
Noname manuscript No.
(will be inserted by the editor)

Dijkstra’s algorithm and L-concave function
maximization

Kazuo Murota · Akiyoshi Shioura

Received: date / Accepted: date

Abstract Dijkstra’s algorithm is a well-known algorithm for the single-source
shortest path problem in a directed graph with nonnegative edge length. We
discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis,
where the concept of discrete convexity called L-convexity plays a central role.
We observe first that the dual of the linear programming (LP) formulation
of the shortest path problem can be seen as a special case of L-concave func-
tion maximization. We then point out that the steepest ascent algorithm for
L-concave function maximization, when applied to the LP dual of the short-
est path problem and implemented with some auxiliary variables, coincides
exactly with Dijkstra’s algorithm.

Keywords shortest path problem · Dijkstra’s algorithm · discrete concave
function · steepest ascent algorithm

Mathematics Subject Classification (2010) 90C27 · 68Q25

1 Introduction

The single-source shortest path problem in a directed graph with nonnegative
edge length is a classical combinatorial optimization problem formulated as
follows: given a directed graph G = (V,E) with edge length `(e) ≥ 0 (e ∈ E)
and a vertex s ∈ V called a source, we want to compute the shortest path

Kazuo Murota
Graduate School of Information Science and Technology
University of Tokyo, Tokyo 113-8656, Japan
E-mail: murota@mist.i.u-tokyo.ac.jp

Akiyoshi Shioura
Graduate School of Information Sciences
Tohoku University, Sendai 980-8579, Japan
Tel./Fax: +81-22-795-4753
E-mail: shioura@dais.is.tohoku.ac.jp

2 Kazuo Murota, Akiyoshi Shioura

length from the source vertex s to each vertex v ∈ V . Among many algorithms
for the shortest path problem, Dijkstra’s algorithm [3] described below is most
fundamental (see, e.g., [1,16]).

Dijkstra’s Algorithm
Step 0: Set U := V . Set π(s) := 0, π(v) := +∞ (v ∈ V \ {s}).
Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .
Step 2: If X = ∅, then stop; for v ∈ V , π(v) is the shortest path length from

s to v.
Step 3: For v ∈ X, set

π(v) := min
£
π(v),min{π(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
.

Set U := X. Go to Step 1. ut

In this note, we discuss Dijkstra’s algorithm from the viewpoint of dis-
crete convex analysis. Discrete convex analysis is a theoretical framework for
well-solved combinatorial optimization problems introduced by Murota (see
[10]; see also [12]), where the concept of discrete convexity called L\-convexity
plays a central role. We observe first that the dual of the linear program-
ming (LP) formulation of the shortest path problem can be seen as a special
case of L\-concave function maximization (see Section 2 for the definition of
L\-concavity). We then point out that the steepest ascent algorithm for L\-
concave function maximization, when applied to the LP dual of the shortest
path problem and implemented with some auxiliary variables, coincides ex-
actly with Dijkstra’s algorithm.

Besides Dijkstra’s algorithm there are some other existing algorithms that
can be recognized as a special case of the steepest ascent algorithm for L\-
concave function maximization. We explain such connection to the dual al-
gorithm of Hassin [6] for the minimum cost flow problem in Section 5.1, and
to the dual algorithm of Chung and Tcha [2] for the minimum cost submod-
ular flow problem in Section 5.2. An application to computer vision, where
the steepest descent algorithm for L\-convex function minimization is used
for the panoramic image stitching problem, can be found in Kolmogorov and
Shioura [9].

2 Review of L\-convexity

In this section we review the concepts of L\-convex sets and L\-concave func-
tions, and present some useful properties. See [12] for more account of these
concepts.

Dijkstra’s algorithm and L-concave function maximization 3

2.1 L\-convex Sets

Let V be a finite set. A set S ⊆ ZV of integral vectors is said to be L\-convex
if it is nonempty and satisfies the following condition:

if p, q ∈ S, then

»
p+ q

2

¼
,

¹
p+ q

2

º
∈ S, (1)

where for x ∈ RV , dxe and bxc denote, respectively, the integer vectors ob-
tained from x by component-wise round-up and round-down to the nearest
integers. The condition (1) is called the discrete midpoint convexity for a set.

Discrete midpoint convexity (1) implies the following property. For p, q ∈
RV , we denote by p∨ q and p∧ q, respectively, the vectors of component-wise
maximum and minimum of p and q, i.e.,

(p ∨ q)(v) = max{p(v), q(v)}, (p ∧ q)(v) = min{p(v), q(v)} (v ∈ V).

Proposition 1 (cf. [12, Chapter 5]) Let S ⊆ ZV be an L\-convex set. If
p, q ∈ S, then it holds that p ∨ q, p ∧ q ∈ S.

This property implies, in particular, that a maximal vector in a bounded L\-
convex set is uniquely determined.

The following proposition gives a polyhedral description of L\-convex sets.

Proposition 2 (cf. [12, Chapter 5]) A set S ⊆ ZV is an L\-convex set if
and only if S is a nonempty set represented as

S = {p ∈ ZV | p(v)− p(u) ≤ a(u, v) (u, v ∈ V, u 6= v),
b(v) ≤ p(v) ≤ c(v) (v ∈ V)}

with some a(u, v) ∈ Z ∪ {+∞} (u, v ∈ V, u 6= v), b(v) ∈ Z ∪ {−∞} (v ∈ V),
and c(v) ∈ Z ∪ {+∞} (v ∈ V).

2.2 L\-concave Functions

Let g : ZV → R ∪ {−∞} be a function defined on the integer lattice points,
and denote dom g = {p ∈ ZV | g(p) > −∞}. We say that g is an L\-concave
function if dom g 6= ∅ and it satisfies the following condition:

g(p) + g(q) ≤ g

µ»
p+ q

2

¼¶
+ g

µ¹
p+ q

2

º¶
(∀p, q ∈ dom g).

In the maximization of an L\-concave function g : ZV → R ∪ {−∞}, a
maximizer of g can be characterized by a local optimality. For X ⊆ V , we
denote by χX ∈ {0,+1}V the characteristic vector of X.

Theorem 1 Let g : ZV → R ∪ {−∞} be an L\-concave function. A vector
p ∈ dom g is a maximizer of g if and only if g(p) ≥ g(p+ χX) (∀X ⊆ V) and
g(p) ≥ g(p− χX) (∀X ⊆ V).

4 Kazuo Murota, Akiyoshi Shioura

A maximizer of g can be computed by the following steepest ascent algo-
rithm. We suppose that an initial vector p0 ∈ dom g is given in advance.

Algorithm 0
(Steepest Ascent Algorithm for L\-concave Function Maximization)

Step 0: Set p := p0.
Step 1: Find ε ∈ {+1,−1} and X ⊆ V that maximize g(p+ εχX).
Step 2: If g(p) ≥ g(p+ εχX), then stop; p is a maximizer of g.
Step 3: Set p := p+ εχX . Go to Step 1. ut

It is noted that Step 1 can be done in (strongly) polynomial time by using
a polynomial-time algorithm for submodular set function minimization [7,15]
since the set functions ρ+, ρ− : 2V → R ∪ {+∞} defined by

ρ+(X) = g(p)− g(p+ χX), ρ−(X) = g(p)− g(p− χX) (X ⊆ V)

are submodular functions with ρ+(∅) = ρ−(∅) = 0.
The steepest ascent algorithm above terminates in a finite number of iter-

ations if dom g is a finite set. The obtained vector p is indeed a maximizer of
g by Theorem 1. See [9,13] for the time complexity of the algorithms of this
type.

3 Shortest Path Problem and L\-convexity

We show the connection of the single-source shortest path problem with L\-
convex sets and L\-concave functions. We assume that edge length `(e) is
integer-valued for all e ∈ E, while the real-valued edge length is considered in
Section 4.3.

A linear programming formulation of the single-source shortest path prob-
lem is given as follows:

(P)

Minimize
X

(u,v)∈E
`(u, v)x(u, v)

subject to
P
{x(u, s) | (u, s) ∈ E, u ∈ V }
−
P
{x(s, u) | (s, u) ∈ E, u ∈ V } = −(n− 1),P

{x(u, v) | (u, v) ∈ E, u ∈ V }
−
P
{x(v, u) | (v, u) ∈ E, u ∈ V } = 1 (v ∈ V \ {s}),

x(u, v) ≥ 0 ((u, v) ∈ E).

This LP can be seen as a minimum-cost flow problem, where a unit of flow is
sent from the source vertex s to each vertex v ∈ V \ {s}, and the flow cost on
edge (u, v) ∈ E is given by `(u, v).

The LP dual of (P) is given as follows:

Maximize
X

v∈V \{s}
{p(v)− p(s)}

subject to p(v)− p(u) ≤ `(u, v) ((u, v) ∈ E),
p(v) ∈ R (v ∈ V).

Dijkstra’s algorithm and L-concave function maximization 5

In this LP, we can fix p(s) = 0 without loss of generality. Moreover, we may
assume that p(v) is integer-valued since edge length `(e) is integer-valued (see,
e,g., [16]). Then, we obtain the following problem:

(D)

Maximize
X

v∈V \{s}
p(v)

subject to p(v)− p(u) ≤ `(u, v) ((u, v) ∈ E),
p(s) = 0,
p(v) ∈ Z (v ∈ V \ {s}).

This problem will be the main object of our discussion.
We denote by S ⊆ ZV the feasible region of (D), i.e.,

S = {p ∈ ZV | p(v)− p(u) ≤ `(u, v) ((u, v) ∈ E), p(s) = 0}. (2)

By Proposition 2, S is an L\-convex set. Hence, the problem (D) can be seen as
maximization of a linear function with positive coefficients over an L\-convex
set.

We assume that there exists a directed path from s to every v ∈ V \ {s}.
Then, (P) has a feasible (and optimal) solution, and the optimal value of (D)
is finite. Hence, the set S is bounded from above, and Proposition 1 implies
that S has a unique maximal vector p∗, which is an optimal solution of (D).
It is also noted that the zero vector 0 is contained in S since `(u, v) ≥ 0 for
(u, v) ∈ E.

We define a function gD : ZV → R ∪ {−∞} by

gD(p) =

⎧⎨⎩
X

v∈V \{s}
p(v) (if p ∈ S),

−∞ (otherwise).

(3)

We see that the maximization of gD is equivalent to the problem (D). Since S
satisfies the discrete midpoint convexity (1), gD satisfies the inequality

gD(p) + gD(q) ≤ gD

µ»
p+ q

2

¼¶
+ gD

µ¹
p+ q

2

º¶
for all p, q ∈ dom gD; in fact, the inequality above holds with equality. This
means that gD is an L

\-concave function. Hence, the problem (D) can be seen
as a special case of L\-concave function maximization.

4 Dijkstra’s Algorithm and Steepest Ascent Algorithm

4.1 Steepest Ascent Algorithm Applied to Shortest Path Problem

We apply the steepest ascent algorithm (Algorithm 0) in Section 2 to the
maximization of the L\-concave function gD in (3) associated with the shortest
path problem, where the zero vector 0 ∈ S is used as the initial vector p0. Then,
we observe the following properties.

6 Kazuo Murota, Akiyoshi Shioura

Proposition 3
(i) The condition gD(p) ≥ gD(p − χY) (∀Y ⊆ V) holds in each iteration, and
therefore we may assume ε = +1 in Step 1.
(ii) In Step 1, we have

X ∈ argmax{|Y | | Y ⊆ V, p+ χY ∈ S}, (4)

and such X is uniquely determined. In particular, gD(p) ≥ gD(p+ χX) holds
in Step 2 if and only if X = ∅.
(iii) Denote by Xk the set X found in Step 1 of the k-th iteration. Then, it
holds that Xk ⊆ Xk−1 for all k ≥ 2.

Proof [Proof of (i)] The vector p is always contained in S in each iteration.
If p− χY 6∈ S, then gD(p− χY) = −∞ < gD(p). If p− χY ∈ S, then

gD(p− χY) =
X

v∈V \{s}
p(v)− |Y \ {s}| ≤ gD(p).

[Proof of (ii)] SinceX satisfies p+χX ∈ S, we have s 6∈ X . For Y ⊆ V \{s}
with p+ χY ∈ S, it holds that

gD(p+ χY) =
X

v∈V \{s}
p(v) + |Y | = gD(p) + |Y |.

Hence, the equation (4) follows. The uniqueness ofX in (4) follows from Propo-
sition 1. The latter statement is obvious from the equation (4).

[Proof of (iii)] For a fixed k ≥ 2, let p0 =
Pk−2
i=1 χXi

. Since p0 and p0 +
χXk−1 + χXk

are in S, the discrete midpoint convexity (1) for S implies that
p0+χXk−1∪Xk

∈ S. By the choice of Xk−1, we have |Xk−1∪Xk| = |Xk−1| (see
the claim (ii)), implying that Xk ⊆ Xk−1. ut

From the observation above, the steepest ascent algorithm in Section 2
applied to the function gD in (3) can be rewritten as follows with a variable
U and a step size λ.

Algorithm 1 (Steepest Ascent Algorithm for (D))
Step 0: Set p := 0, U := V .
Step 1: Let X be the unique maximal subset of U such that p+ χX ∈ S.
Step 2: If X = ∅, then stop; p is an optimal solution of (D).
Step 3: Set λ := max{μ ∈ Z+ | p+μχX ∈ S}, p := p+λχX , and U := X . Go

to Step 1. ut

It is noted that if v ∈ U , the value p(v) may possibly be incremented in
the following iterations, and if v ∈ V \ U , the value p(v) remains the same in
the following iterations. We also have s 6∈ U in each iteration, except for the
first iteration. It is easy to see that the following property holds, which will
be used in the next section.

Dijkstra’s algorithm and L-concave function maximization 7

Proposition 4 Let X ⊆ V be the set computed in Step 1 of some iteration
of Algorithm 1, and p̃ ∈ RV be the vector p after the update in Step 3 of the
same iteration. Then, the values p̃(v) (v ∈ X) are the same.

Remark 1 Algorithm 1 can be applied to the following more general problem:

Maximize
X
v∈V

w(v)p(v) subject to p ∈ S,

where w ∈ RV is a positive vector and S ⊆ ZV is an L\-convex set containing
the zero vector. ut

4.2 Implementation with Auxiliary Variables

We present an implementation of Algorithm 1 by using auxiliary variables.
This reveals the connection between the steepest ascent algorithm for L\-
concave function maximization and Dijkstra’s algorithm. To avoid complica-
tions of degeneracy we assume, to the end of this section, that edge length `(e)
is a positive integer for every e ∈ E; this assumption will be used only in the
proof of Proposition 8.

In Step 3 of Algorithm 1, we need to compute the step size λ. This can be
done by using auxiliary variables π(v) (v ∈ X) given by

π(v) = min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X} (v ∈ X). (5)

Proposition 5 Let p ∈ S and X ⊆ V \ {s}. For π(v) (v ∈ X) in (5) we have

max{μ ∈ Z+ | p+ μχX ∈ S} = min{π(v)− p(v) | v ∈ X}. (6)

Proof Put pμ = p+ μχX . Since p ∈ S and s 6∈ X, we have pμ ∈ S if and only
if

pμ(v)− pμ(u) ≤ `(u, v) (∀(u, v) ∈ E, u ∈ X, v ∈ V \X); (7)

for other edges (u, v), it holds that pμ(v)−pμ(u) ≤ p(v)−p(u) ≤ `(u, v). Since
pμ(v) − pμ(u) = (p(v) + μ)− p(u) holds in (7), the condition (7) is rewritten
as μ ≤ π(v)− p(v) (∀v ∈ X). Therefore, the equation (6) follows. ut

By Proposition 5, Step 3 of Algorithm 1 is rewritten as follows:

Step 3: For v ∈ X, set

π(v) := min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X}.

Set λ := min{π(v) − p(v) | v ∈ X}, p := p + λχX , and U := X . Go to
Step 1.

The proof of Proposition 5 shows the following facts, which are useful in
computing the step direction X in Step 1 of Algorithm 1.

8 Kazuo Murota, Akiyoshi Shioura

Proposition 6 Let p ∈ RV and X ⊆ V be the vector and the set at the end
of Step 1 of some iteration, and π(v) (v ∈ X) and λ be the values computed
in Step 3 of the same iteration. Put W = argmin{π(v) − p(v) | v ∈ X} and
p̃ = p+ λχX , i.e., p̃ is the vector p after the update.
(i) If v ∈ W , then p̃(v) = π(v) and p̃+ χY 6∈ S (∀Y ⊆ X with v ∈ Y).
(ii) If v ∈ X \W , then p̃(v) < π(v).

Proposition 7 Let p ∈ RV , X ⊆ V , and π(v) (v ∈ V) be as in Proposition
6. Then, it holds that

argmin{π(v)− p(v) | v ∈ X} = argmin{π(v) | v ∈ X}. (8)

Proof By Proposition 4, the values p(v) (v ∈ X) are the same. Hence, the
equation (8) follows. ut

The step direction X in Step 1 of Algorithm 1 can be found easily by using
the values π(v) computed in Step 3 of the previous iteration.

Proposition 8 Suppose that `(e) is a positive integer for every e ∈ E.
(i) In Step 1 of the first iteration, we have X = V \ {s}.
(ii) Let X and π(v) (v ∈ X) be as in Proposition 6. Then, the set X̃ computed
in Step 1 of the next iteration is given by

X̃ = X \ argmin{π(v) | v ∈ X}. (9)

Proof [Proof of (i)] Since χX ∈ S, we have s 6∈ X . To prove X = V \ {s}, it
suffices to show that χV \{s} ∈ S. Putting q = χV \{s}, we have q(v) − q(u) ≤
1 ≤ `(u, v) for every (u, v) ∈ E since q is a 0-1 vector. Hence, we have q ∈ S.

[Proof of (ii)] Let p, λ, and p̃ be as in Proposition 6. Put

W = argmin{π(v) | v ∈ X} = argmin{π(v)− p(v) | v ∈ X},

where the latter equality is by Proposition 7. By Proposition 6 (i), we have
X̃ ⊆ X\W since p̃+χX̃ ∈ S. To prove X̃ = X\W , we show that p̃+χX\W ∈ S.
Since p̃ ∈ S, we have p̃+ χX\W ∈ S if

p̃(v)− p̃(u) < `(u, v) (∀(u, v) ∈ E, v ∈ X \W, u ∈ (V \X) ∪W). (10)

If u ∈ W , then we have u, v ∈ X, and therefore Proposition 4 implies that
p̃(v) − p̃(u) = 0 < 1 ≤ `(u, v). If u ∈ V \ X, then Proposition 6 (ii) implies
that

p̃(v) < π(v) ≤ p(u) + `(u, v) = p̃(u) + `(u, v)

since π(v) = min{p(r) + `(r, v) | (r, v) ∈ E, r ∈ V \ X} and p̃(u) = p(u).
Hence, (10) follows. ut

Based on Proposition 8, Algorithm 1 can be implemented by using auxiliary
variables π(v) (v ∈ V) as follows.

Algorithm 2 (Implementation of Algorithm 1 with auxiliary variables)
Step 0: Set p := 0, U := V . Set π(s) := 0, π(v) := +∞ (v ∈ V \ {s}).

Dijkstra’s algorithm and L-concave function maximization 9

Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .
Step 2: If X = ∅, then stop; p is an optimal solution of (D).
Step 3: For v ∈ X, set

π(v) := min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X}.

Set λ := min{π(v) − p(v) | v ∈ X}, p := p + λχX , and U := X . Go to
Step 1. ut

Proposition 9 At the termination of Algorithm 2, p(v) = π(v) holds for
every v ∈ V .

Proof In Step 1, p(v) = π(v) holds for v ∈ W by Proposition 6 (i), and the
elements in W are deleted from U . Note that the values p(v) and π(v) do not
change in the following iterations if v is deleted from U . Since every v ∈ V is
deleted (i.e., contained in W) in some iteration, the claim follows. ut

Proposition 10 For v ∈ X, the value π(v) computed in Step 3 of Algorithm
2 satisfies

π(v) = min
£
π0(v),min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈ W}

¤
,

where π0(r) (r ∈ {v} ∪W) are the values of π(r) at the beginning of Step 3.

Proof It suffices to show that

min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X}

= min
£
π0(v),min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
. (11)

In the first iteration, we haveX = V \{s} andW = {s} by Proposition 8 (i).
Therefore, (11) holds.

In the k-th iteration with k > 1, it holds that

π0(v) = min{p0(u) + `(u, v) | (u, v) ∈ E, u ∈ V \ U},

where p0 is the vector p in Step 1 of the (k− 1)-st iteration. Hence, we obtain
(11) as follows:

min
£
π0(v),min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
= min

£
min{p0(u) + `(u, v) | (u, v) ∈ E, u ∈ V \ U},

min{π0(u) + `(u, v) | (u, v) ∈ E, u ∈ W}
¤

= min{p(u) + `(u, v) | (u, v) ∈ E, u ∈ V \X},

where we use the fact that p0(u) = p(u) for u ∈ V \ U and π0(u) = p(u) for
u ∈W (see Proposition 6 (i)). ut

Steps 2 and 3 of Algorithm 2 can be rewritten as follows by using Propo-
sitions 9 and 10, respectively.

Algorithm 3

10 Kazuo Murota, Akiyoshi Shioura

Step 0: Set p := 0, U := V . Set π(s) := 0, π(v) := +∞ (v ∈ V \ {s}).
Step 1: Set W := argmin{π(v) | v ∈ U} and X := U \W .
Step 2: If X = ∅, then stop; π (= p) is an optimal solution of (D).
Step 3: For v ∈ X, set

π(v) := min
£
π(v),min{π(u) + `(u, v) | (u, v) ∈ E, u ∈W}

¤
.

Set λ := min{π(v) − p(v) | v ∈ X}, p := p + λχX , and U := X . Go to
Step 1. ut

We see that the variables p and λ are not needed to compute an optimal
solution of (D), and therefore can be eliminated from Algorithm 3. The result-
ing algorithm coincides with Dijkstra’s algorithm described in Section 1. That
is, Dijkstra’s can be recognized as an algorithm which implicitly computes an
optimal solution of the L\-concave maximization problem (D) in a greedy way.

Remark 2 We have demonstrated that Dijkstra’s algorithm can be derived
from the L\-concave maximization algorithm when the edge lengths are pos-
itive integers. Even if some edges have zero lengths, Algorithm 2 as well as
Algorithm 3 works well, although a degeneracy with λ = 0 may occur in
Step 3. In the case of nonnegative integer edge length, the set X in Step 1 of
Algorithm 2 satisfies X ⊇ X̂, where X̂ is the unique maximal subset of U such
that p+χX̂ ∈ S, and all the propositions in Section 4.2, except for Proposition
8, remain to be true. ut

4.3 Real-Valued Edge Length

We have shown that the steepest ascent algorithm for L\-concave function
maximization coincides exactly with Dijkstra’s algorithm by assuming that
edge length is a nonnegative integer. For the general case of real-valued edge
length, we can show the same statement by using the concept of polyhedral
L\-concave function in real variables as follows.

A polyhedral concave function g : RV → R ∪ {−∞} is said to be L\-
concave [14] if dom g = {p ∈ RV | g(p) > −∞} is nonempty and g satisfies the
inequality

g(p) + g(q) ≤ g((p+ λ) ∧ q) + g(p ∨ (q − λ1))

for every p, q ∈ dom g and λ ∈ R+, where 1 ∈ RV is the vector all components
equal to one. Note that an L\-concave function on the integer lattice points
defined in Section 2 is characterized by the same inequality, where p and q are
restricted to integral vectors and λ is a nonnegative integer.

It can be shown that the following steepest ascent algorithm finds a maxi-
mizer of a polyhedral L\-concave function g : RV → R ∪ {−∞} with bounded
dom g. For p ∈ dom g and q ∈ RV , we define

g0(p; q) = lim
α↓0

g(p+ αq)− g(p)

α
,

which is the directional derivative of a polyhedral concave function g.

Dijkstra’s algorithm and L-concave function maximization 11

Steepest Ascent Algorithm for Polyhedral L\-concave Function on RV

Step 0: Set p := p0, where p0 is an initial vector chosen from dom g.
Step 1: Find ε ∈ {+1,−1} and X ⊆ V that maximize g0(p; εχX).
Step 2: If g0(p; εχX) ≤ 0, then stop; p is a maximizer of g.
Step 3: Set

λ := max{μ ∈ R+ | g(p+ μ εχX)− g(p) = μ g0(p; εχX)}.

Set p := p+ λ εχX . Go to Step 1. ut

Note that the maximum in Step 3 always exists since g is assumed to be a
polyhedral concave function with bounded dom g.

In the case of real-valued edge length, the LP dual of the shortest path
problem is obtained from (D) by removing the integrality constraint p(v) ∈ Z
(v ∈ V \ {s}). We can define a function g : RV → R ∪ {−∞} associated with
the LP dual as follows, in a similar way as in (3):

g(p) =

⎧⎨⎩
X

v∈V \{s}
p(v) (if p is a feasible solution to the LP dual),

−∞ (otherwise).

Then, g is a polyhedral L\-concave function. By applying the steepest ascent
algorithm to this function g and implementing the algorithm with some auxil-
iary variables, we obtain Dijkstra’s algorithm, in a similar way as in Section 4.

Remark 3 Dijkstra’s algorithm is invariant under scaling of length of edges
by a positive real number. The steepest ascent algorithm for polyhedral L\-
concave function maximization shares this invariance. Let gα denote the func-
tion g for the edge length multiplied by α > 0. Then we have gα(αp) = αg(p)
and the steepest ascent algorithm above applied to gα with the initial vector
αp0 produces the same sequence of p’s up to scaling by α. ut

5 Concluding Remarks

We have revealed a close relationship between Dijkstra’s algorithm for the
shortest path problem and the steepest ascent algorithm for L\-concave func-
tion maximization. This is not the only instance of the relationship between
the L\-concave function maximization algorithm and existing combinatorial
optimization algorithms. Two other such instances are explained below: Has-
sin’s dual algorithm for the minimum cost flow problem [6] and Chung—Tcha’s
dual algorithm for the minimum cost submodular flow problem [2].

In this connection it would be worth mentioning that the steepest ascent
algorithm for another kind of discrete concave functions, called M\-concave
functions [5,12], has also a close relationship to classical combinatorial opti-
mization algorithms. For example, Kalaba’s algorithm [8] (see also [16]) for
the minimum spanning tree problem can be understood as a special case of
the steepest descent algorithm for M\-convex functions given in [11,13].

12 Kazuo Murota, Akiyoshi Shioura

5.1 Connection to Hassin’s Algorithm

A dual algorithm for the minimum cost flow problem is proposed by Hassin
[6]. We show that this algorithm coincides with the steepest ascent algorithm
in Section 4.3 applied to the dual of the minimum cost flow problem.

For a directed graph G = (V,E), nonnegative edge capacity c(e), and edge
cost k(e) for e ∈ E, the minimum cost flow problem is formulated as follows:

Minimize
X

(u,v)∈E
k(u, v)x(u, v)

subject to ∂x(u) = 0 (u ∈ V),
0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E),

where

∂x(u) =
X

v:(u,v)∈E
x(u, v)−

X
v:(v,u)∈E

x(v, u) (u ∈ V).

The dual problem is given as

Maximize g(p) =
X

(u,v)∈E
c(u, v)min{0, p(v)− p(u) + k(u, v)}

subject to p(v) ∈ R (v ∈ V).

It can be shown that the objective function g : RV → R ∪ {+∞} is a polyhe-
dral L\-concave function (see, e.g., [12,14]). Moreover, the function g has the
property1 of being constant in the direction of 1 = (1, 1, . . . , 1):

g(p+ α1) = g(p) (∀p ∈ RV , ∀α ∈ R). (12)

Suppose that the steepest ascent algorithm in Section 4.3 is applied to this
function g. Due to (12), we can always choose ε = +1 in Step 1. Moreover,
g0(p;χX) in Steps 1 and 2 is given as g0(p;χX) = I(p,X) with

I(p,X) =
X

(u,v)∈E<
in(p,X)

c(u, v)−
X

(u,v)∈E≤out(p,X)
c(u, v), (13)

E<in(p,X) = {(u, v) ∈ E | p(v)− p(u) + k(u, v) < 0, u ∈ V \X, v ∈ X},

E≤out(p,X) = {(u, v) ∈ E | p(v)− p(u) + k(u, v) ≤ 0, u ∈ X, v ∈ V \X},

and λ in Step 3 is expressed as λ = λ(p,X) with

λ(p,X) = min
©
|p(v)− p(u) + k(u, v)|¯̄

(u, v) ∈ E<in(p,X) ∪ E
>
out(p,X)

ª
, (14)

E>out(p,X) = {(u, v) ∈ E | p(v)− p(u) + k(u, v) > 0, u ∈ X, v ∈ V \X}.

Hence, the steepest ascent algorithm can be rewritten as follows:

1 A polyhedral L\-concave function satisfying the condition (12) is called a polyhedral
L-concave function (see, e.g., [12]).

Dijkstra’s algorithm and L-concave function maximization 13

Step 0: Set p := p0, where p0 is an initial vector chosen from RV .
Step 1: Find X ⊆ V that maximizes I(p,X).
Step 2: If I(p,X) ≤ 0, then stop; p is a maximizer of g.
Step 3: Set p := p+ λ(p,X)χX . Go to Step 1. ut

This is nothing but Hassin’s dual algorithm.
A similar connection can be established for the discrete version with in-

tegral dual variable p ∈ ZV , where we assume that edge costs are integral;
note that for such a case there exists an integral dual optimal solution (see,
e.g., [16]). Such an observation to connect Hassin’s algorithm to L\-concave
maximization leads to a new technical result that Hassin’s algorithm, when
combined with a standard scaling approach, runs in weakly polynomial time
(see [12,13]), although no polynomial bound is not shown in [6].

5.2 Connection to Chung—Tcha’s Algorithm

A dual algorithm for the minimum cost submodular flow problem is proposed
by Chung and Tcha [2]. We show that this algorithm coincides with the steep-
est ascent algorithm in Section 4.3 applied to the dual of the minimum cost
submodular flow problem.

For a directed graph G = (V,E), nonnegative edge capacity c(e) and edge
cost k(e) for e ∈ E, and a submodular function ρ : 2V → R with ρ(∅) = ρ(V) =
0, the minimum cost submodular flow problem is formulated as follows:

Minimize
X

(u,v)∈E
k(u, v)x(u, v)

subject to
X
u∈Y

∂x(u) ≤ ρ(Y) (Y ⊆ V),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).

The linear programming dual is given as

Maximize −
X

(u,v)∈E
c(u, v)s(u, v)−

X
Y⊆V

ρ(Y)t(Y)

subject to −s(u, v) +
X

Y :u∈Y
t(Y)−

X
Y :v∈Y

t(Y) ≤ k(u, v) ((u, v) ∈ E),

s(u, v) ≥ 0 ((u, v) ∈ E),
t(Y) ≥ 0 (Y ⊆ V).

It is known that there exists a vector p ∈ RV such that sp(u, v) ((u, v) ∈ E)
and tp(Y) (Y ⊆ V) defined by

sp(u, v) = −min{0, p(v)− p(u) + k(u, v)} ((u, v) ∈ E),

tp(Y) =

½
p̃i − p̃i+1 (if Y = Li, 1 ≤ i ≤ k − 1),
0 (otherwise)

(15)

14 Kazuo Murota, Akiyoshi Shioura

provide an optimal solution of the dual problem, where

p̃1 > p̃2 > · · · > p̃k are distinct values of components of p,

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , k − 1)

(see [2,4]; see also Theorem 5.6 and its proof in [5]). We use this fact to rewrite
the dual problem.

We define a function ρ̂ : RV → R by

ρ̂(p) =
X
Y⊆V

ρ(Y)tp(Y) =
k−1X
i=1

(p̃i − p̃i+1)ρ(Li) (p ∈ RV).

Note that the function ρ̂ is the so-called Lovász extension of submodular func-
tion ρ (see, e.g., [5]). Then, the dual problem is rewritten as follows:

Maximize g(p) =
X

(u,v)∈E
c(u, v)min{0, p(v)− p(u) + k(u, v)}− ρ̂(p)

subject to p(v) ∈ R (v ∈ V).

The Lovász extension of a submodular function, in general, is an L\-convex
function with the property (12), and therefore the objective function g : RV →
R∪{+∞} is also a polyhedral L\-concave function satisfying the property (12)
(see, e.g., [12,14]).

Suppose that the steepest ascent algorithm in Section 4.3 is applied to this
function g. Due to (12), we can always choose ε = +1 in Step 1. Moreover, we
have

g0(p;χX) = I(p,X)− ρ̂0(p;χX)

in Steps 1 and 2 with I(p,X) in (13), and

λ = min{λ(p,X),μ(p,X)}

in Step 3 with λ(p,X) in (14) and

μ(p,X) = min{p̃i−p̃i+1 | 1 ≤ i ≤ k−1, (Li+1\Li)∩X 6= ∅, (Li\Li−1)\X 6= ∅},

where L0 is defined to be an empty set
2. Hence, the steepest ascent algorithm

can be rewritten as follows:

Step 0: Set p := p0, where p0 is an initial vector chosen from RV .
Step 1: Find X ⊆ V that maximizes I(p,X)− ρ̂0(p;χX).
Step 2: If I(p,X) ≤ ρ̂0(p;χX), then stop; p is a maximizer of g.
Step 3: Set p := p+min{λ(p,X),μ(p,X)}χX . Go to Step 1. ut

2 The value of ρ̂0(p;χX) admits an explicit formula, which is omitted here for simplicity
of the description.

Dijkstra’s algorithm and L-concave function maximization 15

This coincides with the dual algorithm by Chung and Tcha.
A similar connection can be also established for the discrete version with

integral dual variable p ∈ ZV in the case of integral edge costs; note that for
such a case there exists an integral dual optimal solution (see, e.g., [16]). Such
an observation to connect Chung—Tcha’s algorithm to L\-concave maximiza-
tion leads to a new technical result that Hassin’s algorithm, when combined
with a standard scaling approach, runs in weakly polynomial time (see [12,
13]), although no polynomial bound is not shown in [2].

Acknowledgements This research is partially supported by KAKENHI (21360045, 21740060)
from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the
Global COE program “The Research and Training Center for New Development in Math-
ematics,” and the Aihara Project, the FIRST program from the Japan Society for the
Promotion of Science (JSPS).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Side River (1993).

2. Chung, N.-k., Tcha, D.-w.: A dual algorithm for submodular flow problems. Oper. Res.
Letters 10, 489—495 (1991).

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269—271 (1959).

4. Edmonds, J.,Giles, R.: A min-max relation for submodular functions on graphs. Ann.
Discrete Math. 1, 185—204 (1977).

5. Fujishige, F.: Submodular Functions and Optimization, Second Edition. Elsevier, Am-
sterdam (2005).

6. Hassin, R.: The minimum cost flow problem: a unifying approach to dual algorithms
and a new tree-search algorithm. Math. Programming 25, 228—239 (1983).

7. Iwata, S. , Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algo-
rithm for minimizing submodular functions. J. ACM 48, 761—777 (2001).

8. Kalaba, R.: On some communication network problems. In: Bellman, R., Hall, M., Jr,
(eds.) Proc. Symposia in Applied Mathematics 10, pp. 261—280, American Mathematical
Society, Providence (1960).

9. Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with
application to computer vision. Discrete Optim. 6, 378—393 (2009).

10. Murota, K.: Discrete convex analysis. Math. Program. 83, 313—371 (1998).
11. Murota, K.: Algorithms in discrete convex analysis. IEICE Trans. Systems and Infor-

mation E83-D, 344—352 (2000).
12. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003).
13. Murota, K.: On steepest descent algorithms for discrete convex functions. SIAM J. Op-

tim. 14, 699—707 (2003).
14. Murota, K., Shioura, A: Extension of M-convexity and L-convexity to polyhedral convex

functions. Adv. Appl. Math. 25, 352—427 (2000).
15. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly

polynomial time. J. Combin. Theory Ser. B 80, 346—355 (2000).
16. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin

(2003).

