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Abstract Dijkstra’s algorithm is a well-known algorithm for the single-source
shortest path problem in a directed graph with nonnegative edge length. We
discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis,
where the concept of discrete convexity called L-convexity plays a central role.
We observe first that the dual of the linear programming (LP) formulation
of the shortest path problem can be seen as a special case of L-concave func-
tion maximization. We then point out that the steepest ascent algorithm for
L-concave function maximization, when applied to the LP dual of the short-
est path problem and implemented with some auxiliary variables, coincides
exactly with Dijkstra’s algorithm.
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1 Introduction

The single-source shortest path problem in a directed graph with nonnegative
edge length is a classical combinatorial optimization problem formulated as
follows: given a directed graph G = (V,E) with edge length `(e) ≥ 0 (e ∈ E)
and a vertex s ∈ V called a source, we want to compute the shortest path
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length from the source vertex s to each vertex v ∈ V . Among many algorithms
for the shortest path problem, Dijkstra’s algorithm [3] described below is most
fundamental (see, e.g., [1,16]).

Dijkstra’s Algorithm
Step 0: Set U := V . Set π(s) := 0, π(v) := +∞ (v ∈ V \ {s}).
Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .
Step 2: If X = ∅, then stop; for v ∈ V , π(v) is the shortest path length from

s to v.
Step 3: For v ∈ X, set

π(v) := min
£
π(v),min{π(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
.

Set U := X. Go to Step 1. ut

In this note, we discuss Dijkstra’s algorithm from the viewpoint of dis-
crete convex analysis. Discrete convex analysis is a theoretical framework for
well-solved combinatorial optimization problems introduced by Murota (see
[10]; see also [12]), where the concept of discrete convexity called L\-convexity
plays a central role. We observe first that the dual of the linear program-
ming (LP) formulation of the shortest path problem can be seen as a special
case of L\-concave function maximization (see Section 2 for the definition of
L\-concavity). We then point out that the steepest ascent algorithm for L\-
concave function maximization, when applied to the LP dual of the shortest
path problem and implemented with some auxiliary variables, coincides ex-
actly with Dijkstra’s algorithm.

Besides Dijkstra’s algorithm there are some other existing algorithms that
can be recognized as a special case of the steepest ascent algorithm for L\-
concave function maximization. We explain such connection to the dual al-
gorithm of Hassin [6] for the minimum cost flow problem in Section 5.1, and
to the dual algorithm of Chung and Tcha [2] for the minimum cost submod-
ular flow problem in Section 5.2. An application to computer vision, where
the steepest descent algorithm for L\-convex function minimization is used
for the panoramic image stitching problem, can be found in Kolmogorov and
Shioura [9].

2 Review of L\-convexity

In this section we review the concepts of L\-convex sets and L\-concave func-
tions, and present some useful properties. See [12] for more account of these
concepts.
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2.1 L\-convex Sets

Let V be a finite set. A set S ⊆ ZV of integral vectors is said to be L\-convex
if it is nonempty and satisfies the following condition:

if p, q ∈ S, then

»
p+ q

2

¼
,

¹
p+ q

2

º
∈ S, (1)

where for x ∈ RV , dxe and bxc denote, respectively, the integer vectors ob-
tained from x by component-wise round-up and round-down to the nearest
integers. The condition (1) is called the discrete midpoint convexity for a set.

Discrete midpoint convexity (1) implies the following property. For p, q ∈
RV , we denote by p∨ q and p∧ q, respectively, the vectors of component-wise
maximum and minimum of p and q, i.e.,

(p ∨ q)(v) = max{p(v), q(v)}, (p ∧ q)(v) = min{p(v), q(v)} (v ∈ V ).

Proposition 1 (cf. [12, Chapter 5]) Let S ⊆ ZV be an L\-convex set. If
p, q ∈ S, then it holds that p ∨ q, p ∧ q ∈ S.

This property implies, in particular, that a maximal vector in a bounded L\-
convex set is uniquely determined.

The following proposition gives a polyhedral description of L\-convex sets.

Proposition 2 (cf. [12, Chapter 5]) A set S ⊆ ZV is an L\-convex set if
and only if S is a nonempty set represented as

S = {p ∈ ZV | p(v)− p(u) ≤ a(u, v) (u, v ∈ V, u 6= v),
b(v) ≤ p(v) ≤ c(v) (v ∈ V )}

with some a(u, v) ∈ Z ∪ {+∞} (u, v ∈ V, u 6= v), b(v) ∈ Z ∪ {−∞} (v ∈ V ),
and c(v) ∈ Z ∪ {+∞} (v ∈ V ).

2.2 L\-concave Functions

Let g : ZV → R ∪ {−∞} be a function defined on the integer lattice points,
and denote dom g = {p ∈ ZV | g(p) > −∞}. We say that g is an L\-concave
function if dom g 6= ∅ and it satisfies the following condition:

g(p) + g(q) ≤ g

µ»
p+ q

2

¼¶
+ g

µ¹
p+ q

2

º¶
(∀p, q ∈ dom g).

In the maximization of an L\-concave function g : ZV → R ∪ {−∞}, a
maximizer of g can be characterized by a local optimality. For X ⊆ V , we
denote by χX ∈ {0,+1}V the characteristic vector of X.

Theorem 1 Let g : ZV → R ∪ {−∞} be an L\-concave function. A vector
p ∈ dom g is a maximizer of g if and only if g(p) ≥ g(p+ χX) (∀X ⊆ V ) and
g(p) ≥ g(p− χX) (∀X ⊆ V ).
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A maximizer of g can be computed by the following steepest ascent algo-
rithm. We suppose that an initial vector p0 ∈ dom g is given in advance.

Algorithm 0
(Steepest Ascent Algorithm for L\-concave Function Maximization)

Step 0: Set p := p0.
Step 1: Find ε ∈ {+1,−1} and X ⊆ V that maximize g(p+ εχX).
Step 2: If g(p) ≥ g(p+ εχX), then stop; p is a maximizer of g.
Step 3: Set p := p+ εχX . Go to Step 1. ut

It is noted that Step 1 can be done in (strongly) polynomial time by using
a polynomial-time algorithm for submodular set function minimization [7,15]
since the set functions ρ+, ρ− : 2V → R ∪ {+∞} defined by

ρ+(X) = g(p)− g(p+ χX), ρ−(X) = g(p)− g(p− χX) (X ⊆ V )

are submodular functions with ρ+(∅) = ρ−(∅) = 0.
The steepest ascent algorithm above terminates in a finite number of iter-

ations if dom g is a finite set. The obtained vector p is indeed a maximizer of
g by Theorem 1. See [9,13] for the time complexity of the algorithms of this
type.

3 Shortest Path Problem and L\-convexity

We show the connection of the single-source shortest path problem with L\-
convex sets and L\-concave functions. We assume that edge length `(e) is
integer-valued for all e ∈ E, while the real-valued edge length is considered in
Section 4.3.

A linear programming formulation of the single-source shortest path prob-
lem is given as follows:

(P)

Minimize
X

(u,v)∈E
`(u, v)x(u, v)

subject to
P
{x(u, s) | (u, s) ∈ E, u ∈ V }
−
P
{x(s, u) | (s, u) ∈ E, u ∈ V } = −(n− 1),P

{x(u, v) | (u, v) ∈ E, u ∈ V }
−
P
{x(v, u) | (v, u) ∈ E, u ∈ V } = 1 (v ∈ V \ {s}),

x(u, v) ≥ 0 ((u, v) ∈ E).

This LP can be seen as a minimum-cost flow problem, where a unit of flow is
sent from the source vertex s to each vertex v ∈ V \ {s}, and the flow cost on
edge (u, v) ∈ E is given by `(u, v).

The LP dual of (P) is given as follows:

Maximize
X

v∈V \{s}
{p(v)− p(s)}

subject to p(v)− p(u) ≤ `(u, v) ((u, v) ∈ E),
p(v) ∈ R (v ∈ V ).
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In this LP, we can fix p(s) = 0 without loss of generality. Moreover, we may
assume that p(v) is integer-valued since edge length `(e) is integer-valued (see,
e,g., [16]). Then, we obtain the following problem:

(D)

Maximize
X

v∈V \{s}
p(v)

subject to p(v)− p(u) ≤ `(u, v) ((u, v) ∈ E),
p(s) = 0,
p(v) ∈ Z (v ∈ V \ {s}).

This problem will be the main object of our discussion.
We denote by S ⊆ ZV the feasible region of (D), i.e.,

S = {p ∈ ZV | p(v)− p(u) ≤ `(u, v) ((u, v) ∈ E), p(s) = 0}. (2)

By Proposition 2, S is an L\-convex set. Hence, the problem (D) can be seen as
maximization of a linear function with positive coefficients over an L\-convex
set.

We assume that there exists a directed path from s to every v ∈ V \ {s}.
Then, (P) has a feasible (and optimal) solution, and the optimal value of (D)
is finite. Hence, the set S is bounded from above, and Proposition 1 implies
that S has a unique maximal vector p∗, which is an optimal solution of (D).
It is also noted that the zero vector 0 is contained in S since `(u, v) ≥ 0 for
(u, v) ∈ E.

We define a function gD : ZV → R ∪ {−∞} by

gD(p) =

⎧⎨⎩
X

v∈V \{s}
p(v) (if p ∈ S),

−∞ (otherwise).

(3)

We see that the maximization of gD is equivalent to the problem (D). Since S
satisfies the discrete midpoint convexity (1), gD satisfies the inequality

gD(p) + gD(q) ≤ gD

µ»
p+ q

2

¼¶
+ gD

µ¹
p+ q

2

º¶
for all p, q ∈ dom gD; in fact, the inequality above holds with equality. This
means that gD is an L

\-concave function. Hence, the problem (D) can be seen
as a special case of L\-concave function maximization.

4 Dijkstra’s Algorithm and Steepest Ascent Algorithm

4.1 Steepest Ascent Algorithm Applied to Shortest Path Problem

We apply the steepest ascent algorithm (Algorithm 0) in Section 2 to the
maximization of the L\-concave function gD in (3) associated with the shortest
path problem, where the zero vector 0 ∈ S is used as the initial vector p0. Then,
we observe the following properties.



6 Kazuo Murota, Akiyoshi Shioura

Proposition 3
(i) The condition gD(p) ≥ gD(p − χY ) (∀Y ⊆ V ) holds in each iteration, and
therefore we may assume ε = +1 in Step 1.
(ii) In Step 1, we have

X ∈ argmax{|Y | | Y ⊆ V, p+ χY ∈ S}, (4)

and such X is uniquely determined. In particular, gD(p) ≥ gD(p+ χX) holds
in Step 2 if and only if X = ∅.
(iii) Denote by Xk the set X found in Step 1 of the k-th iteration. Then, it
holds that Xk ⊆ Xk−1 for all k ≥ 2.

Proof [Proof of (i)] The vector p is always contained in S in each iteration.
If p− χY 6∈ S, then gD(p− χY ) = −∞ < gD(p). If p− χY ∈ S, then

gD(p− χY ) =
X

v∈V \{s}
p(v)− |Y \ {s}| ≤ gD(p).

[Proof of (ii)] SinceX satisfies p+χX ∈ S, we have s 6∈ X . For Y ⊆ V \{s}
with p+ χY ∈ S, it holds that

gD(p+ χY ) =
X

v∈V \{s}
p(v) + |Y | = gD(p) + |Y |.

Hence, the equation (4) follows. The uniqueness ofX in (4) follows from Propo-
sition 1. The latter statement is obvious from the equation (4).

[Proof of (iii)] For a fixed k ≥ 2, let p0 =
Pk−2
i=1 χXi

. Since p0 and p0 +
χXk−1 + χXk

are in S, the discrete midpoint convexity (1) for S implies that
p0+χXk−1∪Xk

∈ S. By the choice of Xk−1, we have |Xk−1∪Xk| = |Xk−1| (see
the claim (ii)), implying that Xk ⊆ Xk−1. ut

From the observation above, the steepest ascent algorithm in Section 2
applied to the function gD in (3) can be rewritten as follows with a variable
U and a step size λ.

Algorithm 1 (Steepest Ascent Algorithm for (D))
Step 0: Set p := 0, U := V .
Step 1: Let X be the unique maximal subset of U such that p+ χX ∈ S.
Step 2: If X = ∅, then stop; p is an optimal solution of (D).
Step 3: Set λ := max{μ ∈ Z+ | p+μχX ∈ S}, p := p+λχX , and U := X . Go

to Step 1. ut

It is noted that if v ∈ U , the value p(v) may possibly be incremented in
the following iterations, and if v ∈ V \ U , the value p(v) remains the same in
the following iterations. We also have s 6∈ U in each iteration, except for the
first iteration. It is easy to see that the following property holds, which will
be used in the next section.
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Proposition 4 Let X ⊆ V be the set computed in Step 1 of some iteration
of Algorithm 1, and p̃ ∈ RV be the vector p after the update in Step 3 of the
same iteration. Then, the values p̃(v) (v ∈ X) are the same.

Remark 1 Algorithm 1 can be applied to the following more general problem:

Maximize
X
v∈V

w(v)p(v) subject to p ∈ S,

where w ∈ RV is a positive vector and S ⊆ ZV is an L\-convex set containing
the zero vector. ut

4.2 Implementation with Auxiliary Variables

We present an implementation of Algorithm 1 by using auxiliary variables.
This reveals the connection between the steepest ascent algorithm for L\-
concave function maximization and Dijkstra’s algorithm. To avoid complica-
tions of degeneracy we assume, to the end of this section, that edge length `(e)
is a positive integer for every e ∈ E; this assumption will be used only in the
proof of Proposition 8.

In Step 3 of Algorithm 1, we need to compute the step size λ. This can be
done by using auxiliary variables π(v) (v ∈ X) given by

π(v) = min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X} (v ∈ X). (5)

Proposition 5 Let p ∈ S and X ⊆ V \ {s}. For π(v) (v ∈ X) in (5) we have

max{μ ∈ Z+ | p+ μχX ∈ S} = min{π(v)− p(v) | v ∈ X}. (6)

Proof Put pμ = p+ μχX . Since p ∈ S and s 6∈ X, we have pμ ∈ S if and only
if

pμ(v)− pμ(u) ≤ `(u, v) (∀(u, v) ∈ E, u ∈ X, v ∈ V \X); (7)

for other edges (u, v), it holds that pμ(v)−pμ(u) ≤ p(v)−p(u) ≤ `(u, v). Since
pμ(v) − pμ(u) = (p(v) + μ)− p(u) holds in (7), the condition (7) is rewritten
as μ ≤ π(v)− p(v) (∀v ∈ X). Therefore, the equation (6) follows. ut

By Proposition 5, Step 3 of Algorithm 1 is rewritten as follows:

Step 3: For v ∈ X, set

π(v) := min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X}.

Set λ := min{π(v) − p(v) | v ∈ X}, p := p + λχX , and U := X . Go to
Step 1.

The proof of Proposition 5 shows the following facts, which are useful in
computing the step direction X in Step 1 of Algorithm 1.
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Proposition 6 Let p ∈ RV and X ⊆ V be the vector and the set at the end
of Step 1 of some iteration, and π(v) (v ∈ X) and λ be the values computed
in Step 3 of the same iteration. Put W = argmin{π(v) − p(v) | v ∈ X} and
p̃ = p+ λχX , i.e., p̃ is the vector p after the update.
(i) If v ∈ W , then p̃(v) = π(v) and p̃+ χY 6∈ S (∀Y ⊆ X with v ∈ Y ).
(ii) If v ∈ X \W , then p̃(v) < π(v).

Proposition 7 Let p ∈ RV , X ⊆ V , and π(v) (v ∈ V ) be as in Proposition
6. Then, it holds that

argmin{π(v)− p(v) | v ∈ X} = argmin{π(v) | v ∈ X}. (8)

Proof By Proposition 4, the values p(v) (v ∈ X) are the same. Hence, the
equation (8) follows. ut

The step direction X in Step 1 of Algorithm 1 can be found easily by using
the values π(v) computed in Step 3 of the previous iteration.

Proposition 8 Suppose that `(e) is a positive integer for every e ∈ E.
(i) In Step 1 of the first iteration, we have X = V \ {s}.
(ii) Let X and π(v) (v ∈ X) be as in Proposition 6. Then, the set X̃ computed
in Step 1 of the next iteration is given by

X̃ = X \ argmin{π(v) | v ∈ X}. (9)

Proof [Proof of (i)] Since χX ∈ S, we have s 6∈ X . To prove X = V \ {s}, it
suffices to show that χV \{s} ∈ S. Putting q = χV \{s}, we have q(v) − q(u) ≤
1 ≤ `(u, v) for every (u, v) ∈ E since q is a 0-1 vector. Hence, we have q ∈ S.

[Proof of (ii)] Let p, λ, and p̃ be as in Proposition 6. Put

W = argmin{π(v) | v ∈ X} = argmin{π(v)− p(v) | v ∈ X},

where the latter equality is by Proposition 7. By Proposition 6 (i), we have
X̃ ⊆ X\W since p̃+χX̃ ∈ S. To prove X̃ = X\W , we show that p̃+χX\W ∈ S.
Since p̃ ∈ S, we have p̃+ χX\W ∈ S if

p̃(v)− p̃(u) < `(u, v) (∀(u, v) ∈ E, v ∈ X \W, u ∈ (V \X) ∪W ). (10)

If u ∈ W , then we have u, v ∈ X, and therefore Proposition 4 implies that
p̃(v) − p̃(u) = 0 < 1 ≤ `(u, v). If u ∈ V \ X, then Proposition 6 (ii) implies
that

p̃(v) < π(v) ≤ p(u) + `(u, v) = p̃(u) + `(u, v)

since π(v) = min{p(r) + `(r, v) | (r, v) ∈ E, r ∈ V \ X} and p̃(u) = p(u).
Hence, (10) follows. ut

Based on Proposition 8, Algorithm 1 can be implemented by using auxiliary
variables π(v) (v ∈ V ) as follows.

Algorithm 2 (Implementation of Algorithm 1 with auxiliary variables)
Step 0: Set p := 0, U := V . Set π(s) := 0, π(v) := +∞ (v ∈ V \ {s}).
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Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .
Step 2: If X = ∅, then stop; p is an optimal solution of (D).
Step 3: For v ∈ X, set

π(v) := min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X}.

Set λ := min{π(v) − p(v) | v ∈ X}, p := p + λχX , and U := X . Go to
Step 1. ut

Proposition 9 At the termination of Algorithm 2, p(v) = π(v) holds for
every v ∈ V .

Proof In Step 1, p(v) = π(v) holds for v ∈ W by Proposition 6 (i), and the
elements in W are deleted from U . Note that the values p(v) and π(v) do not
change in the following iterations if v is deleted from U . Since every v ∈ V is
deleted (i.e., contained in W ) in some iteration, the claim follows. ut

Proposition 10 For v ∈ X, the value π(v) computed in Step 3 of Algorithm
2 satisfies

π(v) = min
£
π0(v),min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈ W}

¤
,

where π0(r) (r ∈ {v} ∪W ) are the values of π(r) at the beginning of Step 3.

Proof It suffices to show that

min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X}

= min
£
π0(v),min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
. (11)

In the first iteration, we haveX = V \{s} andW = {s} by Proposition 8 (i).
Therefore, (11) holds.

In the k-th iteration with k > 1, it holds that

π0(v) = min{p0(u) + `(u, v) | (u, v) ∈ E, u ∈ V \ U},

where p0 is the vector p in Step 1 of the (k− 1)-st iteration. Hence, we obtain
(11) as follows:

min
£
π0(v),min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
= min

£
min{p0(u) + `(u, v) | (u, v) ∈ E, u ∈ V \ U},

min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈ W}
¤

= min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X},

where we use the fact that p0(u) = p(u) for u ∈ V \ U and π0(u) = p(u) for
u ∈W (see Proposition 6 (i)). ut

Steps 2 and 3 of Algorithm 2 can be rewritten as follows by using Propo-
sitions 9 and 10, respectively.

Algorithm 3
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Step 0: Set p := 0, U := V . Set π(s) := 0, π(v) := +∞ (v ∈ V \ {s}).
Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .
Step 2: If X = ∅, then stop; π (= p) is an optimal solution of (D).
Step 3: For v ∈ X, set

π(v) := min
£
π(v),min{π(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
.

Set λ := min{π(v) − p(v) | v ∈ X}, p := p + λχX , and U := X . Go to
Step 1. ut

We see that the variables p and λ are not needed to compute an optimal
solution of (D), and therefore can be eliminated from Algorithm 3. The result-
ing algorithm coincides with Dijkstra’s algorithm described in Section 1. That
is, Dijkstra’s can be recognized as an algorithm which implicitly computes an
optimal solution of the L\-concave maximization problem (D) in a greedy way.

Remark 2 We have demonstrated that Dijkstra’s algorithm can be derived
from the L\-concave maximization algorithm when the edge lengths are pos-
itive integers. Even if some edges have zero lengths, Algorithm 2 as well as
Algorithm 3 works well, although a degeneracy with λ = 0 may occur in
Step 3. In the case of nonnegative integer edge length, the set X in Step 1 of
Algorithm 2 satisfies X ⊇ X̂, where X̂ is the unique maximal subset of U such
that p+χX̂ ∈ S, and all the propositions in Section 4.2, except for Proposition
8, remain to be true. ut

4.3 Real-Valued Edge Length

We have shown that the steepest ascent algorithm for L\-concave function
maximization coincides exactly with Dijkstra’s algorithm by assuming that
edge length is a nonnegative integer. For the general case of real-valued edge
length, we can show the same statement by using the concept of polyhedral
L\-concave function in real variables as follows.

A polyhedral concave function g : RV → R ∪ {−∞} is said to be L\-
concave [14] if dom g = {p ∈ RV | g(p) > −∞} is nonempty and g satisfies the
inequality

g(p) + g(q) ≤ g((p+ λ) ∧ q) + g(p ∨ (q − λ1))

for every p, q ∈ dom g and λ ∈ R+, where 1 ∈ RV is the vector all components
equal to one. Note that an L\-concave function on the integer lattice points
defined in Section 2 is characterized by the same inequality, where p and q are
restricted to integral vectors and λ is a nonnegative integer.

It can be shown that the following steepest ascent algorithm finds a maxi-
mizer of a polyhedral L\-concave function g : RV → R ∪ {−∞} with bounded
dom g. For p ∈ dom g and q ∈ RV , we define

g0(p; q) = lim
α↓0

g(p+ αq)− g(p)

α
,

which is the directional derivative of a polyhedral concave function g.
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Steepest Ascent Algorithm for Polyhedral L\-concave Function on RV

Step 0: Set p := p0, where p0 is an initial vector chosen from dom g.
Step 1: Find ε ∈ {+1,−1} and X ⊆ V that maximize g0(p; εχX).
Step 2: If g0(p; εχX) ≤ 0, then stop; p is a maximizer of g.
Step 3: Set

λ := max{μ ∈ R+ | g(p+ μ εχX)− g(p) = μ g0(p; εχX)}.

Set p := p+ λ εχX . Go to Step 1. ut

Note that the maximum in Step 3 always exists since g is assumed to be a
polyhedral concave function with bounded dom g.

In the case of real-valued edge length, the LP dual of the shortest path
problem is obtained from (D) by removing the integrality constraint p(v) ∈ Z
(v ∈ V \ {s}). We can define a function g : RV → R ∪ {−∞} associated with
the LP dual as follows, in a similar way as in (3):

g(p) =

⎧⎨⎩
X

v∈V \{s}
p(v) (if p is a feasible solution to the LP dual),

−∞ (otherwise).

Then, g is a polyhedral L\-concave function. By applying the steepest ascent
algorithm to this function g and implementing the algorithm with some auxil-
iary variables, we obtain Dijkstra’s algorithm, in a similar way as in Section 4.

Remark 3 Dijkstra’s algorithm is invariant under scaling of length of edges
by a positive real number. The steepest ascent algorithm for polyhedral L\-
concave function maximization shares this invariance. Let gα denote the func-
tion g for the edge length multiplied by α > 0. Then we have gα(αp) = αg(p)
and the steepest ascent algorithm above applied to gα with the initial vector
αp0 produces the same sequence of p’s up to scaling by α. ut

5 Concluding Remarks

We have revealed a close relationship between Dijkstra’s algorithm for the
shortest path problem and the steepest ascent algorithm for L\-concave func-
tion maximization. This is not the only instance of the relationship between
the L\-concave function maximization algorithm and existing combinatorial
optimization algorithms. Two other such instances are explained below: Has-
sin’s dual algorithm for the minimum cost flow problem [6] and Chung—Tcha’s
dual algorithm for the minimum cost submodular flow problem [2].

In this connection it would be worth mentioning that the steepest ascent
algorithm for another kind of discrete concave functions, called M\-concave
functions [5,12], has also a close relationship to classical combinatorial opti-
mization algorithms. For example, Kalaba’s algorithm [8] (see also [16]) for
the minimum spanning tree problem can be understood as a special case of
the steepest descent algorithm for M\-convex functions given in [11,13].
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5.1 Connection to Hassin’s Algorithm

A dual algorithm for the minimum cost flow problem is proposed by Hassin
[6]. We show that this algorithm coincides with the steepest ascent algorithm
in Section 4.3 applied to the dual of the minimum cost flow problem.

For a directed graph G = (V,E), nonnegative edge capacity c(e), and edge
cost k(e) for e ∈ E, the minimum cost flow problem is formulated as follows:

Minimize
X

(u,v)∈E
k(u, v)x(u, v)

subject to ∂x(u) = 0 (u ∈ V ),
0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E),

where

∂x(u) =
X

v:(u,v)∈E
x(u, v)−

X
v:(v,u)∈E

x(v, u) (u ∈ V ).

The dual problem is given as

Maximize g(p) =
X

(u,v)∈E
c(u, v)min{0, p(v)− p(u) + k(u, v)}

subject to p(v) ∈ R (v ∈ V ).

It can be shown that the objective function g : RV → R ∪ {+∞} is a polyhe-
dral L\-concave function (see, e.g., [12,14]). Moreover, the function g has the
property1 of being constant in the direction of 1 = (1, 1, . . . , 1):

g(p+ α1) = g(p) (∀p ∈ RV , ∀α ∈ R). (12)

Suppose that the steepest ascent algorithm in Section 4.3 is applied to this
function g. Due to (12), we can always choose ε = +1 in Step 1. Moreover,
g0(p;χX) in Steps 1 and 2 is given as g0(p;χX) = I(p,X) with

I(p,X) =
X

(u,v)∈E<
in(p,X)

c(u, v)−
X

(u,v)∈E≤out(p,X)
c(u, v), (13)

E<in(p,X) = {(u, v) ∈ E | p(v)− p(u) + k(u, v) < 0, u ∈ V \X, v ∈ X},

E≤out(p,X) = {(u, v) ∈ E | p(v)− p(u) + k(u, v) ≤ 0, u ∈ X, v ∈ V \X},

and λ in Step 3 is expressed as λ = λ(p,X) with

λ(p,X) = min
©
|p(v)− p(u) + k(u, v)|¯̄

(u, v) ∈ E<in(p,X) ∪ E
>
out(p,X)

ª
, (14)

E>out(p,X) = {(u, v) ∈ E | p(v)− p(u) + k(u, v) > 0, u ∈ X, v ∈ V \X}.

Hence, the steepest ascent algorithm can be rewritten as follows:

1 A polyhedral L\-concave function satisfying the condition (12) is called a polyhedral
L-concave function (see, e.g., [12]).
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Step 0: Set p := p0, where p0 is an initial vector chosen from RV .
Step 1: Find X ⊆ V that maximizes I(p,X).
Step 2: If I(p,X) ≤ 0, then stop; p is a maximizer of g.
Step 3: Set p := p+ λ(p,X)χX . Go to Step 1. ut

This is nothing but Hassin’s dual algorithm.
A similar connection can be established for the discrete version with in-

tegral dual variable p ∈ ZV , where we assume that edge costs are integral;
note that for such a case there exists an integral dual optimal solution (see,
e.g., [16]). Such an observation to connect Hassin’s algorithm to L\-concave
maximization leads to a new technical result that Hassin’s algorithm, when
combined with a standard scaling approach, runs in weakly polynomial time
(see [12,13]), although no polynomial bound is not shown in [6].

5.2 Connection to Chung—Tcha’s Algorithm

A dual algorithm for the minimum cost submodular flow problem is proposed
by Chung and Tcha [2]. We show that this algorithm coincides with the steep-
est ascent algorithm in Section 4.3 applied to the dual of the minimum cost
submodular flow problem.

For a directed graph G = (V,E), nonnegative edge capacity c(e) and edge
cost k(e) for e ∈ E, and a submodular function ρ : 2V → R with ρ(∅) = ρ(V ) =
0, the minimum cost submodular flow problem is formulated as follows:

Minimize
X

(u,v)∈E
k(u, v)x(u, v)

subject to
X
u∈Y

∂x(u) ≤ ρ(Y ) (Y ⊆ V ),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).

The linear programming dual is given as

Maximize −
X

(u,v)∈E
c(u, v)s(u, v)−

X
Y⊆V

ρ(Y )t(Y )

subject to −s(u, v) +
X

Y :u∈Y
t(Y )−

X
Y :v∈Y

t(Y ) ≤ k(u, v) ((u, v) ∈ E),

s(u, v) ≥ 0 ((u, v) ∈ E),
t(Y ) ≥ 0 (Y ⊆ V ).

It is known that there exists a vector p ∈ RV such that sp(u, v) ((u, v) ∈ E)
and tp(Y ) (Y ⊆ V ) defined by

sp(u, v) = −min{0, p(v)− p(u) + k(u, v)} ((u, v) ∈ E),

tp(Y ) =

½
p̃i − p̃i+1 (if Y = Li, 1 ≤ i ≤ k − 1),
0 (otherwise)

(15)
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provide an optimal solution of the dual problem, where

p̃1 > p̃2 > · · · > p̃k are distinct values of components of p,

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , k − 1)

(see [2,4]; see also Theorem 5.6 and its proof in [5]). We use this fact to rewrite
the dual problem.

We define a function ρ̂ : RV → R by

ρ̂(p) =
X
Y⊆V

ρ(Y )tp(Y ) =
k−1X
i=1

(p̃i − p̃i+1)ρ(Li) (p ∈ RV ).

Note that the function ρ̂ is the so-called Lovász extension of submodular func-
tion ρ (see, e.g., [5]). Then, the dual problem is rewritten as follows:

Maximize g(p) =
X

(u,v)∈E
c(u, v)min{0, p(v)− p(u) + k(u, v)}− ρ̂(p)

subject to p(v) ∈ R (v ∈ V ).

The Lovász extension of a submodular function, in general, is an L\-convex
function with the property (12), and therefore the objective function g : RV →
R∪{+∞} is also a polyhedral L\-concave function satisfying the property (12)
(see, e.g., [12,14]).

Suppose that the steepest ascent algorithm in Section 4.3 is applied to this
function g. Due to (12), we can always choose ε = +1 in Step 1. Moreover, we
have

g0(p;χX) = I(p,X)− ρ̂0(p;χX)

in Steps 1 and 2 with I(p,X) in (13), and

λ = min{λ(p,X),μ(p,X)}

in Step 3 with λ(p,X) in (14) and

μ(p,X) = min{p̃i−p̃i+1 | 1 ≤ i ≤ k−1, (Li+1\Li)∩X 6= ∅, (Li\Li−1)\X 6= ∅},

where L0 is defined to be an empty set
2. Hence, the steepest ascent algorithm

can be rewritten as follows:

Step 0: Set p := p0, where p0 is an initial vector chosen from RV .
Step 1: Find X ⊆ V that maximizes I(p,X)− ρ̂0(p;χX).
Step 2: If I(p,X) ≤ ρ̂0(p;χX), then stop; p is a maximizer of g.
Step 3: Set p := p+min{λ(p,X),μ(p,X)}χX . Go to Step 1. ut

2 The value of ρ̂0(p;χX) admits an explicit formula, which is omitted here for simplicity
of the description.
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This coincides with the dual algorithm by Chung and Tcha.
A similar connection can be also established for the discrete version with

integral dual variable p ∈ ZV in the case of integral edge costs; note that for
such a case there exists an integral dual optimal solution (see, e.g., [16]). Such
an observation to connect Chung—Tcha’s algorithm to L\-concave maximiza-
tion leads to a new technical result that Hassin’s algorithm, when combined
with a standard scaling approach, runs in weakly polynomial time (see [12,
13]), although no polynomial bound is not shown in [2].
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