∈ F such that X ∪ Y ∈ F). (47)

For X ∈ F and Y ⊆ N with X ⊆ Y , we define a set family FYX (⊆ 2Y \X) and a function fYX : FYX → R
by

FYX = {U | U ⊆ Y \X, U ∪X ∈ F}, (48)

fYX (U) = f(X ∪ U)− f(X) (U ∈ FYX ). (49)

Note that FYX is also an independence system and fYX is a submodular function on FYX with fYX (∅) = 0.
We say that FYX (resp., fYX ) is a minor of F (resp., f).

Let S be a family of submodular functions f : F → R defined on independence systems F such that
f(∅) = 0, and assume that S is minor-closed, i.e., every minor of f ∈ S is also in S. We consider the
following budgeted optimization problem:

(kBSM) Maximize f(X) subject to X ∈ F , ci(X) ≤ Bi (1 ≤ i ≤ k), (50)

where f : F → R is a function in S, k is a positive integer, and ci ∈ RN+ , Bi ∈ R+ (i = 1, 2, . . . , k). We
denote by opt the optimal value of (kBSM). Note that the problems (kBM\M) and (1BM\I) are special
cases of (kBSM). We may assume that

{v} is a feasible solution to (kBSM) such that f({v}) > 0 (∀v ∈ N);

the validity of this assumption can be shown in a similar way as in Proposition 3.1.

We prove the following theorem by applying the partial enumeration technique to (kBSM). We define
two parameters Φ and Ψ representing the input size of the problem by

Φ = max
X∈F
〈f(X)〉, Ψ = max

[
max

1≤i≤k,j∈N
〈ci(j)〉, max

1≤i≤k
〈Bi〉

]
.

Theorem B.1 Let α ∈ [0, 1] and η ∈ Z+. Suppose that the problem (kBSM) has an algorithm which
computes a set X̃ ∈ F satisfying

f(X̃) ≥ α · opt− η ·max
v∈N

f({v}),

ci(X̃) ≤ Bi + η ·max
v∈N

ci(v) (i = 1, 2, . . . , k)

in O(µ(n,Φ,Ψ)) time, where µ(n,Φ,Ψ) is a function which is monotone nondecreasing with respect to
n,Φ, and Ψ.
(i) For every ε ∈ (0, α], the problem (kBSM) has an (α − ε)-approximation algorithm which runs in
nO(k/ε) ·O(µ(n,Φ,Ψ)) time.
(ii) If µ(n,Φ,Ψ) is a polynomial function in n,Φ, and Ψ, then (kBSM) has a polynomial-time (α − ε)-
approximation algorithm for fixed k and ε.

Then, Theorem 1.3 (resp., Theorem 1.5) is an immediate consequence of Theorem B.1 and Theorem 1.2
(resp., Theorem 1.6), where α = 1− ε and η = 2k (resp., η = 2).

We now give a proof of Theorem B.1. We set

ε′ =
1

d(α+ 1)/εe
so that 1/ε′ = d(α + 1)/εe is a positive integer. Let X∗ ∈ F be an optimal solution of (kBSM) which is
fixed in the following discussion. We may assume that |X∗| > (k+ 1)η/ε′ since otherwise the cardinality
of X∗ is bounded by a constant number and therefore such X∗ can be found by a brute-force algorithm
in polynomial time.

Our algorithm consists of the following three major steps:
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Step 1: Guess a subset Xb of X∗ with |Xb| = (k+ 1)η/ε′ consisting of “large” elements. Intuitively, Xb

consists of elements v ∈ N such that at least one of the the values f({v}) and ci(v) (i = 1, 2, . . . , k)
is sufficiently large compared to other elements in N (a precise definition of Xb is given later).

Step 2: By using the algorithm in the assumption of Theorem B.1, compute a set Xs satisfying the
following conditions:

Xb ∪Xs ∈ F , (51)

f(Xb ∪Xs) ≥ (α− ε′)opt, (52)

ci(Xb ∪Xs) ≤ (1 + ε′)Bi (i = 1, 2, . . . , k). (53)

Note that the set Xb ∪Xs may violate the constraints of (kBSM) (but only slightly). If Xb ∪Xs

is a feasible solution to (kBSM), then output Xb ∪Xs and stop; otherwise, go to Step 3.

Step 3: To make the set Xb ∪Xs a feasible solution to the problem (kBSM), compute a subset U of
Xb ∪Xs such that (Xb ∪Xs) \U is an (1− ε′)(α− ε′)-approximate feasible solution to (kBSM).
Output (Xb ∪Xs) \ U .

If the set Xb is guessed correctly, then the output in Step 3 is an (α − ε)-approximate solution since
(1− ε′)(α− ε′) ≥ α− ε.

It should be noted that for a given set Xb, it is difficult to check if Xb is a correct guess. Hence, we need
to enumerate all possible subsets Xb of N with cardinality (k + 1)η/ε′, and for each subset Xb we apply
Steps 2 and 3 to obtain a feasible solution to (kBSM). That is, we obtain at most n(k+1)η/ε′ = nO(k/ε)

feasible solutions, and at least one of them is an (α− ε)-approximate solution to (kBSM). Therefore, we
just need to output the best feasible solution among the feasible solutions obtained so far.

Below we explain the details of each step.

Details of Step 1. We explain how to compute a set Xb in Step 1.

As a part of the set Xb, we first guess a subset Z0 of X∗ which maximizes the value f(Z0) under the
condition that

|Z0| = η/ε′, Z0 is a feasible solution to (kBSM).

This is done by enumerating all subsets of N with cardinality η/ε′.

Let

N0 = {v ∈ N \ Z0 | Z0 ∪ {v} ∈ F , f(Z0 ∪ {v})− f(Z0) ≤ (ε′/η)f(Z0)}.

Lemma B.1 X∗ \ Z0 ⊆ N0 holds if Z0 is guessed correctly.

Proof. Assume, to the contrary, that there exists some v ∈ X∗ \ Z0 such that v 6∈ N0. We have
Z0 ∪ {v} ∈ F since it is a subset of X∗ ∈ F . Since v 6∈ N0, we have

f(Z0 ∪ {v})− f(Z0) >
ε′

η
f(Z0). (54)

Let u = u∗ ∈ Z0 minimize the value f(Z0)− f(Z0 \ {u}). It follows from the submodularity (47) that

f(Z0)− f(Z0 \ {u∗}) ≤ 1

|Z0|
∑
u∈Z0

(f(Z0)− f(Z0 \ {u}))

≤ 1

|Z0|
(f(Z0)− f(∅)) =

ε′

η
f(Z0). (55)

From (54) and (55) follows that

f(Z0)− f(Z0 \ {u∗}) < f(Z0 ∪ {v})− f(Z0) ≤ f((Z0 \ {u∗}) ∪ {v})− f(Z0 \ {u∗}),

where the last inequality is by submodularity (47). Hence, we have f(Z0) < f((Z0 \ {u∗}) ∪ {v}),
a contradiction to the choice of Z0 since (Z0 \ {u∗}) ∪ {v} is a feasible solution to to (kBSM) with
cardinality equal to η/ε′. 2
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Based on the lemma above, we select remaining elements of Xb from the set N0. We then guess a set
Z1 of η/ε′ largest elements in X∗ \ Z0 with respect to the cost c1. This is done by selecting a subset Z1

of N0 satisfying
|Z1| = η/ε′, Z0 ∪ Z1 is a feasible solution to (kBSM).

Let
N1 = {v ∈ N0 \ Z1 | Z0 ∪ Z1 ∪ {v} ∈ F , c1(v) ≤ min

u∈Z1

c1(u)}.

If Z1 is a correct guess, then we have X∗ \ (Z0∪Z1) ⊆ N1 since Z1 is chosen as the set of largest elements
in X∗ \ Z0 with respect to the cost c1.

In a similar way, we iteratively guess a set Zi of η/ε′ largest elements in X∗ \ (Z0 ∪ Z1 ∪ · · · ∪ Zi−1)
with respect to the cost ci for i = 2, 3, . . . , k. This is done by selecting a subset Zi of Ni−1 satisfying

|Zi| = η/ε′, Z0 ∪ Z1 ∪ · · · ∪ Zi is a feasible solution to (kBSM).

Let
Ni = {v ∈ Ni−1 \ Zi | Z0 ∪ Z1 ∪ · · · ∪ Zi ∪ {v} ∈ F , ci(v) ≤ min

u∈Zi

ci(u)}.

If Zi is a correct guess, then we have

X∗ \ (Z0 ∪ Z1 ∪ · · · ∪ Zi−1 ∪ Zi) ⊆ Ni.

Let

Xb =

k⋃
i=0

Zi.

Due to the choice of Z0, Z1, . . . , Zk, we see that Xb is a feasible solution to (kBSM), even if Xb is not a
correct guess. If Xb ⊆ X∗, then we have

f(Xb) ≥ f(X∗)− f(X∗ \Xb) ≥ 0, (56)

where the first inequality is by the submodularity of f and the second by the optimality of X∗.

Details of Step 2. We then explain how to compute a set Xs in Step 2. We denote

F ′ = FXb∪Nk

Xb
, f ′ = fXb∪Nk

Xb

(see (48) and (49) for the definitions of FXb∪Nk

Xb
and fXb∪Nk

Xb
). Then, f ′ is a function defined on F ′ and

satisfies f ′ ∈ S. We consider an instance of (kBSM) given by

Maximize f ′(U) subject to U ∈ F ′, ci(U) ≤ B′i (1 ≤ i ≤ k),

where B′i = Bi − ci(Xb) for each i. We denote by opt′ the optimal value of this instance. Then,
opt′ + f(Xb) = opt holds, provided that the set Xb is guessed correctly.

The assumption of Theorem B.1 implies that we can compute in O(µ(n,Φ,Ψ)) time a set Xs ∈ F ′
satisfying

f ′(Xs) ≥ α · opt′ − η · max
v∈Nk

f ′({v}), (57)

ci(Xs) ≤ B′i + η · max
v∈Nk

ci(v) (i = 1, 2, . . . , k). (58)

We show that this set Xs satisfies the conditions (51), (52), and (53) if the set Xb is guessed correctly.

Since Xs ∈ F ′, we have Xb ∪Xs ∈ F , i.e., (51) holds. We have

max
v∈Nk

f ′({v}) = max
v∈Nk

{f(Xb ∪ {v})− f(Xb)} ≤ max
v∈Nk

{f(Z0 ∪ {v})− f(Z0)}

≤ max
v∈N0

{f(Z0 ∪ {v})− f(Z0)} ≤ ε′

η
f(Z0), (59)

where the first inequality is by the submodularity of f and Z0 ⊆ Xb, the second by Nk ⊆ N0, and the
last by the definition of N0. Hence, (52) can be shown as follows:

f(Xb ∪Xs) = f ′(Xs) + f(Xb)

≥ α · opt′ − η · max
v∈Nk

f ′({v}) + f(Xb)

= α · opt + (1− α)f(Xb)− η · max
v∈Nk

f ′({v})

≥ α · opt− η · ε
′

η
f(Z0) = α · opt− ε′f(Z0) ≥ (α− ε′)opt,
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where the first inequality is by (57), the second by (56) and (59), and the last by f(Z0) ≤ opt.

For i = 1, 2, . . . , k, we have

max
v∈Nk

ci(v) ≤ max
v∈Ni

ci(v) ≤ min
u∈Zi

ci(u) ≤ 1

|Zi|
ci(Zi) =

ε′

η
ci(Zi) (60)

by the choice of Zi and Nk ⊆ Ni. It follows from (58), (60), and ci(Zi) ≤ Bi that

ci(Xb ∪Xs) = ci(Xb) + ci(Xs) ≤ ci(Xb) +B′i + η · max
v∈Nk

ci(v) = Bi + η · max
v∈Nk

ci(v)

≤ Bi + ε′ci(Zi) ≤ (1 + ε′)Bi.

That is, (53) holds.

Details of Step 3. Suppose that Xb ∪Xs is not a feasible solution to (kBSM). In Step 3, we finally
construct an (1 − ε′)(α − ε′)-approximate feasible solution by deleting some elements in Xb ∪ Xs. Let
{U1, U2, . . . , U(1/ε′)−1, U1/ε′} be an arbitrarily chosen partition of Xb such that |Uj ∩ Zh| = η for each j
and h; recall that |Zh| = η/ε′ for all h = 0, 1, . . . , k and therefore such a partition exists. We also set
t = (1/ε′) + 1 and Ut = Xs. Then, {U1, U2, . . . , Ut} is a partition of Xb ∪Xs.

For each j = 1, 2, . . . , t, we have (Xb ∪ Xs) \ Uj ∈ F since Xb ∪ Xs ∈ F . To conclude the proof of
Theorem B.1, it suffices to show that the following inequalities hold:

ci((Xb ∪Xs) \ Uj) ≤ Bi (∀i = 1, 2, . . . , k, ∀j = 1, 2, . . . , t), (61)

max
1≤j≤t

f((Xb ∪Xs) \ Uj) ≥ (1− ε′)(α− ε′)opt. (62)

The inequality (61) with j = t follows immediately from the fact that (Xb ∪Xs) \Ut = Xb is a feasible
solution to (kBSM). For each i = 1, 2, . . . , k and j = 1, 2, . . . , 1/ε′, it holds that

ci(Uj) ≥ ci(Uj ∩ Zi) ≥ η · min
u∈Zi

ci(u) ≥ η ·max
v∈Ni

ci(v) ≥ η · max
v∈Nk

ci(v),

which, together with (58), implies that

ci((Xb ∪Xs) \ Uj) = ci(Xb ∪Xs)− ci(Uj) ≤ Bi + η · max
v∈Nk

ci(v)− η · max
v∈Nk

ci(v) = Bi.

Hence, the inequality (61) holds.

The inequality (62) can be shown by using the following property of f :

Lemma B.2 (cf. [13]) Let f : F → R be a submodular function defined on an independence system
F ⊆ 2N in the sense of (47). Also, let U, V1, V2, . . . , Vt be subsets of N , and λ1, λ2, . . . , λt be nonnegative
real numbers such that

∑t
j=1 λj = 1 and

∑t
j=1 λjχVj

= χU . Then, it holds that

f(U) ≤
t∑

j=1

λjf(Vj).

We can obtain the inequality (62) as follows:

max
1≤j≤t

f((Xb ∪Xs) \ Uj) ≥
1

t

t∑
j=1

f((Xb ∪Xs) \ Uj) ≥ 1

t
· (t− 1)f(Xb ∪Xs)

≥ (1− ε′)f(Xb ∪Xs) ≥ (1− ε′)(α− ε′)opt,

where the second inequality is by Lemma B.2 and the last inequality by (52).

Appendix C. Equivalence between M\-concave function and valuated matroid. We give
a rigorous proof for the equivalence between M\-concave function and valuated matroid by showing that
every M\-concave function defined on a family of matroid independent sets can be transformed to a
valuated matroid which has the same information, and vice versa.
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From M\-concave function to valuated matroid. Let f : F → R be an M\-concave function
defined on matroid independent sets F . We define a valuated matroid g : B → R having the same
information as f in the following way.

Let k = max{|X| | X ∈ F}. Also, let s1, s2, . . . , sk be elements not in N , S = {s1, s2, . . . , sk}, and

Ñ = N ∪ S. Define B ⊆ 2Ñ and a function g : B → R by

B = {X̃ ⊆ Ñ | |X̃| = k, X̃ ∩N ∈ F}, (63)

g(X̃) = f(X̃ ∩N) (X̃ ∈ B). (64)

We show that B is a base family of some matroid and g is a valuated matroid. The proof below is based
on the following property of M\-concave functions.

Lemma C.1 ([34]) Let f : F → R be an M\-concave function defined on matroid independent sets F ,
and X,Y ∈ F .
(i) If |X| ≤ |Y |, then for every u ∈ X \ Y there exists some v ∈ Y \X such that

X − u+ v ∈ F , Y + u− v ∈ F , and f(X) + f(Y ) ≤ f(X − u+ v) + f(Y + u− v).

(ii) If |X| < |Y |, then there exists some v ∈ Y \X such that

X + v ∈ F , Y − v ∈ F , and f(X) + f(Y ) ≤ f(X + v) + f(Y − v).

Let X̃, Ỹ ∈ B and u ∈ X̃ \ Ỹ . It suffices to prove that the following condition holds:

∃v ∈ Ỹ \ X̃ such that X̃ − u+ v ∈ B, Ỹ + u− v ∈ B, g(X̃) + g(Ỹ ) ≤ g(X̃ − u+ v) + g(Ỹ + u− v).

We show below the following equivalent condition in terms of F and f :

∃v ∈ Ỹ \ X̃ such that (X̃ − u+ v) ∩N ∈ F , (Ỹ + u− v) ∩N ∈ F ,
f(X) + f(Y ) ≤ f((X̃ − u+ v) ∩N) + f((Ỹ + u− v) ∩N), (65)

where X = X̃ ∩N and Y = Ỹ ∩N . By definition, we have X,Y ∈ F .

[Case 1: u ∈ N ] We have u ∈ X \Y . By (M\-EXC) applied to f , we have either (a) or (b) (or both)
holds:

(a) X − u ∈ F , Y + u ∈ F , and f(X) + f(Y ) ≤ f(X − u) + f(Y + u),
(b) ∃v ∈ Y \X: X−u+v ∈ F , Y +u−v ∈ F , and f(X)+f(Y ) ≤ f(X−u+v)+f(Y +u−v).

By Lemma C.1 (i), the statement (b) always holds whenever |X| ≤ |Y |.

Suppose that (a) occurs. Then, we may assume |X| > |Y |. Since |X̃| = |Ỹ |, there exists some
v = sh ∈ (Ỹ \ X̃) ∩ S. With this v we have

(X̃ − u+ v) ∩N = X − u ∈ F , (Ỹ + u− v) ∩N = Y + u ∈ F .
Since f(X) + f(Y ) ≤ f(X − u) + f(Y + u) holds by assumption, we have (65).

We then suppose that (b) occurs. The element v ∈ Y \X in (b) satisfies v ∈ Ỹ \ X̃, and

(X̃ − u+ v) ∩N = X − u+ v ∈ F , (Ỹ + u− v) ∩N = Y + u− v ∈ F ,
f(X) + f(Y ) ≤ f(X − u+ v) + f(Y + u− v).

Hence, (65) holds as well.

[Case 2: u ∈ S] Suppose that there exists some v ∈ (Ỹ \ X̃) ∩ S. Then, we have (65) since

(X̃ − u+ v) ∩N = X ∈ F , (Ỹ + u− v) ∩N = Y ∈ F .

Suppose that (Ỹ \ X̃)∩S = ∅. We have Ỹ ∩S ⊆ (X̃ ∩S) \ {u}, implying that |Ỹ ∩S| < |X̃ ∩S|. Since
|X̃| = |Ỹ |, it holds that

|X| = |X̃| − |X̃ ∩ S| < |Ỹ | − |Ỹ ∩ S| = |Y |.
By Lemma C.1 (ii), there exists some v ∈ Y \X such that

X + v ∈ F , Y − v ∈ F , f(X) + f(Y ) ≤ f(X + v) + f(Y − v).

With this v, we have v ∈ Ỹ \ X̃ and

(X̃ − u+ v) ∩N = X + v ∈ F , (Ỹ + u− v) ∩N = Y − v ∈ F ,
implying (65).
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From valuated matroid to M\-concave function. Let g : B → R be a valuated matroid defined on
matroid bases B. We define F ⊆ 2N and a function f : F → R as follows:

F = {X ⊆ N | ∃Y ∈ B s.t. X ⊆ Y }, f(X) = max{g(Y ) | Y ⊇ X, Y ∈ B} (X ∈ F).

Note that the restriction of f on B is equal to the original function g. Since B is the base family of a
matroid, F is the independent set family of a matroid (see, e.g., [38, 41]). In the following, we show that
f is an M\-concave function.

For X,Y ∈ F and u ∈ X \ Y , we prove that either of (i) or (ii) in (M\-EXC) holds. Let X̃, Ỹ ∈ B be
sets such that

X ⊆ X̃, f(X) = g(X̃), Y ⊆ Ỹ , f(Y ) = g(Ỹ ).

Note that u ∈ X ⊆ X̃.

[Case 1: u ∈ X̃ \ Ỹ ] By the property (VM) of g, there exists some v ∈ Ỹ \ X̃ such that

f(X) + f(Y ) = g(X̃) + g(Ỹ ) ≤ g(X̃ − u+ v) + g(Ỹ + u− v). (66)

If v ∈ Y , then we have v ∈ Y \X, X − u+ v ⊆ X̃ − u+ v, and Y + u− v ⊆ Ỹ + u− v, implying

f(X − u+ v) ≥ g(X̃ − u+ v), f(Y + u− v) ≥ g(Ỹ + u− v).

From this and (66) follows that the condition (ii) in (M\-EXC) holds.

If v 6∈ Y , then we have X − u ⊆ X̃ − u+ v and Y + u ⊆ Ỹ + u− v, implying

f(X − u) ≥ g(X̃ − u+ v), f(Y + u) ≥ g(Ỹ + u− v).

From this and (66) follows that the condition (i) in (M\-EXC) holds.

[Case 2: u ∈ X̃ ∩ Ỹ ] We have X − u ⊆ X̃ and Y + u ⊆ Ỹ , implying

f(X − u) ≥ g(X̃) = f(X), f(Y + u) ≥ g(Ỹ ) = f(Y ).

Hence, the condition (i) in (M\-EXC) holds.

This concludes the proof of M\-concavity for the function f .

Appendix D. Algorithm for M\-concave intersection problem. In this section, we consider
the following problem called the M\-concave intersection problem:

(M\I) Maximize f1(X) + f2(X) subject to X ∈ F1 ∩ F2,

where fj : Fj → R (j = 1, 2) are M\-concave functions defined on matroid independent sets Fj . Recall
that the Lagrangian relaxation problem (LR(λ)) in Section 4 is regarded as an M\-concave intersection
problem.

From the equivalence between M\-concave functions and valuated matroids (see Section 2.4 and Ap-
pendix C), we see that the M\-concave intersection problem can be reduced to the valuated matroid
intersection problem formulated as follows:

Maximize g1(X) + g2(X) subject to X ∈ B1 ∩ B2,
where gj : Bj → R (j = 1, 2) are valuated matroids defined on matroid base families Bj . The valuated
matroid intersection problem is discussed in [30], and the results in the paper can be naturally restated
in terms of the former problem. Indeed, we show in this section that the augmenting path algorithm
proposed in [30] for the valuated matroid intersection problem is applicable to the problem (M\I).

To solve the problem (M\I), we consider a constrained problem (M\I(k)) for each nonnegative integer
k, which is the problem (M\I) with an additional cardinality constraint |X| = k. It suffices to find an
optimal solution to (M\I(k)) for every k such that (M\I(k)) has a feasible solution.

Optimal solutions to (M\I(k)) can be found by an augmenting path algorithm with the aid of an
auxiliary graph. Given X ∈ F1 ∩ F2, we define an auxiliary graph GX = (V,A) associated with X by

V = N ∪ {s, t},
A = E1 ∪ E2 ∪A1 ∪A2,

E1 = {(u, v) | u ∈ X, v ∈ N \X, X − u+ v ∈ F1},
E2 = {(v, u) | v ∈ N \X, u ∈ X, X + v − u ∈ F2},
A1 = {(s, v) | v ∈ N \X, X + v ∈ F1},
A2 = {(v, t) | u ∈ N \X, X + v ∈ F2},



A. Shioura: Maximizing Gross Substitutes Utility
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 35

where s, t are new elements not in N . The arc length ω : A→ R is defined by

ω(a) =


f1(X − u+ v)− f1(X) (a = (u, v) ∈ E1),
f2(X + v − u)− f2(X) (a = (v, u) ∈ E2),
f1(X + v)− f1(X) (a = (s, v) ∈ A1),
f2(X + v)− f2(X) (a = (v, t) ∈ A2).

Let k̄ be the maximum integer such that (M\I(k̄)) has a feasible solution. Then, (M\I(k)) has a feasible
solution for each k with 0 ≤ k ≤ k̄ since F1 and F2 are matroid independent sets. Such k̄ can be detected
by using the following property.

Lemma D.1 (cf. [30, Lem. 3.1]) Let X ∈ F1 ∩ F2 be a feasible solution to (M\I(k)). Then, (M\I(k + 1))
has a feasible solution if and only if there exists a directed path in GX from s to t.

It is easy to see that X = ∅ is an optimal solution to (M\I(0)) since it is a unique feasible solution.
The following property states that an optimal solution to (M\I(k + 1)) can be obtained by modification
of an optimal solution to (M\I(k)).

Lemma D.2 (cf. [30, Lem. 3.2]) Let X ∈ F1 ∩F2 be an optimal solution to (M\I(k)), and P be a longest
directed path from s to t in GX with respect to ω having the smallest number of arcs. Then, the set X
defined by

X = X \ {u | (u, v) ∈ P ∩ E1} ∪ {v | (u, v) ∈ P ∩ (E1 ∪A1)}

is an optimal solution to (M\I(k + 1)).

The following lemma implies the existence of a longest directed path in the statement of Lemma D.2.

Lemma D.3 (cf. [30, Th. 5.2]) A set X ∈ F1 ∩F2 with |X| = k is an optimal solution to (M\I(k)) if and
only if GX does not contain a directed cycle with positive length with respect to ω.

Based on the lemmas above, we obtain the following augmenting path algorithm.

Augmenting Path Algorithm
Step 0: Set X0 := ∅, k := 0.
Step 1: Construct the auxiliary graph GXk

.
Step 2: If there exists no directed path in GXk

from s to t, then stop.
Step 3: Find a longest path P from s to t in GXk

having the smallest number of arcs.
Step 4: Output the set Xk+1 given by

Xk+1 := Xk \ {u | (u, v) ∈ P ∩ E1} ∪ {v | (u, v) ∈ P ∩ (E1 ∪A1)},

update k by k := k + 1, and go to Step 1.

By Lemma D.2, the set Xk is an optimal solution to (M\I(k̄)) for each k, and by Lemma D.3, the graph
GXk

does not contain a positive-length directed cycle. Hence, Step 3 can be done by using a shortest
path algorithm. Hence, the algorithm can be implemented so that it runs in polynomial in n.

Theorem D.1 The augmenting path algorithm finds optimal solutions Xk to the problems (M\I(k̄)) for
all k with 0 ≤ k ≤ k̄ in time polynomial in n.

We finally note that the augmenting algorithm can be implemented so that it applies comparison and
addition operations to input numbers (i.e., no multiplication and division operations are used). This
property is important in the computation of an optimal Lagrangian multiplier discussed in Appendix E.
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Appendix E. Computing an optimal Lagrangian multiplier. In this section, we show that
an optimal Lagrangian multiplier of (1BM\I) can be computed in strongly-polynomial time. This can be
shown by using Megiddo’s parametric search technique as in [27, Sec. 2] (see also [39, Sec. 4.1]). Below
we present the outline of the algorithm.

Recall that the Lagrangian relaxation (LR(λ)) of (1BM\I) can be solved in strongly-polynomial time by
using only comparison and addition operations (see Appendix D); we denote this algorithm as Algorithm
A. To compute an optimal Lagrangian multiplier, we use a modified version of Algorithm A, denoted as
Algorithm B. More precisely, Algorithm B computes an interval [`, u] containing an optimal Lagrangian
multiplier and a set Z ∈ F1 ∩ F2 such that

zLR(λ) = f1(Z) + f2(Z) + λ(B − c(Z)) (∀λ ∈ [`, u]). (67)

The equation (67) implies that the function zLR is linear in the interval [`, u]. Hence, we can compute an
optimal Lagrangian multiplier λ∗ easily since λ∗ is a minimizer of function zLR; indeed, at least one of `
and u is an optimal Lagrangian multiplier.

We initially set ` = −∞ and u = +∞ in Algorithm B. In Algorithm B, we simulate the behavior of
Algorithm A applied to the problem (LR(λ∗)), although we do not know the exact value of an optimal
Lagrangian multiplier λ∗ in advance. This means that λ∗ is regarded as an unknown parameter, and
addition and comparison operations are applied to linear functions with parameter λ∗ in Algorithm B
instead of real numbers as in Algorithm A. For example, if we add two linear functions pλ∗ + q and
rλ∗ + s, then we obtain a linear function (p+ r)λ∗ + (q + s).

We then explain how to implement the comparison operation for two linear functions pλ∗+q and rλ∗+s.
As shown below, we can correctly determine if pλ∗+ q < rλ∗+ s, pλ∗+ q = rλ∗+ s, or pλ∗+ q > rλ∗+ s
holds, although we do not know the exact value of λ∗. As a byproduct of the comparison operation, we
can also reduce the interval [`, u] containing λ∗ in some case.

If the two linear functions are the same, i.e., pλ+ q = rλ+ s for all λ, then we have pλ∗+ q = rλ∗+ s.
Hence, we assume that the two linear functions are distinct. If pλ+ q < rλ+ s (resp., pλ+ q > rλ+ s)
holds for all λ ∈ [`, u], then we have pλ∗ + q < rλ∗ + s (resp., pλ∗ + q > rλ∗ + s) since λ∗ ∈ [`, u]. In
either case, the interval [`, u] remains the same.

We then consider the case where there exists a unique real number λ̂ ∈ [`, u] such that pλ̂+ q = rλ̂+s.
In this case, comparison of two linear function reduces to comparison of λ̂ and λ∗, i.e., we only need to
check if λ̂ < λ∗, λ̂ = λ∗, or λ̂ > λ∗ holds. Since λ∗ is a minimizer of the piecewise-linear convex function
zLR, we can easily determine the relation between λ̂ and λ∗ by using the left and right derivatives at λ̂.
Recall that the left derivative (zLR)′+ and the right derivative (zLR)′− of the convex function zLR at λ̂ can

be computed by solving (LR(λ̂− δ)) and (LR(λ̂+ δ)) for a sufficiently small positive δ (see Lemma 4.1).
The problems (LR(λ̂+δ)) and (LR(λ̂−δ)) can be solved in strongly-polynomial time by using Algorithm
A twice. In this way, we can determine the relation between two linear functions in strongly-polynomial
time. In addition, if λ̂ = λ∗ holds, then we stop Algorithm B by outputting λ̂. Otherwise, we reduce the
interval [`, u] containing λ∗ as follows:

if λ̂ < λ∗, then set ` := max{`, λ̂}, if λ̂ > λ∗, then set u := min{u, λ̂}.

Suppose that Algorithm B terminates by outputting a set Z ∈ F1 ∩ F2, as in Algorithm A. Since
the addition and comparison operations are performed correctly, as explained above, we see that Z is an
optimal solution to (LR(λ∗)). Moreover, we also see that Z is also an optimal solution to (LR(λ)) for all
λ ∈ [`, u], where [`, u] is the interval at the end of the algorithm; this follows from the observation that
for every λ ∈ [`, u] the behavior of Algorithm A is the same as in the case with λ = λ∗. Hence, we obtain
an interval [`, u] and a set Z ∈ F1 ∩ F2 satisfying desired conditions.


