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Abstract

The property of “substitutability” plays a key role in guaranteeing the existence of a stable solution

in the stable marriage problem and its generalizations. On the other hand, the concept of M♮-convexity,

introduced by Murota–Shioura (1999) for functions defined over the integer lattice, enjoys a number of

nice properties that are expected of “discrete convexity” and provides with a natural model of utility

functions. In this note, we show that M♮-convexity is characterized by two variants of substitutability.
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1 Introduction

Since the pioneering work on the stable marriage problem by Gale–Shapley [7], various generalizations

and extensions of the stable marriage model have been proposed in the literature (see [1, 2, 3, 4, 6, 14, 15],

etc.), where the property of “substitutability” for preferences plays a key role in guaranteeing the existence

of a stable solution. On the other hand, the concept of M-convexity, introduced by Murota [8, 9]

for functions defined over the integer lattice, enjoys a number of nice properties that are expected of

“discrete convexity;” subsequently, its variant called M♮-convexity was introduced by Murota–Shioura

[11]. Whereas M♮-convex functions are conceptually equivalent to M-convex functions, the class of M♮-

convex functions is strictly larger than that of M-convex functions. Furthermore, M♮-concave functions

provide with a natural model of utility functions [10, 13, 16]. In particular, it is known that M♮-concavity

is equivalent to the gross substitutes property, and that M♮-concavity implies submodularity. In this

note, we discuss the close relationship between substitutability and M♮-convexity/M♮-concavity.

Recently, Eguchi–Fujishige–Tamura [3] extended the stable marriage model to the framework with

preferences represented by M♮-concave utility functions, and showed the existence of a stable solution in

their model (see also [2]). Their proof is based on the fact that M♮-convex functions f : ZV → R∪{+∞}

satisfy the following properties:

(SC1) ∀z1, z2 ∈ ZV with z1 ≥ z2 and arg min{f(x′) | x′ ≤ z2} 6= ∅,

∀x1 ∈ arg min{f(x′) | x′ ≤ z1}, ∃x2 ∈ arg min{f(x′) | x′ ≤ z2} such that z2 ∧ x1 ≤ x2,

(SC2) ∀z1, z2 ∈ ZV with z1 ≥ z2 and arg min{f(x′) | x′ ≤ z1} 6= ∅,

∀x2 ∈ arg min{f(x′) | x′ ≤ z2}, ∃x1 ∈ arg min{f(x′) | x′ ≤ z1} such that z2 ∧ x1 ≤ x2,

where for x, y ∈ RV the vector x ∧ y ∈ RV is given by (x ∧ y)(w) = min{x(w), y(w)} (w ∈ V ). These

properties can be regarded as substitutability for utility functions f ; indeed, (SC1) and (SC2) can be seen

as generalizations of substitutability (persistence) in the sense of Alkan–Gale [1] for the choice function

C(z) = arg min{f(y) | y ≤ z}.

Following the work by Eguchi–Fujishige–Tamura [3], Fujishige–Tamura [6] presented a common gener-

alization of the stable marriage model and the assignment game model with M♮-concave utility functions.

It is shown in [6] that the following properties of M♮-convex functions

(SC1

G
) ∀p ∈ RV , f [p] satisfies (SC1),

(SC2

G
) ∀p ∈ RV , f [p] satisfies (SC2),

which can be seen as stronger versions of substitutability (SC1) and (SC2), play a key role in the proof

of the existence of a stable solution in this model, where for p ∈ RV the function f [p] : ZV → R∪{+∞}

is defined by

f [p](x) = f(x) +
∑

w∈V

p(w)x(w) (x ∈ ZV ).

The main aim of this note is to prove that each of (SC1
G
) and (SC2

G
) characterizes M♮-convexity of a

function.

Theorem 1.1. Let f : ZV → R∪{+∞} be a function such that the effective domain dom f = {x ∈ ZV |

f(x) < +∞} is bounded. Then,

f is M♮-convex ⇐⇒ (SC1
G
) ⇐⇒ (SC2

G
).
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This theorem shows that M♮-concavity of utility functions is an essential assumption in the model of

Fujishige–Tamura [6]. Combining Theorem 1.1 and the previous result [13, Theorem 11] clarifies the

relationship between substitutability and the gross substitute property for utility functions. The equiva-

lence in Theorem 1.1 was proven by Farooq–Tamura [5] in the special case where dom f ⊆ {0, 1}V , i.e.,

f is a set function. In this note, we give a proof for a more general case where dom f is bounded.

2 Preliminaries on M♮-convexity

In this section, we review the definition and fundamental properties of M♮-convex functions.

Throughout this paper, we assume that V is a nonempty finite set. The sets of reals and integers are

denoted by R and by Z, respectively. For a vector x = (x(w) | w ∈ V ) ∈ ZV , we define

supp+(x) = {w ∈ V | x(w) > 0}, supp−(x) = {w ∈ V | x(w) < 0}, supp(x) = {w ∈ V | x(w) 6= 0},

〈p, x〉 =
∑

w∈V

p(w)x(w) (p ∈ RV ), x(S) =
∑

w∈S

x(w) (S ⊆ V ).

For any u ∈ V , the characteristic vector of u is denoted by χu (∈ {0, 1}V ), i.e., χu(w) = 1 if w = u

and χu(w) = 0 otherwise. We also denote by χ0 the zero vector. For x, y ∈ ZV with x ≤ y, we denote

[x, y]Z = {z ∈ ZV | x ≤ z ≤ y}.

Let f : ZV → R ∪ {+∞} be a function. We denote the set of minimizers of f by arg min f = {x ∈

ZV | f(x) ≤ f(y) (∀y ∈ ZV )}, which can be the empty set. For a vector z ∈ ZV , we denote

X∗(f, z) = arg min{f(x) | x ≤ z} (= {x ∈ ZV | x ≤ z, f(x) ≤ f(y) (∀y ∈ ZV with y ≤ z)}).

We call a function f : ZV → R ∪ {+∞} M♮-convex if it satisfies dom f 6= ∅ and (M♮-EXC):

(M♮-EXC) ∀x, y ∈ dom f , ∀u ∈ supp+(x−y), ∃v ∈ supp−(x−y) ∪ {0}:

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv).

See [11] for the original definition.

We also define the set version of M♮-convexity. A nonempty set B ⊆ ZV is said to be M♮-convex if its

indicator function δB : ZV → {0,+∞} defined by

δB(x) =

{
0 if x ∈ B,

+∞ otherwise

is M♮-convex. Equivalently, an M♮-convex set is defined as a nonempty set satisfying the exchange

property (B♮-EXC±):

(B♮-EXC±) ∀x, y ∈ B, ∀u ∈ supp+(x−y), ∃v,w ∈ supp−(x−y)∪{0} such that x−χu+χv ∈ B

and y + χu − χw ∈ B.

Theorem 2.1 ([11, 17]). A nonempty set B ⊆ ZV is M♮-convex if and only if it satisfies (B♮-EXC±).

An M♮-convex function with bounded effective domain can be characterized by the sets of minimizers.

Theorem 2.2 ([10, Theorem 6.30]). Let f : ZV → R ∪ {+∞} be a function such that dom f is

bounded. Then, f is M♮-convex if and only if for each p ∈ RV the set arg min f [p] is M♮-convex.
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3 Proofs

The implications “f is M♮-convex =⇒ (SC1
G
)” and “f is M♮-convex =⇒ (SC2

G
)” are shown in [3, 5, 6]

(see also Section 4).

Theorem 3.1. An M♮-convex function f : ZV → R ∪ {+∞} satisfies (SC1
G) and (SC2

G).

In this section, we prove the implications “(SC2
G
) =⇒ (SC1

G
)” and “(SC1

G
) =⇒ f is M♮-convex.”

Theorem 3.2. Let f : ZV → R ∪ {+∞}.

(i) If f satisfies (SC2
G
), then f also satisfies (SC1

G
).

(ii) Suppose that dom f is bounded. If f satisfies (SC1
G
), then f is M♮-convex.

Combining Theorems 3.1 and 3.2 yields Theorem 1.1, our main result.

3.1 Proof of “(SC2
G
) =⇒ (SC1

G
)”

We prove Theorem 3.2 (i).

Suppose that f satisfies (SC2
G
). Let p ∈ RV , z1, z2 ∈ ZV be any vectors satisfying z1 ≥ z2 and

X∗(f [p], z2) 6= ∅, and x∗
1 ∈ X∗(f [p], z1). Also, let x∗

2 ∈ X∗(f [p], z2) be a vector minimizing the cardinality

of the set supp+(x∗
2 − x∗

1), and put S+ = supp+(x∗
2 − x∗

1). We assume that x∗
2 maximizes the value

x∗
2(V \ S+) among all vectors y ∈ X∗(f [p], z2) with supp+(y − x∗

1) = S+. We show that x∗
2 satisfies the

inequality z2 ∧ x∗
1 ≤ x∗

2.

For w ∈ S+, we have min{z2(w), x∗
1(w)} = x∗

1(w) < x∗
2(w) since x∗

1(w) < x∗
2(w) ≤ z2(w). Hence, it

suffices to prove that

min{z2(w), x∗
1(w)} ≤ x∗

2(w) (w ∈ V \ S+). (3.1)

To show this, we define z̃1, z̃2 ∈ ZV by

z̃1 = x∗
1 ∨ x∗

2, z̃2 = (x∗
1 ∨ x∗

2) ∧ z2.

For i = 1, 2, x∗
i ∈ X∗(f [p], z̃i) ⊆ X∗(f [p], zi) holds since x∗

i ≤ z̃i ≤ zi. As shown below, there exists a

vector q ∈ RV satisfying the following conditions:

X∗(f [q], z̃1) 6= ∅, and x(w) = x∗
1(w) (w ∈ V \ S+) for all x ∈ X∗(f [q], z̃1), (3.2)

x∗
2 ∈ X∗(f [q], z̃2). (3.3)

Then, it follows from (SC2
G
) that there exists some x ∈ X∗(f [q], z̃1) such that x ∧ z̃2 ≤ x∗

2, implying

min{x∗
1(w), z2(w)} = min{x(w), z̃2(w)} ≤ x∗

2(w) (w ∈ V \ S+),

where the equality is by (3.2) and the definition of z̃2. Hence, we have the desired inequality (3.1).

We now show that there exists a vector q ∈ RV satisfying (3.2) and (3.3). Let k be a sufficiently large

positive number such that k > z̃1(w) − x∗
1(w) (w ∈ S+). Define d ∈ RV by

d(w) =





1

k|S+|
(w ∈ S+),

1 (w ∈ V \ S+).

For i = 1, 2, we define a value ηi ∈ R by

ηi = max{〈d, x〉 | x ∈ X∗(f [p], z̃i)}.
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Since the set Ŷi = {y ∈ ZV | 〈d, y〉 > ηi, y ≤ z̃i} is finite and satisfies f [p](y) > f [p](x∗
i ) (y ∈ Ŷi), we have

X∗(f [q], z̃i) = {x | x ∈ X∗(f [p], z̃i), 〈d, x〉 = ηi} (i = 1, 2) (3.4)

by putting q = p − εd with a sufficiently small positive number ε.

To show that the condition (3.2) holds, let x ∈ X∗(f [q], z̃1). For w ∈ V \S+, we have x(w) ≤ z̃1(w) =

x∗
1(w), implying x(V \ S+) − x∗

1(V \ S+) ≤ 0. By (3.4), we have

0 ≤ 〈d, x〉 − 〈d, x∗
1〉 =

1

k|S+|

∑

w∈S+

{x(w) − x∗
1(w)} + x(V \ S+) − x∗

1(V \ S+)

≤
1

k|S+|

∑

w∈S+

{z̃1(w) − x∗
1(w)} + x(V \ S+) − x∗

1(V \ S+).

Since (1/k|S+|)
∑

w∈S+{z̃1(w)−x∗
1(w)} < 1 and x(V \S+)−x∗

1(V \S+) is a nonpositive integer, we have

x(V \ S+) − x∗
1(V \ S+) = 0, implying (3.2).

We next prove that the condition (3.3) holds. It suffices to show that 〈d, y〉 ≤ 〈d, x∗
2〉 for all y ∈

X∗(f [p], z̃2). By the definition of z̃2, we have y(S+) ≤ z̃2(S
+) = x∗

2(S
+) and y(w) ≤ z̃2(w) ≤ x∗

1(w) (w ∈

V \S+), where the latter implies supp+(y−x∗
1) ⊆ S+. By the choice of x∗

2, it holds that supp+(y−x∗
1) = S+

and y(V \ S+) ≤ x∗
2(V \ S+). Therefore,

〈d, y〉 − 〈d, x∗
2〉 =

y(S+) − x∗
2(S

+)

k|S+|
+ {y(V \ S+) − x∗

2(V \ S+)} ≤ 0.

This concludes the proof of Theorem 3.2 (i).

3.2 Proof of “(SC1
G
) =⇒ f is M♮-convex”

We prove Theorem 3.2 (ii).

Let f : ZV → R ∪ {+∞} be a function such that dom f is bounded, and suppose that f satisfies

(SC1
G
). We prove the M♮-convexity of f by using Theorem 2.2, a characterization of M♮-convex functions

by the sets of minimizers. Since f [p] satisfies (SC1
G
) for all p ∈ RV , it suffices to show that arg min f

is an M♮-convex set. To prove the M♮-convexity of arg min f , we use Theorem 2.1; we first consider the

case where x ≤ y or x ≥ y (Lemma 3.3), then the case where x − y = χs + χu − χr − χt for some

r, s, t, u ∈ V ∪ {0} (Lemmas 3.4, 3.6, 3.7), and finally the general case (Lemma 3.9).

Lemma 3.3. For any x, y ∈ arg min f with x ≤ y, we have [x, y]Z ⊆ arg min f .

Proof. We show that any x̃ ∈ [x, y]Z is contained in arg min f . Since y ∈ X∗(f, y) and x̃ ≤ y, (SC1
G
)

implies that there exists some x2 ∈ X∗(f, x̃) (⊆ arg min f) such that x̃ = x̃∧y ≤ x2 ≤ x̃, i.e., x2 = x̃.

Lemma 3.4. For any x, y ∈ arg min f with x − y = 2χu − χv for some distinct u, v ∈ V , we have

x − χu, x − χu + χv ∈ arg min f .

Proof. We firstly prove that x − χu + χv ∈ arg min f . If x + χv ∈ arg min f , then Lemma 3.3 implies

x−χu +χv ∈ arg min f since x−χu +χv ∈ [y, x+χv]Z. Hence, we assume x+χv 6∈ arg min f . Let M be

a sufficiently large positive number, and ε be a sufficiently small positive number. We define p ∈ RV by

p(w) =





−2ε if w = u,

−3ε if w = v,

−M otherwise.
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Assume, to the contrary, that x − χu + χv 6∈ arg min f . Then, we have X∗(f [p], x − χu + χv) = {y} and

X∗(f [p], x+χv) = {x}. Since x−χu+χv ≤ x+χv, it follows from (SC1
G
) that x−χu = (x−χu+χv)∧x ≤ y,

a contradiction since x(u) − 1 > y(u). Hence, x − χu + χv ∈ arg min f holds.

We then prove that x − χu ∈ arg min f . If there exists some x′ ∈ arg min f with x′ ≤ x − χu, then

Lemma 3.3 implies x − χu ∈ arg min f since x − χu ∈ [x′, x]Z. Hence, we assume that there exists no

such x′ ∈ arg min f , and derive a contradiction. Put x∗ = x + χv − α∗χv and y∗ = x + χv − β∗χu, where

α∗ = max{α | x + χv − αχv ∈ arg min f}, β∗ = max{β | x + χv − βχu ∈ arg min f}.

We define p̂ ∈ RV by

p̂(w) =





εα∗ if w = u,

ε(β∗ + 1) if w = v,

−M otherwise.

Then, we have X∗(f [p̂], x + χv) = {x∗} and X∗(f [p̂], x− χu + χv) = {y∗}. By (SC1
G
), we have x∗ − χu =

(x − χu + χv) ∧ x∗ ≤ y∗, a contradiction since x∗(u) − 1 = x(u) − 1 > y(u) ≥ y∗(u).

Lemma 3.5. Let x, y ∈ arg min f be any distinct vectors with x(V ) ≥ y(V ). Suppose that there exists

no z ∈ arg min f satisfying z ≤ x ∨ y, supp(x − z) ⊆ supp(x − y), and z(V ) > x(V ). Then, for any

u ∈ supp+(x − y) there exists v ∈ supp−(x − y) ∪ {0} such that x − χu + χv ∈ arg min f .

Proof. Let u ∈ supp+(x − y). Since x ∈ X∗(f, x ∨ y), it follows from (SC1
G
) that there exists some

x2 ∈ X∗(f, (x ∨ y) − χu) (⊆ arg min f) such that ((x ∨ y) − χu) ∧ x ≤ x2. This inequality implies

x2(u) = x(u) − 1, x2(w) = x(w) (w ∈ V \ [supp−(x − y) ∪ {u}]),

x2(w) ≥ x(w) (w ∈ supp−(x − y)),

from which follows x(V ) ≥ x2(V ) ≥ x(V ) − 1. Hence, x2 = x − χu + χv holds for some v ∈ supp−(x −

y) ∪ {0}.

Lemma 3.6. For any x, y ∈ arg min f with x − y = χs + χu − χv for some distinct s, u, v ∈ V , we have

x − χs + χv, x − χu ∈ arg min f or x − χu + χv, x − χs ∈ arg min f (or both).

Proof. It suffices to show the following claims hold:

(a) x − χu + χv ∈ arg min f or x − χu ∈ arg min f ,

(b) x − χs + χv ∈ arg min f or x − χs ∈ arg min f ,

(c) x − χs + χv ∈ arg min f or x − χu + χv ∈ arg min f ,

(d) x − χs ∈ arg min f or x − χu ∈ arg min f .

We firstly prove the claims (a) and (b). If x + χv ∈ arg min f , then Lemma 3.3 implies {x − χu +

χv, x − χs + χv} ⊆ [y, x + χv]Z ⊆ arg min f . If x + χv 6∈ arg min f , then Lemma 3.5 for x and y implies

(a) and (b) since supp−(x − y) = {v}.

We then prove (c). Assume, to the contrary, that neither x−χs + χv nor x−χu + χv is in arg min f .

Then, we have x − χu ∈ arg min f by (a). Since x − χu ≤ x − χu + χv ≤ x + χv, Lemma 3.3 implies

x+χv 6∈ arg min f . Put z1 = x+χv and z2 = x−χu +χv. Let M be a sufficiently large positive number,

and ε be a sufficiently small positive number. We define p ∈ RV by

p(w) =





−2ε if w ∈ {s, u},

−3ε if w = v,

−M otherwise.
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Then, X∗(f [p], z1) = {x}. By (SC1
G
), there exists some x2 ∈ X∗(f [p], z2) with x − χu = z2 ∧ x ≤ x2 ≤

x − χu + χv, i.e., x2 is either x − χu or x − χu + χv. However, we have

f [p](x − χu) − f [p](y) = ε + f(x − χu) − f(y) > 0,

f [p](x − χu + χv) − f [p](y) = −2ε + f(x − χu + χv) − f(y) > 0

since y ∈ arg min f and x − χu + χv 6∈ arg min f . This shows that x2 6∈ X∗(f [p], z2), a contradiction.

Hence, the claim (c) holds.

We finally prove (d). Assume, to the contrary, that neither x − χs nor x − χu is in arg min f . Since

{x, x−χu+χv, x−χs+χv} ⊆ arg min f by (a) and (b), Lemma 3.4 implies x−2χu+χv, x−2χs+χv, x−χv 6∈

arg min f . By Lemma 3.3, if x′ ∈ ZV satisfies at least one of the inequalities x′ ≤ x − χu, x′ ≤ x − χs,

x′ ≤ x − χv, x′ ≤ x − 2χu + χv, and x′ ≤ x − 2χs + χv, then x′ 6∈ arg min f . This shows that

arg min f ∩{x′ | x′ ≤ z1} ⊆ {x, y, x−χu + χv, x−χs + χv, x+ χv}, where z1 = x+ χv. We define p̂ ∈ RV

by

p̂(w) =





ε if w ∈ {s, u},

3ε if w = v,

−M otherwise.

Then, we have X∗(f [p̂], z1) = {x} and X∗(f [p̂], z2) = {y}, where z2 = x − χu + χv. By (SC1
G
), we have

x − χu = z2 ∧ x ≤ y, a contradiction since x(s) > y(s). Hence, the claim (d) holds.

Lemma 3.7. Let x, y ∈ dom f be any vectors satisfying ||x − y||1 = 4 and x(V ) = y(V ), and u ∈

supp+(x−y). Then, there exist v,w ∈ supp−(x−y)∪{0} such that x−χu +χv, y +χu−χw ∈ arg min f .

Proof. Suppose that y = x − χs − χu + χr + χt for some r, s, t, u ∈ V with {s, u} ∩ {r, t} = ∅. We show

that x − χu + χv ∈ arg min f and y + χu − χw ∈ arg min f hold for some v,w ∈ {r, t, 0}.

We firstly consider the case where there exists some z ∈ arg min f satisfying

z ≤ x ∨ y, supp(x − z) ⊆ supp(x − y), z(V ) > x(V ). (3.5)

This assumption implies

{x + χr, x + χt, x + χr + χt, y + χs, y + χu} ∩ arg min f 6= ∅.

We first claim that x + χr ∈ arg min f or x + χt ∈ arg min f holds. If x + χr + χt ∈ arg min f , then

Lemma 3.3 implies {x + χr, x + χt} ⊆ arg min f . If y + χu ∈ arg min f , then Lemmas 3.4 and 3.6 for

y + χu = x − χs + χr + χt and x imply x + χr ∈ arg min f or x + χt ∈ arg min f . The case where

y + χs ∈ arg min f can be dealt with similarly.

We, w.l.o.g., assume that x + χr ∈ arg min f . Lemmas 3.4 and 3.6 for x + χr = y + χu + χs − χt and

y imply {y + χu, y + χs − χt} ⊆ arg min f or {y + χs, y + χu − χt} ⊆ arg min f . If the former holds, then

we are done since y + χs − χt = x − χu + χr. If the latter holds, then we can apply Lemmas 3.4 and 3.6

to y + χs = x − χu + χr + χt and x to obtain x − χu + χr ∈ arg min f or x − χu + χt ∈ arg min f .

We then consider the case where there exists no z ∈ arg min f satisfying (3.5). By Lemma 3.5, we

have x − χu + χv ∈ arg min f and x − χs + χv′ ∈ arg min f for some v, v′ ∈ {r, t, 0}. If v′ 6= 0, then we

have x − χs + χv′ = y + χu − χw for some w ∈ {r, t}. If v′ = 0, then we can apply Lemmas 3.4 and 3.6

to y and x − χs to obtain y + χu − χr ∈ arg min f or y + χu − χt ∈ arg min f .

Lemma 3.8. Let x, y, z ∈ ZV be any distinct vectors with z ≤ x ∨ y and z(V ) > max{x(V ), y(V )}.

Then, we have ||z − x||1 < ||x − y||1 and ||z − y||1 < ||x − y||1.
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Proof. We prove ||z−x||1 < ||x−y||1 only. Put S+ = supp+(x−y), C = supp−(x−z) (⊆ supp−(x−y)),

D = supp−(x − y) \ C, and E = V \ supp(x − y). Then,

||x − y||1 − ||x − z||1 = z(S+ ∪ D ∪ E) + y(C ∪ D) − y(S+) − z(C) − 2x(D) − x(E)

> 2[y(C) − z(C)] + 2[y(D) − x(D)] ≥ 0,

where the first inequality is by z(V ) > y(V ) and y(E) = x(E), and the second by y(C) ≥ z(C) and

y(D) ≥ x(D).

Lemma 3.9. arg min f satisfies (B♮-EXC±), i.e., arg min f is an M♮-convex set if it is nonempty.

Proof. Let x, y ∈ arg min f and u ∈ supp+(x − y). We show by induction on ||x − y||1 that

x − χu + χv ∈ arg min f (∃v ∈ supp−(x − y) ∪ {0}), (3.6)

y + χu − χw ∈ arg min f (∃w ∈ supp−(x − y) ∪ {0}). (3.7)

By Lemmas 3.3, 3.4, and 3.6, we may assume supp+(x − y) 6= ∅, supp−(x − y) 6= ∅, and ||x − y||1 ≥ 4.

We first claim that the following (3.8) or (3.9) holds:

x′ = x − χs + χt ∈ arg min f (∃s ∈ supp+(x − y), ∃t ∈ supp−(x − y) ∪ {0}), (3.8)

y′ = y + χi − χj ∈ arg min f (∃i ∈ supp+(x − y) ∪ {0}, ∃j ∈ supp−(x − y)). (3.9)

If there exists no z ∈ arg min f satisfying z ≤ x ∨ y, supp(x − z) ⊆ supp(x − y), and z(V ) >

max{x(V ), y(V )}, then Lemma 3.5 implies (3.8) or (3.9) according as x(V ) ≥ y(V ) or x(V ) < y(V ).

Hence, we assume that such z ∈ arg min f exists. We may also assume z 6= x ∨ y, since otherwise

(x ∨ y) − χw ∈ arg min f (∀w ∈ supp(x − y)) holds by Lemma 3.3. Therefore, we have supp+(x − z) ∩

supp+(x−y) 6= ∅ or supp−(z−y)∩supp−(x−y) 6= ∅. Note that ||x−z||1 < ||x−y||1 and ||y−z||1 < ||x−y||1
by Lemma 3.8. If supp+(x − z) ∩ supp+(x − y) 6= ∅, then the induction hypothesis for x and z implies

x − χs + χt ∈ arg min f for some s ∈ supp+(x − z) ∩ supp+(x − y) and t ∈ supp−(x − z) ∪ {0} ⊆

supp−(x − y) ∪ {0}, i.e., (3.8) holds. Similarly, (3.9) holds if supp−(z − y) ∩ supp−(x − y) 6= ∅.

In the following, we assume that (3.8) holds; the case where (3.9) holds can be dealt with similarly

and therefore the proof is omitted.

(Case 1: supp+(x′ − y) = ∅) We have supp+(x− y) = {u}, implying x′ = x− χu + χt (∃t ∈ supp−(x−

y) ∪ {0}), i.e., (3.6) holds. Since x′ ≤ y, it follows from Lemma 3.3 that y − χj ∈ arg min f for j ∈

supp−(x′ − y) ⊆ supp−(x − y). Since ||x − (y − χj)||1 < ||x − y||1 and supp+(x − (y − χj)) = {u}, the

induction hypothesis implies (y − χj) + χu − χh ∈ arg min f for some h ∈ supp−(x − (y − χj)) ∪ {0} ⊆

supp−(x − y) ∪ {0}. If h 6= 0 then we apply Lemma 3.4 or 3.6 to y − χj + χu − χh and y to obtain

{y + χu − χj, y + χu − χh} ∩ arg min f 6= ∅, i.e., (3.7) holds.

(Case 2: supp+(x′ − y) 6= ∅, u 6∈ supp+(x′ − y)) Since u ∈ supp+(x − y), we have x′ = x − χu + χt

for some t ∈ supp−(x − y) ∪ {0}, i.e., (3.6) holds. Since ||x′ − y||1 < ||x − y||1, the induction hypothesis

for x′ and y implies ỹ = y + χi − χj ∈ arg min f for some i ∈ supp+(x′ − y) ⊆ supp+(x − y) \ {u} and

j ∈ supp−(x′ − y) ∪ {0} ⊆ supp−(x − y) ∪ {0}. Since ||x − ỹ||1 < ||x − y||1, the induction hypothesis

for x, ỹ, and u ∈ supp+(x − ỹ) implies ỹ + χu − χh ∈ arg min f for some h ∈ supp−(x − ỹ) ∪ {0} ⊆

supp−(x− y)∪ {0}. Applying Lemma 3.3, 3.4, 3.6, or 3.7 to ỹ + χu − χh = y + χi + χu − χj − χh and y,

we have {y + χu − χj , y + χu − χh} ∩ arg min f 6= ∅, i.e., (3.7) holds.

(Case 3: u ∈ supp+(x′ − y)) Since ||x′ − y||1 < ||x − y||1, the induction hypothesis for x′, y, and

u ∈ supp+(x′−y) implies y+χu−χw ∈ arg min f for some w ∈ supp−(x′−y)∪{0} ⊆ supp−(x−y)∪{0},

i.e., (3.7) holds. By using this fact we can show (3.6) in a similar way as in Case 2.
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4 Concluding Remarks

It is shown in [3, 5, 6] that M♮-convexity of a function f : ZV → R∪ {+∞} implies the properties (SC1)

and (SC2). Theorem 3.1 is an immediate consequence of this fact since f [p] is M♮-convex for any p ∈ RV

if f is M♮-convex. In fact, the properties (SC1) and (SC2) hold true under a weaker assumption than

M♮-convexity. We call a function f semistrictly quasi M♮-convex if dom f 6= ∅ and it satisfies (SSQM♮):

(SSQM♮) ∀x, y ∈ dom f , ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y) ∪ {0}:

(i) f(x − χu + χv) ≥ f(x) =⇒ f(y + χu − χv) ≤ f(y), and

(ii) f(y + χu − χv) ≥ f(y) =⇒ f(x − χu + χv) ≤ f(x).

It is easy to see that any M♮-convex function satisfies (SSQM♮). See [12] for more accounts on semistrictly

quasi M♮-convex functions.

Theorem 4.1. A function f : ZV → R ∪ {+∞} with (SSQM♮) satisfies (SC1) and (SC2).

Proof. We prove (SC1) only; (SC2) can be shown similarly and the proof is omitted.

Let z1, z2 ∈ ZV be any vectors with z1 ≥ z2 and X∗(f, z2) 6= ∅. Also, let x1 ∈ X∗(f, z1). We choose

x2 ∈ X∗(f, z2) minimizing the value
∑

{x1(w) − x2(w) | w ∈ supp+((x1 ∧ z2) − x2)}. Assume, to the

contrary, that supp+((x1∧z2)−x2) 6= ∅. Let u ∈ supp+((x1∧z2)−x2) (⊆ supp+(x1−x2)). By (SSQM♮),

there exists v ∈ supp−(x1 −x2)∪{0} such that if f(x1 −χu + χv) ≥ f(x1) then f(x2 + χu −χv) ≤ f(x2).

Since x1 − χu + χv ≤ x1 ∨ x2 ≤ z1, we have f(x1 − χu + χv) ≥ f(x1). Hence, f(x2 + χu − χv) ≤ f(x2)

follows. By the choice of u we have x2 + χu −χv ≤ z2. This implies that x2 + χu −χv ∈ X∗(f, z2), which

contradicts the choice of x2. Hence we have x1 ∧ z2 ≤ x2.
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