A Note on the Equivalence Between Substitutability and M^{\natural}-convexity

Rashid Farooq and Akiyoshi Shioura

May 2004; revised June 2004, July 2004

Abstract

The property of "substitutability" plays a key role in guaranteeing the existence of a stable solution in the stable marriage problem and its generalizations. On the other hand, the concept of M^{\natural}-convexity, introduced by Murota-Shioura (1999) for functions defined over the integer lattice, enjoys a number of nice properties that are expected of "discrete convexity" and provides with a natural model of utility functions. In this note, we show that M^{\natural}-convexity is characterized by two variants of substitutability.

Keywords: stable marriage, discrete optimization, convex function, matroid
Abbreviated Title: Equivalence of Substitutability and M^{\natural}-convexity
Subject of Classification: 90C27 (combinatorial optimization)

Rashid FAROOQ: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan, farooq@kurims.kyoto-u.ac.jp

Akiyoshi SHIOURA: Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan, shioura@dais.is.tohoku.ac.jp

1 Introduction

Since the pioneering work on the stable marriage problem by Gale-Shapley [7], various generalizations and extensions of the stable marriage model have been proposed in the literature (see [$1,2,3,4,6,14,15]$, etc.), where the property of "substitutability" for preferences plays a key role in guaranteeing the existence of a stable solution. On the other hand, the concept of M-convexity, introduced by Murota [8, 9] for functions defined over the integer lattice, enjoys a number of nice properties that are expected of "discrete convexity;" subsequently, its variant called M^{\natural}-convexity was introduced by Murota-Shioura [11]. Whereas M^{\natural}-convex functions are conceptually equivalent to M -convex functions, the class of $\mathrm{M}^{\natural}-$ convex functions is strictly larger than that of M-convex functions. Furthermore, M^{h}-concave functions provide with a natural model of utility functions $[10,13,16]$. In particular, it is known that M^{\natural}-concavity is equivalent to the gross substitutes property, and that M^{\natural}-concavity implies submodularity. In this note, we discuss the close relationship between substitutability and M^{\natural}-convexity $/ \mathrm{M}^{\natural}$-concavity.

Recently, Eguchi-Fujishige-Tamura [3] extended the stable marriage model to the framework with preferences represented by $\mathrm{M}^{\mathrm{\natural}}$-concave utility functions, and showed the existence of a stable solution in their model (see also [2]). Their proof is based on the fact that M^{\natural}-convex functions $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ satisfy the following properties:

$$
\begin{aligned}
& \left(\mathbf{S C}^{1}\right) \forall z_{1}, z_{2} \in \mathbf{Z}^{V} \text { with } z_{1} \geq z_{2} \text { and } \arg \min \left\{f\left(x^{\prime}\right) \mid x^{\prime} \leq z_{2}\right\} \neq \emptyset, \\
& \quad \forall x_{1} \in \arg \min \left\{f\left(x^{\prime}\right) \mid x^{\prime} \leq z_{1}\right\}, \exists x_{2} \in \arg \min \left\{f\left(x^{\prime}\right) \mid x^{\prime} \leq z_{2}\right\} \text { such that } z_{2} \wedge x_{1} \leq x_{2}, \\
& \left(\mathbf{S C}^{2}\right) \forall z_{1}, z_{2} \in \mathbf{Z}^{V} \text { with } z_{1} \geq z_{2} \text { and } \arg \min \left\{f\left(x^{\prime}\right) \mid x^{\prime} \leq z_{1}\right\} \neq \emptyset, \\
& \quad \forall x_{2} \in \arg \min \left\{f\left(x^{\prime}\right) \mid x^{\prime} \leq z_{2}\right\}, \exists x_{1} \in \arg \min \left\{f\left(x^{\prime}\right) \mid x^{\prime} \leq z_{1}\right\} \text { such that } z_{2} \wedge x_{1} \leq x_{2},
\end{aligned}
$$

where for $x, y \in \mathbf{R}^{V}$ the vector $x \wedge y \in \mathbf{R}^{V}$ is given by $(x \wedge y)(w)=\min \{x(w), y(w)\}(w \in V)$. These properties can be regarded as substitutability for utility functions f; indeed, $\left(\mathrm{SC}^{1}\right)$ and $\left(\mathrm{SC}^{2}\right)$ can be seen as generalizations of substitutability (persistence) in the sense of Alkan-Gale [1] for the choice function $C(z)=\arg \min \{f(y) \mid y \leq z\}$.

Following the work by Eguchi-Fujishige-Tamura [3], Fujishige-Tamura [6] presented a common generalization of the stable marriage model and the assignment game model with M^{\natural}-concave utility functions. It is shown in [6] that the following properties of M^{\natural}-convex functions

$$
\begin{aligned}
& \left(\mathbf{S C}_{\mathbf{G}}^{1}\right) \forall p \in \mathbf{R}^{V}, f[p] \text { satisfies }\left(\mathrm{SC}^{1}\right), \\
& \left(\mathbf{S C}_{\mathbf{G}}^{2}\right) \forall p \in \mathbf{R}^{V}, f[p] \text { satisfies }\left(\mathrm{SC}^{2}\right),
\end{aligned}
$$

which can be seen as stronger versions of substitutability $\left(\mathrm{SC}^{1}\right)$ and $\left(\mathrm{SC}^{2}\right)$, play a key role in the proof of the existence of a stable solution in this model, where for $p \in \mathbf{R}^{V}$ the function $f[p]: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ is defined by

$$
f[p](x)=f(x)+\sum_{w \in V} p(w) x(w) \quad\left(x \in \mathbf{Z}^{V}\right)
$$

The main aim of this note is to prove that each of $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ and $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)$ characterizes M^{\natural}-convexity of a function.

Theorem 1.1. Let $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a function such that the effective domain $\operatorname{dom} f=\left\{x \in \mathbf{Z}^{V} \mid\right.$ $f(x)<+\infty\}$ is bounded. Then,

$$
f \text { is } M^{\natural} \text {-convex } \Longleftrightarrow\left(\mathrm{SC}_{\mathrm{G}}^{1}\right) \Longleftrightarrow\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)
$$

This theorem shows that M^{\natural}-concavity of utility functions is an essential assumption in the model of Fujishige-Tamura [6]. Combining Theorem 1.1 and the previous result [13, Theorem 11] clarifies the relationship between substitutability and the gross substitute property for utility functions. The equivalence in Theorem 1.1 was proven by Farooq-Tamura [5] in the special case where $\operatorname{dom} f \subseteq\{0,1\}^{V}$, i.e., f is a set function. In this note, we give a proof for a more general case where $\operatorname{dom} f$ is bounded.

2 Preliminaries on M^{\natural}-convexity

In this section, we review the definition and fundamental properties of M^{\natural}-convex functions.
Throughout this paper, we assume that V is a nonempty finite set. The sets of reals and integers are denoted by \mathbf{R} and by \mathbf{Z}, respectively. For a vector $x=(x(w) \mid w \in V) \in \mathbf{Z}^{V}$, we define

$$
\begin{gathered}
\operatorname{supp}^{+}(x)=\{w \in V \mid x(w)>0\}, \quad \operatorname{supp}^{-}(x)=\{w \in V \mid x(w)<0\}, \quad \operatorname{supp}(x)=\{w \in V \mid x(w) \neq 0\} \\
\langle p, x\rangle=\sum_{w \in V} p(w) x(w) \quad\left(p \in \mathbf{R}^{V}\right), \quad x(S)=\sum_{w \in S} x(w) \quad(S \subseteq V)
\end{gathered}
$$

For any $u \in V$, the characteristic vector of u is denoted by $\chi_{u}\left(\in\{0,1\}^{V}\right)$, i.e., $\chi_{u}(w)=1$ if $w=u$ and $\chi_{u}(w)=0$ otherwise. We also denote by χ_{0} the zero vector. For $x, y \in \mathbf{Z}^{V}$ with $x \leq y$, we denote $[x, y]_{\mathbf{Z}}=\left\{z \in \mathbf{Z}^{V} \mid x \leq z \leq y\right\}$.

Let $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a function. We denote the set of minimizers of f by $\arg \min f=\{x \in$ $\left.\mathbf{Z}^{V} \mid f(x) \leq f(y)\left(\forall y \in \mathbf{Z}^{V}\right)\right\}$, which can be the empty set. For a vector $z \in \mathbf{Z}^{V}$, we denote

$$
X^{*}(f, z)=\arg \min \{f(x) \mid x \leq z\}\left(=\left\{x \in \mathbf{Z}^{V} \mid x \leq z, f(x) \leq f(y)\left(\forall y \in \mathbf{Z}^{V} \text { with } y \leq z\right)\right\}\right)
$$

We call a function $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\} M^{\natural}$-convex if it satisfies $\operatorname{dom} f \neq \emptyset$ and (MM^{\natural}-EXC):
$\left(\mathbf{M}^{\natural}-\mathbf{E X C}\right) \forall x, y \in \operatorname{dom} f, \forall u \in \operatorname{supp}^{+}(x-y), \exists v \in \operatorname{supp}^{-}(x-y) \cup\{0\}:$

$$
f(x)+f(y) \geq f\left(x-\chi_{u}+\chi_{v}\right)+f\left(y+\chi_{u}-\chi_{v}\right)
$$

See [11] for the original definition.
We also define the set version of M^{\natural}-convexity. A nonempty set $B \subseteq \mathbf{Z}^{V}$ is said to be M^{\natural}-convex if its indicator function $\delta_{B}: \mathbf{Z}^{V} \rightarrow\{0,+\infty\}$ defined by

$$
\delta_{B}(x)= \begin{cases}0 & \text { if } x \in B \\ +\infty & \text { otherwise }\end{cases}
$$

is M^{\natural}-convex. Equivalently, an M^{\natural}-convex set is defined as a nonempty set satisfying the exchange property ($\mathrm{B}^{\natural}-\mathrm{EXC}_{ \pm}$):
$\left(\mathbf{B}^{\natural}-\mathbf{E X C} \mathbf{C}_{ \pm}\right) \forall x, y \in B, \forall u \in \operatorname{supp}^{+}(x-y), \exists v, w \in \operatorname{supp}^{-}(x-y) \cup\{0\}$ such that $x-\chi_{u}+\chi_{v} \in B$ and $y+\chi_{u}-\chi_{w} \in B$.

Theorem 2.1 ([11, 17]). A nonempty set $B \subseteq \mathbf{Z}^{V}$ is M^{\natural}-convex if and only if it satisfies $\left(\mathrm{B}^{\natural}-\mathrm{EXC}_{ \pm}\right)$.
An M^{\natural}-convex function with bounded effective domain can be characterized by the sets of minimizers.
Theorem 2.2 ([10, Theorem 6.30]). Let $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a function such that $\operatorname{dom} f$ is bounded. Then, f is M^{\natural}-convex if and only if for each $p \in \mathbf{R}^{V}$ the set $\arg \min f[p]$ is M^{\natural}-convex.

3 Proofs

The implications " f is M^{\natural}-convex $\Longrightarrow\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ " and " f is M^{\natural}-convex $\Longrightarrow\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)$ " are shown in $[3,5,6]$ (see also Section 4).

Theorem 3.1. An M^{\natural}-convex function $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ and $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)$.
In this section, we prove the implications " $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right) \Longrightarrow\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ " and " $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right) \Longrightarrow f$ is M^{\natural}-convex."
Theorem 3.2. Let $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$.
(i) If f satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)$, then f also satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$.
(ii) Suppose that dom f is bounded. If f satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$, then f is M^{\natural}-convex.

Combining Theorems 3.1 and 3.2 yields Theorem 1.1, our main result.

3.1 Proof of " $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right) \Longrightarrow\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ "

We prove Theorem 3.2 (i).
Suppose that f satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)$. Let $p \in \mathbf{R}^{V}, z_{1}, z_{2} \in \mathbf{Z}^{V}$ be any vectors satisfying $z_{1} \geq z_{2}$ and $X^{*}\left(f[p], z_{2}\right) \neq \emptyset$, and $x_{1}^{*} \in X^{*}\left(f[p], z_{1}\right)$. Also, let $x_{2}^{*} \in X^{*}\left(f[p], z_{2}\right)$ be a vector minimizing the cardinality of the set $\operatorname{supp}^{+}\left(x_{2}^{*}-x_{1}^{*}\right)$, and put $S^{+}=\operatorname{supp}^{+}\left(x_{2}^{*}-x_{1}^{*}\right)$. We assume that x_{2}^{*} maximizes the value $x_{2}^{*}\left(V \backslash S^{+}\right)$among all vectors $y \in X^{*}\left(f[p], z_{2}\right)$ with $\operatorname{supp}^{+}\left(y-x_{1}^{*}\right)=S^{+}$. We show that x_{2}^{*} satisfies the inequality $z_{2} \wedge x_{1}^{*} \leq x_{2}^{*}$.

For $w \in S^{+}$, we have $\min \left\{z_{2}(w), x_{1}^{*}(w)\right\}=x_{1}^{*}(w)<x_{2}^{*}(w)$ since $x_{1}^{*}(w)<x_{2}^{*}(w) \leq z_{2}(w)$. Hence, it suffices to prove that

$$
\begin{equation*}
\min \left\{z_{2}(w), x_{1}^{*}(w)\right\} \leq x_{2}^{*}(w) \quad\left(w \in V \backslash S^{+}\right) \tag{3.1}
\end{equation*}
$$

To show this, we define $\widetilde{z}_{1}, \widetilde{z}_{2} \in \mathbf{Z}^{V}$ by

$$
\widetilde{z}_{1}=x_{1}^{*} \vee x_{2}^{*}, \quad \widetilde{z}_{2}=\left(x_{1}^{*} \vee x_{2}^{*}\right) \wedge z_{2}
$$

For $i=1,2, x_{i}^{*} \in X^{*}\left(f[p], \widetilde{z}_{i}\right) \subseteq X^{*}\left(f[p], z_{i}\right)$ holds since $x_{i}^{*} \leq \widetilde{z}_{i} \leq z_{i}$. As shown below, there exists a vector $q \in \mathbf{R}^{V}$ satisfying the following conditions:

$$
\begin{align*}
& X^{*}\left(f[q], \widetilde{z}_{1}\right) \neq \emptyset, \text { and } x(w)=x_{1}^{*}(w)\left(w \in V \backslash S^{+}\right) \text {for all } x \in X^{*}\left(f[q], \widetilde{z}_{1}\right), \tag{3.2}\\
& x_{2}^{*} \in X^{*}\left(f[q], \widetilde{z}_{2}\right) . \tag{3.3}
\end{align*}
$$

Then, it follows from $\left(\mathrm{SC}_{\mathrm{G}}^{2}\right)$ that there exists some $x \in X^{*}\left(f[q], \widetilde{z}_{1}\right)$ such that $x \wedge \widetilde{z}_{2} \leq x_{2}^{*}$, implying

$$
\min \left\{x_{1}^{*}(w), z_{2}(w)\right\}=\min \left\{x(w), \widetilde{z}_{2}(w)\right\} \leq x_{2}^{*}(w) \quad\left(w \in V \backslash S^{+}\right)
$$

where the equality is by (3.2) and the definition of \widetilde{z}_{2}. Hence, we have the desired inequality (3.1).
We now show that there exists a vector $q \in \mathbf{R}^{V}$ satisfying (3.2) and (3.3). Let k be a sufficiently large positive number such that $k>\widetilde{z}_{1}(w)-x_{1}^{*}(w)\left(w \in S^{+}\right)$. Define $d \in \mathbf{R}^{V}$ by

$$
d(w)=\left\{\begin{array}{cl}
\frac{1}{k\left|S^{+}\right|} & \left(w \in S^{+}\right) \\
1 & \left(w \in V \backslash S^{+}\right)
\end{array}\right.
$$

For $i=1,2$, we define a value $\eta_{i} \in \mathbf{R}$ by

$$
\eta_{i}=\max \left\{\langle d, x\rangle \mid x \in X^{*}\left(f[p], \widetilde{z}_{i}\right)\right\}
$$

Since the set $\widehat{Y}_{i}=\left\{y \in \mathbf{Z}^{V} \mid\langle d, y\rangle>\eta_{i}, y \leq \widetilde{z}_{i}\right\}$ is finite and satisfies $f[p](y)>f[p]\left(x_{i}^{*}\right)\left(y \in \widehat{Y}_{i}\right)$, we have

$$
\begin{equation*}
X^{*}\left(f[q], \widetilde{z}_{i}\right)=\left\{x \mid x \in X^{*}\left(f[p], \widetilde{z}_{i}\right),\langle d, x\rangle=\eta_{i}\right\} \quad(i=1,2) \tag{3.4}
\end{equation*}
$$

by putting $q=p-\varepsilon d$ with a sufficiently small positive number ε.
To show that the condition (3.2) holds, let $x \in X^{*}\left(f[q], \widetilde{z}_{1}\right)$. For $w \in V \backslash S^{+}$, we have $x(w) \leq \widetilde{z}_{1}(w)=$ $x_{1}^{*}(w)$, implying $x\left(V \backslash S^{+}\right)-x_{1}^{*}\left(V \backslash S^{+}\right) \leq 0$. By (3.4), we have

$$
\begin{aligned}
0 \leq\langle d, x\rangle-\left\langle d, x_{1}^{*}\right\rangle & =\frac{1}{k\left|S^{+}\right|} \sum_{w \in S^{+}}\left\{x(w)-x_{1}^{*}(w)\right\}+x\left(V \backslash S^{+}\right)-x_{1}^{*}\left(V \backslash S^{+}\right) \\
& \leq \frac{1}{k\left|S^{+}\right|} \sum_{w \in S^{+}}\left\{\widetilde{z}_{1}(w)-x_{1}^{*}(w)\right\}+x\left(V \backslash S^{+}\right)-x_{1}^{*}\left(V \backslash S^{+}\right)
\end{aligned}
$$

Since $\left(1 / k\left|S^{+}\right|\right) \sum_{w \in S^{+}}\left\{\widetilde{z}_{1}(w)-x_{1}^{*}(w)\right\}<1$ and $x\left(V \backslash S^{+}\right)-x_{1}^{*}\left(V \backslash S^{+}\right)$is a nonpositive integer, we have $x\left(V \backslash S^{+}\right)-x_{1}^{*}\left(V \backslash S^{+}\right)=0$, implying (3.2).

We next prove that the condition (3.3) holds. It suffices to show that $\langle d, y\rangle \leq\left\langle d, x_{2}^{*}\right\rangle$ for all $y \in$ $X^{*}\left(f[p], \widetilde{z}_{2}\right)$. By the definition of \widetilde{z}_{2}, we have $y\left(S^{+}\right) \leq \widetilde{z}_{2}\left(S^{+}\right)=x_{2}^{*}\left(S^{+}\right)$and $y(w) \leq \widetilde{z}_{2}(w) \leq x_{1}^{*}(w)(w \in$ $V \backslash S^{+}$, where the latter implies supp ${ }^{+}\left(y-x_{1}^{*}\right) \subseteq S^{+}$. By the choice of x_{2}^{*}, it holds that supp ${ }^{+}\left(y-x_{1}^{*}\right)=S^{+}$ and $y\left(V \backslash S^{+}\right) \leq x_{2}^{*}\left(V \backslash S^{+}\right)$. Therefore,

$$
\langle d, y\rangle-\left\langle d, x_{2}^{*}\right\rangle=\frac{y\left(S^{+}\right)-x_{2}^{*}\left(S^{+}\right)}{k\left|S^{+}\right|}+\left\{y\left(V \backslash S^{+}\right)-x_{2}^{*}\left(V \backslash S^{+}\right)\right\} \leq 0
$$

This concludes the proof of Theorem 3.2 (i).

3.2 Proof of " $\left(\mathrm{SC}_{\mathbf{G}}^{1}\right) \Longrightarrow f$ is M^{\natural}-convex"

We prove Theorem 3.2 (ii).
Let $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a function such that $\operatorname{dom} f$ is bounded, and suppose that f satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$. We prove the M^{\natural}-convexity of f by using Theorem 2.2 , a characterization of M^{\natural}-convex functions by the sets of minimizers. Since $f[p]$ satisfies $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ for all $p \in \mathbf{R}^{V}$, it suffices to show that $\arg \min f$ is an M^{\natural}-convex set. To prove the M^{\natural}-convexity of $\arg \min f$, we use Theorem 2.1 ; we first consider the case where $x \leq y$ or $x \geq y$ (Lemma 3.3), then the case where $x-y=\chi_{s}+\chi_{u}-\chi_{r}-\chi_{t}$ for some $r, s, t, u \in V \cup\{0\}$ (Lemmas 3.4, 3.6, 3.7), and finally the general case (Lemma 3.9).

Lemma 3.3. For any $x, y \in \arg \min f$ with $x \leq y$, we have $[x, y]_{\mathbf{z}} \subseteq \arg \min f$.
Proof. We show that any $\widetilde{x} \in[x, y]_{\mathbf{Z}}$ is contained in $\arg \min f$. Since $y \in X^{*}(f, y)$ and $\widetilde{x} \leq y,\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ implies that there exists some $x_{2} \in X^{*}(f, \widetilde{x})(\subseteq \arg \min f)$ such that $\widetilde{x}=\widetilde{x} \wedge y \leq x_{2} \leq \widetilde{x}$, i.e., $x_{2}=\widetilde{x}$.

Lemma 3.4. For any $x, y \in \arg \min f$ with $x-y=2 \chi_{u}-\chi_{v}$ for some distinct u, $v \in V$, we have $x-\chi_{u}, x-\chi_{u}+\chi_{v} \in \arg \min f$.

Proof. We firstly prove that $x-\chi_{u}+\chi_{v} \in \arg \min f$. If $x+\chi_{v} \in \arg \min f$, then Lemma 3.3 implies $x-\chi_{u}+\chi_{v} \in \arg \min f$ since $x-\chi_{u}+\chi_{v} \in\left[y, x+\chi_{v}\right]_{\mathbf{Z}}$. Hence, we assume $x+\chi_{v} \notin \arg \min f$. Let M be a sufficiently large positive number, and ε be a sufficiently small positive number. We define $p \in \mathbf{R}^{V}$ by

$$
p(w)= \begin{cases}-2 \varepsilon & \text { if } w=u \\ -3 \varepsilon & \text { if } w=v \\ -M & \text { otherwise }\end{cases}
$$

Assume, to the contrary, that $x-\chi_{u}+\chi_{v} \notin \arg \min f$. Then, we have $X^{*}\left(f[p], x-\chi_{u}+\chi_{v}\right)=\{y\}$ and $X^{*}\left(f[p], x+\chi_{v}\right)=\{x\}$. Since $x-\chi_{u}+\chi_{v} \leq x+\chi_{v}$, it follows from $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ that $x-\chi_{u}=\left(x-\chi_{u}+\chi_{v}\right) \wedge x \leq y$, a contradiction since $x(u)-1>y(u)$. Hence, $x-\chi_{u}+\chi_{v} \in \arg \min f$ holds.

We then prove that $x-\chi_{u} \in \arg \min f$. If there exists some $x^{\prime} \in \arg \min f$ with $x^{\prime} \leq x-\chi_{u}$, then Lemma 3.3 implies $x-\chi_{u} \in \arg \min f$ since $x-\chi_{u} \in\left[x^{\prime}, x\right]_{\mathbf{z}}$. Hence, we assume that there exists no such $x^{\prime} \in \arg \min f$, and derive a contradiction. Put $x_{*}=x+\chi_{v}-\alpha_{*} \chi_{v}$ and $y_{*}=x+\chi_{v}-\beta_{*} \chi_{u}$, where

$$
\alpha_{*}=\max \left\{\alpha \mid x+\chi_{v}-\alpha \chi_{v} \in \arg \min f\right\}, \quad \beta_{*}=\max \left\{\beta \mid x+\chi_{v}-\beta \chi_{u} \in \arg \min f\right\} .
$$

We define $\widehat{p} \in \mathbf{R}^{V}$ by

$$
\widehat{p}(w)=\left\{\begin{array}{cl}
\varepsilon \alpha_{*} & \text { if } w=u \\
\varepsilon\left(\beta_{*}+1\right) & \text { if } w=v \\
-M & \text { otherwise }
\end{array}\right.
$$

Then, we have $X^{*}\left(f[\hat{p}], x+\chi_{v}\right)=\left\{x_{*}\right\}$ and $X^{*}\left(f[\hat{p}], x-\chi_{u}+\chi_{v}\right)=\left\{y_{*}\right\}$. By $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$, we have $x_{*}-\chi_{u}=$ $\left(x-\chi_{u}+\chi_{v}\right) \wedge x_{*} \leq y_{*}$, a contradiction since $x_{*}(u)-1=x(u)-1>y(u) \geq y_{*}(u)$.

Lemma 3.5. Let $x, y \in \arg \min f$ be any distinct vectors with $x(V) \geq y(V)$. Suppose that there exists no $z \in \arg \min f$ satisfying $z \leq x \vee y$, $\operatorname{supp}(x-z) \subseteq \operatorname{supp}(x-y)$, and $z(V)>x(V)$. Then, for any $u \in \operatorname{supp}^{+}(x-y)$ there exists $v \in \operatorname{supp}^{-}(x-y) \cup\{0\}$ such that $x-\chi_{u}+\chi_{v} \in \arg \min f$.

Proof. Let $u \in \operatorname{supp}^{+}(x-y)$. Since $x \in X^{*}(f, x \vee y)$, it follows from $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$ that there exists some $x_{2} \in X^{*}\left(f,(x \vee y)-\chi_{u}\right)(\subseteq \arg \min f)$ such that $\left((x \vee y)-\chi_{u}\right) \wedge x \leq x_{2}$. This inequality implies

$$
\begin{aligned}
& x_{2}(u)=x(u)-1, \quad x_{2}(w)=x(w)\left(w \in V \backslash\left[\operatorname{supp}^{-}(x-y) \cup\{u\}\right]\right), \\
& x_{2}(w) \geq x(w)\left(w \in \operatorname{supp}^{-}(x-y)\right),
\end{aligned}
$$

from which follows $x(V) \geq x_{2}(V) \geq x(V)-1$. Hence, $x_{2}=x-\chi_{u}+\chi_{v}$ holds for some $v \in \operatorname{supp}^{-}(x-$ y) $\cup\{0\}$.

Lemma 3.6. For any $x, y \in \arg \min f$ with $x-y=\chi_{s}+\chi_{u}-\chi_{v}$ for some distinct $s, u, v \in V$, we have $x-\chi_{s}+\chi_{v}, x-\chi_{u} \in \arg \min f$ or $x-\chi_{u}+\chi_{v}, x-\chi_{s} \in \arg \min f$ (or both).

Proof. It suffices to show the following claims hold:
(a) $x-\chi_{u}+\chi_{v} \in \arg \min f$ or $x-\chi_{u} \in \arg \min f$,
(b) $x-\chi_{s}+\chi_{v} \in \arg \min f$ or $x-\chi_{s} \in \arg \min f$,
(c) $x-\chi_{s}+\chi_{v} \in \arg \min f$ or $x-\chi_{u}+\chi_{v} \in \arg \min f$,
(d) $x-\chi_{s} \in \arg \min f$ or $x-\chi_{u} \in \arg \min f$.

We firstly prove the claims (a) and (b). If $x+\chi_{v} \in \arg \min f$, then Lemma 3.3 implies $\left\{x-\chi_{u}+\right.$ $\left.\chi_{v}, x-\chi_{s}+\chi_{v}\right\} \subseteq\left[y, x+\chi_{v}\right] \mathbf{z} \subseteq \arg \min f$. If $x+\chi_{v} \notin \arg \min f$, then Lemma 3.5 for x and y implies (a) and (b) since $\operatorname{supp}^{-}(x-y)=\{v\}$.

We then prove (c). Assume, to the contrary, that neither $x-\chi_{s}+\chi_{v}$ nor $x-\chi_{u}+\chi_{v}$ is in $\arg \min f$. Then, we have $x-\chi_{u} \in \arg \min f$ by (a). Since $x-\chi_{u} \leq x-\chi_{u}+\chi_{v} \leq x+\chi_{v}$, Lemma 3.3 implies $x+\chi_{v} \notin \arg \min f$. Put $z_{1}=x+\chi_{v}$ and $z_{2}=x-\chi_{u}+\chi_{v}$. Let M be a sufficiently large positive number, and ε be a sufficiently small positive number. We define $p \in \mathbf{R}^{V}$ by

$$
p(w)= \begin{cases}-2 \varepsilon & \text { if } w \in\{s, u\} \\ -3 \varepsilon & \text { if } w=v \\ -M & \text { otherwise }\end{cases}
$$

Then, $X^{*}\left(f[p], z_{1}\right)=\{x\}$. By $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$, there exists some $x_{2} \in X^{*}\left(f[p], z_{2}\right)$ with $x-\chi_{u}=z_{2} \wedge x \leq x_{2} \leq$ $x-\chi_{u}+\chi_{v}$, i.e., x_{2} is either $x-\chi_{u}$ or $x-\chi_{u}+\chi_{v}$. However, we have

$$
\begin{aligned}
f[p]\left(x-\chi_{u}\right)-f[p](y) & =\varepsilon+f\left(x-\chi_{u}\right)-f(y)>0 \\
f[p]\left(x-\chi_{u}+\chi_{v}\right)-f[p](y) & =-2 \varepsilon+f\left(x-\chi_{u}+\chi_{v}\right)-f(y)>0
\end{aligned}
$$

since $y \in \arg \min f$ and $x-\chi_{u}+\chi_{v} \notin \arg \min f$. This shows that $x_{2} \notin X^{*}\left(f[p], z_{2}\right)$, a contradiction. Hence, the claim (c) holds.

We finally prove (d). Assume, to the contrary, that neither $x-\chi_{s}$ nor $x-\chi_{u}$ is in $\arg \min f$. Since $\left\{x, x-\chi_{u}+\chi_{v}, x-\chi_{s}+\chi_{v}\right\} \subseteq \arg \min f$ by (a) and (b), Lemma 3.4 implies $x-2 \chi_{u}+\chi_{v}, x-2 \chi_{s}+\chi_{v}, x-\chi_{v} \notin$ $\arg \min f$. By Lemma 3.3, if $x^{\prime} \in \mathbf{Z}^{V}$ satisfies at least one of the inequalities $x^{\prime} \leq x-\chi_{u}, x^{\prime} \leq x-\chi_{s}$, $x^{\prime} \leq x-\chi_{v}, x^{\prime} \leq x-2 \chi_{u}+\chi_{v}$, and $x^{\prime} \leq x-2 \chi_{s}+\chi_{v}$, then $x^{\prime} \notin \arg \min f$. This shows that $\arg \min f \cap\left\{x^{\prime} \mid x^{\prime} \leq z_{1}\right\} \subseteq\left\{x, y, x-\chi_{u}+\chi_{v}, x-\chi_{s}+\chi_{v}, x+\chi_{v}\right\}$, where $z_{1}=x+\chi_{v}$. We define $\widehat{p} \in \mathbf{R}^{V}$ by

$$
\widehat{p}(w)=\left\{\begin{array}{cl}
\varepsilon & \text { if } w \in\{s, u\} \\
3 \varepsilon & \text { if } w=v \\
-M & \text { otherwise }
\end{array}\right.
$$

Then, we have $X^{*}\left(f[\hat{p}], z_{1}\right)=\{x\}$ and $X^{*}\left(f[\hat{p}], z_{2}\right)=\{y\}$, where $z_{2}=x-\chi_{u}+\chi_{v}$. By $\left(\mathrm{SC}_{\mathrm{G}}^{1}\right)$, we have $x-\chi_{u}=z_{2} \wedge x \leq y$, a contradiction since $x(s)>y(s)$. Hence, the claim (d) holds.

Lemma 3.7. Let $x, y \in \operatorname{dom} f$ be any vectors satisfying $\|x-y\|_{1}=4$ and $x(V)=y(V)$, and $u \in$ $\operatorname{supp}^{+}(x-y)$. Then, there exist $v, w \in \operatorname{supp}^{-}(x-y) \cup\{0\}$ such that $x-\chi_{u}+\chi_{v}, y+\chi_{u}-\chi_{w} \in \arg \min f$.

Proof. Suppose that $y=x-\chi_{s}-\chi_{u}+\chi_{r}+\chi_{t}$ for some $r, s, t, u \in V$ with $\{s, u\} \cap\{r, t\}=\emptyset$. We show that $x-\chi_{u}+\chi_{v} \in \arg \min f$ and $y+\chi_{u}-\chi_{w} \in \arg \min f$ hold for some $v, w \in\{r, t, 0\}$.

We firstly consider the case where there exists some $z \in \arg \min f$ satisfying

$$
\begin{equation*}
z \leq x \vee y, \quad \operatorname{supp}(x-z) \subseteq \operatorname{supp}(x-y), \quad z(V)>x(V) \tag{3.5}
\end{equation*}
$$

This assumption implies

$$
\left\{x+\chi_{r}, x+\chi_{t}, x+\chi_{r}+\chi_{t}, y+\chi_{s}, y+\chi_{u}\right\} \cap \arg \min f \neq \emptyset .
$$

We first claim that $x+\chi_{r} \in \arg \min f$ or $x+\chi_{t} \in \arg \min f$ holds. If $x+\chi_{r}+\chi_{t} \in \arg \min f$, then Lemma 3.3 implies $\left\{x+\chi_{r}, x+\chi_{t}\right\} \subseteq \arg \min f$. If $y+\chi_{u} \in \arg \min f$, then Lemmas 3.4 and 3.6 for $y+\chi_{u}=x-\chi_{s}+\chi_{r}+\chi_{t}$ and x imply $x+\chi_{r} \in \arg \min f$ or $x+\chi_{t} \in \arg \min f$. The case where $y+\chi_{s} \in \arg \min f$ can be dealt with similarly.

We, w.l.o.g., assume that $x+\chi_{r} \in \arg \min f$. Lemmas 3.4 and 3.6 for $x+\chi_{r}=y+\chi_{u}+\chi_{s}-\chi_{t}$ and y imply $\left\{y+\chi_{u}, y+\chi_{s}-\chi_{t}\right\} \subseteq \arg \min f$ or $\left\{y+\chi_{s}, y+\chi_{u}-\chi_{t}\right\} \subseteq \arg \min f$. If the former holds, then we are done since $y+\chi_{s}-\chi_{t}=x-\chi_{u}+\chi_{r}$. If the latter holds, then we can apply Lemmas 3.4 and 3.6 to $y+\chi_{s}=x-\chi_{u}+\chi_{r}+\chi_{t}$ and x to obtain $x-\chi_{u}+\chi_{r} \in \arg \min f$ or $x-\chi_{u}+\chi_{t} \in \arg \min f$.

We then consider the case where there exists no $z \in \arg \min f$ satisfying (3.5). By Lemma 3.5, we have $x-\chi_{u}+\chi_{v} \in \arg \min f$ and $x-\chi_{s}+\chi_{v^{\prime}} \in \arg \min f$ for some $v, v^{\prime} \in\{r, t, 0\}$. If $v^{\prime} \neq 0$, then we have $x-\chi_{s}+\chi_{v^{\prime}}=y+\chi_{u}-\chi_{w}$ for some $w \in\{r, t\}$. If $v^{\prime}=0$, then we can apply Lemmas 3.4 and 3.6 to y and $x-\chi_{s}$ to obtain $y+\chi_{u}-\chi_{r} \in \arg \min f$ or $y+\chi_{u}-\chi_{t} \in \arg \min f$.

Lemma 3.8. Let $x, y, z \in \mathbf{Z}^{V}$ be any distinct vectors with $z \leq x \vee y$ and $z(V)>\max \{x(V), y(V)\}$. Then, we have $\|z-x\|_{1}<\|x-y\|_{1}$ and $\|z-y\|_{1}<\|x-y\|_{1}$.

Proof. We prove $\|z-x\|_{1}<\|x-y\|_{1}$ only. Put $S^{+}=\operatorname{supp}^{+}(x-y), C=\operatorname{supp}^{-}(x-z)\left(\subseteq \operatorname{supp}^{-}(x-y)\right)$, $D=\operatorname{supp}^{-}(x-y) \backslash C$, and $E=V \backslash \operatorname{supp}(x-y)$. Then,

$$
\begin{aligned}
\|x-y\|_{1}-\|x-z\|_{1} & =z\left(S^{+} \cup D \cup E\right)+y(C \cup D)-y\left(S^{+}\right)-z(C)-2 x(D)-x(E) \\
& >2[y(C)-z(C)]+2[y(D)-x(D)] \geq 0
\end{aligned}
$$

where the first inequality is by $z(V)>y(V)$ and $y(E)=x(E)$, and the second by $y(C) \geq z(C)$ and $y(D) \geq x(D)$.

Lemma 3.9. $\arg \min f$ satisfies $\left(\mathrm{B}^{\natural}-\mathrm{EXC}_{ \pm}\right)$, i.e., $\arg \min f$ is an M^{\natural}-convex set if it is nonempty.
Proof. Let $x, y \in \arg \min f$ and $u \in \operatorname{supp}^{+}(x-y)$. We show by induction on $\|x-y\|_{1}$ that

$$
\begin{array}{ll}
x-\chi_{u}+\chi_{v} \in \arg \min f & \left(\exists v \in \operatorname{supp}^{-}(x-y) \cup\{0\}\right) \\
y+\chi_{u}-\chi_{w} \in \arg \min f & \left(\exists w \in \operatorname{supp}^{-}(x-y) \cup\{0\}\right) \tag{3.7}
\end{array}
$$

By Lemmas 3.3, 3.4, and 3.6, we may assume $\operatorname{supp}^{+}(x-y) \neq \emptyset, \operatorname{supp}^{-}(x-y) \neq \emptyset$, and $\|x-y\|_{1} \geq 4$.
We first claim that the following (3.8) or (3.9) holds:

$$
\begin{array}{ll}
x^{\prime}=x-\chi_{s}+\chi_{t} \in \arg \min f & \left(\exists s \in \operatorname{supp}^{+}(x-y), \exists t \in \operatorname{supp}^{-}(x-y) \cup\{0\}\right), \\
y^{\prime}=y+\chi_{i}-\chi_{j} \in \arg \min f & \left(\exists i \in \operatorname{supp}^{+}(x-y) \cup\{0\}, \exists j \in \operatorname{supp}^{-}(x-y)\right) . \tag{3.9}
\end{array}
$$

If there exists no $z \in \arg \min f$ satisfying $z \leq x \vee y, \operatorname{supp}(x-z) \subseteq \operatorname{supp}(x-y)$, and $z(V)>$ $\max \{x(V), y(V)\}$, then Lemma 3.5 implies (3.8) or (3.9) according as $x(V) \geq y(V)$ or $x(V)<y(V)$. Hence, we assume that such $z \in \arg \min f$ exists. We may also assume $z \neq x \vee y$, since otherwise $(x \vee y)-\chi_{w} \in \arg \min f(\forall w \in \operatorname{supp}(x-y))$ holds by Lemma 3.3. Therefore, we have $\operatorname{supp}^{+}(x-z) \cap$ $\operatorname{supp}^{+}(x-y) \neq \emptyset$ or $\operatorname{supp}^{-}(z-y) \cap \operatorname{supp}^{-}(x-y) \neq \emptyset$. Note that $\|x-z\|_{1}<\|x-y\|_{1}$ and $\|y-z\|_{1}<\|x-y\|_{1}$ by Lemma 3.8. If $\operatorname{supp}^{+}(x-z) \cap \operatorname{supp}^{+}(x-y) \neq \emptyset$, then the induction hypothesis for x and z implies $x-\chi_{s}+\chi_{t} \in \arg \min f$ for some $s \in \operatorname{supp}^{+}(x-z) \cap \operatorname{supp}^{+}(x-y)$ and $t \in \operatorname{supp}^{-}(x-z) \cup\{0\} \subseteq$ $\operatorname{supp}^{-}(x-y) \cup\{0\}$, i.e., (3.8) holds. Similarly, (3.9) holds if $\operatorname{supp}^{-}(z-y) \cap \operatorname{supp}^{-}(x-y) \neq \emptyset$.

In the following, we assume that (3.8) holds; the case where (3.9) holds can be dealt with similarly and therefore the proof is omitted.
(Case 1: $\left.\operatorname{supp}^{+}\left(x^{\prime}-y\right)=\emptyset\right) \quad$ We have $\operatorname{supp}^{+}(x-y)=\{u\}$, implying $x^{\prime}=x-\chi_{u}+\chi_{t}\left(\exists t \in \operatorname{supp}^{-}(x-\right.$ $y) \cup\{0\}$), i.e., (3.6) holds. Since $x^{\prime} \leq y$, it follows from Lemma 3.3 that $y-\chi_{j} \in \arg \min f$ for $j \in$ $\operatorname{supp}^{-}\left(x^{\prime}-y\right) \subseteq \operatorname{supp}^{-}(x-y)$. Since $\left\|x-\left(y-\chi_{j}\right)\right\|_{1}<\|x-y\|_{1}$ and $\operatorname{supp}^{+}\left(x-\left(y-\chi_{j}\right)\right)=\{u\}$, the induction hypothesis implies $\left(y-\chi_{j}\right)+\chi_{u}-\chi_{h} \in \arg \min f$ for some $h \in \operatorname{supp}^{-}\left(x-\left(y-\chi_{j}\right)\right) \cup\{0\} \subseteq$ $\operatorname{supp}^{-}(x-y) \cup\{0\}$. If $h \neq 0$ then we apply Lemma 3.4 or 3.6 to $y-\chi_{j}+\chi_{u}-\chi_{h}$ and y to obtain $\left\{y+\chi_{u}-\chi_{j}, y+\chi_{u}-\chi_{h}\right\} \cap \arg \min f \neq \emptyset$, i.e., (3.7) holds.
(Case 2: $\left.\operatorname{supp}^{+}\left(x^{\prime}-y\right) \neq \emptyset, u \notin \operatorname{supp}^{+}\left(x^{\prime}-y\right)\right) \quad$ Since $u \in \operatorname{supp}^{+}(x-y)$, we have $x^{\prime}=x-\chi_{u}+\chi_{t}$ for some $t \in \operatorname{supp}^{-}(x-y) \cup\{0\}$, i.e., (3.6) holds. Since $\left\|x^{\prime}-y\right\|_{1}<\|x-y\|_{1}$, the induction hypothesis for x^{\prime} and y implies $\widetilde{y}=y+\chi_{i}-\chi_{j} \in \arg \min f$ for some $i \in \operatorname{supp}^{+}\left(x^{\prime}-y\right) \subseteq \operatorname{supp}^{+}(x-y) \backslash\{u\}$ and $j \in \operatorname{supp}^{-}\left(x^{\prime}-y\right) \cup\{0\} \subseteq \operatorname{supp}^{-}(x-y) \cup\{0\}$. Since $\|x-\widetilde{y}\|_{1}<\|x-y\|_{1}$, the induction hypothesis for x, \widetilde{y}, and $u \in \operatorname{supp}^{+}(x-\widetilde{y})$ implies $\widetilde{y}+\chi_{u}-\chi_{h} \in \arg \min f$ for some $h \in \operatorname{supp}^{-}(x-\widetilde{y}) \cup\{0\} \subseteq$ $\operatorname{supp}^{-}(x-y) \cup\{0\}$. Applying Lemma $3.3,3.4,3.6$, or 3.7 to $\widetilde{y}+\chi_{u}-\chi_{h}=y+\chi_{i}+\chi_{u}-\chi_{j}-\chi_{h}$ and y, we have $\left\{y+\chi_{u}-\chi_{j}, y+\chi_{u}-\chi_{h}\right\} \cap \arg \min f \neq \emptyset$, i.e., (3.7) holds.
(Case 3: $\left.u \in \operatorname{supp}^{+}\left(x^{\prime}-y\right)\right) \quad$ Since $\left\|x^{\prime}-y\right\|_{1}<\|x-y\|_{1}$, the induction hypothesis for x^{\prime}, y, and $u \in \operatorname{supp}^{+}\left(x^{\prime}-y\right)$ implies $y+\chi_{u}-\chi_{w} \in \arg \min f$ for some $w \in \operatorname{supp}^{-}\left(x^{\prime}-y\right) \cup\{0\} \subseteq \operatorname{supp}^{-}(x-y) \cup\{0\}$, i.e., (3.7) holds. By using this fact we can show (3.6) in a similar way as in Case 2.

4 Concluding Remarks

It is shown in $[3,5,6]$ that M^{\natural}-convexity of a function $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ implies the properties (SC^{1}) and $\left(\mathrm{SC}^{2}\right)$. Theorem 3.1 is an immediate consequence of this fact since $f[p]$ is M^{\natural}-convex for any $p \in \mathbf{R}^{V}$ if f is M^{\natural}-convex. In fact, the properties (SC^{1}) and (SC^{2}) hold true under a weaker assumption than M^{\natural}-convexity. We call a function f semistrictly quasi M^{\natural}-convex if $\operatorname{dom} f \neq \emptyset$ and it satisfies (SSQM^{\natural}):
$\left(\mathbf{S S Q M}^{\natural}\right) \forall x, y \in \operatorname{dom} f, \forall u \in \operatorname{supp}^{+}(x-y), \exists v \in \operatorname{supp}^{-}(x-y) \cup\{0\}:$
(i) $f\left(x-\chi_{u}+\chi_{v}\right) \geq f(x) \Longrightarrow f\left(y+\chi_{u}-\chi_{v}\right) \leq f(y)$, and
(ii) $f\left(y+\chi_{u}-\chi_{v}\right) \geq f(y) \Longrightarrow f\left(x-\chi_{u}+\chi_{v}\right) \leq f(x)$.

It is easy to see that any M^{\natural}-convex function satisfies (SSQM^{\natural}). See [12] for more accounts on semistrictly quasi M^{\natural}-convex functions.

Theorem 4.1. A function $f: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ with $\left(\mathrm{SSQM}^{\natural}\right)$ satisfies $\left(\mathrm{SC}^{1}\right)$ and $\left(\mathrm{SC}^{2}\right)$.
Proof. We prove (SC^{1}) only; (SC^{2}) can be shown similarly and the proof is omitted.
Let $z_{1}, z_{2} \in \mathbf{Z}^{V}$ be any vectors with $z_{1} \geq z_{2}$ and $X^{*}\left(f, z_{2}\right) \neq \emptyset$. Also, let $x_{1} \in X^{*}\left(f, z_{1}\right)$. We choose $x_{2} \in X^{*}\left(f, z_{2}\right)$ minimizing the value $\sum\left\{x_{1}(w)-x_{2}(w) \mid w \in \operatorname{supp}^{+}\left(\left(x_{1} \wedge z_{2}\right)-x_{2}\right)\right\}$. Assume, to the contrary, that $\operatorname{supp}^{+}\left(\left(x_{1} \wedge z_{2}\right)-x_{2}\right) \neq \emptyset$. Let $u \in \operatorname{supp}^{+}\left(\left(x_{1} \wedge z_{2}\right)-x_{2}\right)\left(\subseteq \operatorname{supp}^{+}\left(x_{1}-x_{2}\right)\right)$. By $\left(\operatorname{SSQM}^{\natural}\right)$, there exists $v \in \operatorname{supp}^{-}\left(x_{1}-x_{2}\right) \cup\{0\}$ such that if $f\left(x_{1}-\chi_{u}+\chi_{v}\right) \geq f\left(x_{1}\right)$ then $f\left(x_{2}+\chi_{u}-\chi_{v}\right) \leq f\left(x_{2}\right)$. Since $x_{1}-\chi_{u}+\chi_{v} \leq x_{1} \vee x_{2} \leq z_{1}$, we have $f\left(x_{1}-\chi_{u}+\chi_{v}\right) \geq f\left(x_{1}\right)$. Hence, $f\left(x_{2}+\chi_{u}-\chi_{v}\right) \leq f\left(x_{2}\right)$ follows. By the choice of u we have $x_{2}+\chi_{u}-\chi_{v} \leq z_{2}$. This implies that $x_{2}+\chi_{u}-\chi_{v} \in X^{*}\left(f, z_{2}\right)$, which contradicts the choice of x_{2}. Hence we have $x_{1} \wedge z_{2} \leq x_{2}$.

Acknowledgements

The authors thank Kazuo Murota and Akihisa Tamura for their valuable comments. This work is supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] A. Alkan and D. Gale, Stable schedule matching under revealed preference, J. Econom. Theory 112 (2003) 289-306.
[2] A. Eguchi and S. Fujishige, An extension of the Gale-Shapley matching algorithm to a pair of M^{\natural}-concave functions, Discrete Mathematics and Systems Science Research Report 02-05, Osaka University (2002).
[3] A. Eguchi, S. Fujishige, and A. Tamura, A generalized Gale-Shapley algorithm for a discrete-concave stable-marriage model, in Algorithms and Computation, T. Ibaraki, N. Katoh, and H. Ono (eds.), Lecture Notes in Computer Science 2906, Springer, Berlin, 2003, pp. 495-504.
[4] T. Fleiner, A fixed point approach to stable matchings and some applications, Math. Oper. Res. 28 (2003) 103-126.
[5] R. Farooq and A. Tamura, A new characterization of M^{\natural}-convex set functions by substitutability, J. Oper. Res. Soc. Japan 47 (2004) 18-24.
[6] S. Fujishige and A. Tamura, A general two-sided matching market with discrete concave utility functions, RIMS Preprint No. 1401, Kyoto University (2003).
[7] D. Gale and L. Shapley, College admissions and stability of marriage, Amer. Math. Monthly 69 (1962) 9-15.
[8] K. Murota, Convexity and Steinitz's exchange property, Adv. Math. 124 (1996) 272-311.
[9] K. Murota, Discrete convex analysis, Math. Program. 83 (1998) 313-371.
[10] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.
[11] K. Murota and A. Shioura, M-convex function on generalized polymatroid, Math. Oper. Res. 24 (1999) 95-105.
[12] K. Murota and A. Shioura, Quasi M-convex and L-convex functions: quasi-convexity in discrete optimization, Disc. Appl. Math. 131 (2003) 467-494.
[13] K. Murota and A. Tamura, New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities, Disc. Appl. Math. 131 (2003) 495-512.
[14] A.E. Roth and M. Sotomayor, Two-sided Matching: A Study in Game-Theoretic Modeling and Analysis, Cambridge Univ. Press, Cambridge, 1990.
[15] M. Sotomayor, Three remarks on the many-to-many stable matching problem, Math. Social Sci. 38 (1999) 55-70.
[16] A. Tamura, Applications of discrete convex analysis to mathematical economics, Publ. Res. Inst. Math. Sci. (2004), to appear.
[17] É. Tardos, Generalized matroids and supermodular colourings, in Matroid Theory, A. Recski and L. Lovász (eds.), Colloquia Mathematica Societatis János Bolyai 40, North-Holland, Amsterdam, 1985, pp. 359-382.

