
Buyback Problem
with Discrete Concave Valuation FunctionsI

Shun Fukuda1

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Akiyoshi Shioura

Department of Industrial Engineering and Economics, Tokyo Institute of Technology,

Tokyo 152-8550, Japan

Takeshi Tokuyama

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Abstract

We discuss an online discrete optimization problem called the buyback prob-
lem. In the literature of the buyback problem, the valuation function rep-
resenting the total value of selected elements is given by a linear function.
In this paper, we consider a generalization of the buyback problem using
nonlinear valuation functions. We propose an online algorithm for the prob-
lem with discrete concave valuation functions, and show that it achieves the
tight competitive ratio, i.e., the competitive ratio of the proposed algorithm
is equal to the known lower bound for the problem.

Keywords: buyback problem, discrete concave function, gross substitutes
valuation, online discrete optimization problem, matroid

IAn extended abstract of this work appeared in Proceedings of WAOA 2015, Lecture
Notes in Computer Science 9499, Springer, Berlin, 2015, pp. 72–83.

Email addresses: fukuda@dais.is.tohoku.ac.jp (Shun Fukuda),
shioura.a.aa@m.titech.ac.jp (Akiyoshi Shioura), tokuyama@dais.is.tohoku.ac.jp
(Takeshi Tokuyama)

1Shun Fukuda is currently at Dai Nippon Printing Co., Ltd.



1. Introduction

We discuss an online discrete optimization problem called the buyback
problem. In the literature of the buyback problem, the valuation function
representing the total value of selected elements is given by a linear (or
additive) function. We refer to this variant of the buyback problem as the
linear buyback problem. In this paper, we consider the nonlinear buyback
problem, a generalization of the buyback problem with a nonlinear valuation
function.

1.1. Model of Nonlinear Buyback Problem

To explain the setting of the nonlinear buyback problem, we consider
a situation where a company wants to hire some workers from a finite set
N of applicants. Each applicant arrives one by one sequentially, and an
interviewer of the company, which corresponds to an online algorithm, must
decide immediately whether or not to hire the applicant. The company can
hire at most m applicants; in addition, there may be some other constraints
for a set of hired applicants due to their job skills and/or their human
relationship. We denote by F ⊆ 2N the set of feasible combinations of
applicants. The interviewer wants to maximize the profit v(X) obtained
from a set X ∈ F of hired applicants. The function v is a nonlinear function
in X in general since the job skill of applicants may overlap. It is natural to
assume that function v is monotone nondecreasing and satisfies v(∅) = 0. It
is often the case that a good applicant comes for an interview but addition
of the applicant violates the feasibility. In such a case, the interviewer
can add the applicant by canceling the contract with some previously hired
applicant at the cost of compensatory payment. In this paper, we assume
that cancellation cost is given by a constant c > 0. We assume that if an
applicant is rejected at the interview or once accepted but canceled later,
then the applicant cannot be recovered later. Thus, the payoff obtained by
the company is given as the value v(B) of hired applicants B (at the end of
the interviews) minus the total cancellation cost. The goal of the interviewer
is to make an online decision to maximize the payoff.

Formally, the (nonlinear) buyback problem is formulated as an online
version of the following discrete optimization problem:

Maximize v(B)− c|C| subject to B ∈ F , C ⊆ N, B ∩ C = ∅,

where B is a set of hired applicants at the end of the interviews and C is a set
of applicants who are once accepted but later canceled. It is assumed that
the set family F and the function v are accessible via appropriate oracles;
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that is, for a given set X ⊆ N , whether X ∈ F or not can be checked in
constant time, and if X ∈ F then the function value v(X) can be obtained
in constant time.

The special case of the buyback problem with a linear valuation function
given as v(X) =

∑
i∈X w(i) and a matroid constraint is discussed by Kawase,

Han, and Makino [18], who proposed an online algorithm and analyzed its
competitive ratio. A competitive ratio of an online algorithm for the buyback
problem is an upper bound of the ratio

v(B∗)

v(B)− ct

for all possible instances of the problem, where B is a set of hired applicants
computed by the online algorithm, t is the number of cancellation made by
the online algorithm, and B∗ is an (offline) optimal solution of the instance.
It is assumed that a value ℓ > 0 with ℓ ≤ mini∈N w(i) is known in advance,
and let r∗(ℓ, c) be a positive real number given by

r∗(ℓ, c) = 1 +
c+

√
c2 + 4ℓc

2ℓ
. (1.1)

Note that the value r∗(ℓ, c) is dependent only on the ratio ℓ/c; see Figure 1
for a graph showing the relation between r∗(ℓ, c) and ℓ/c. For example, if
ℓ/c = 2 then r∗(ℓ, c) = 2, and if ℓ/c = 6 then r∗(ℓ, c) = 1.5.

Theorem 1.1 ([18]). Suppose that v : 2N → R is a linear valuation function
and F ⊆ 2N is the family of independent sets of a matroid. Then, the buy-
back problem admits an online algorithm with the competitive ratio r∗(ℓ, c).
Moreover, there exists no online deterministic algorithm with a competitive
ratio smaller than r∗(ℓ, c), even in the special case with F = {X ⊆ N |
|X| ≤ 1}.

The main aim of this paper is to generalize this result to the buyback
problem with discrete concave valuation functions.

1.2. Our Result

In this paper, we present the first online algorithm for the nonlinear
buyback problem and analyze its competitive ratio theoretically. In partic-
ular, we show that our algorithm achieves the tight upper bound for the
competitive ratio that matches the lower bound in Theorem 1.1.

Our main results given in Theorems 1.2 and 1.3 are proved in Section
4 by generalizing the approach used in [18] for the linear buyback problem.
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Figure 1: Relation between the values r∗(ℓ, c) and ℓ/c.

The analysis of the competitive ratio in our setting, however, is much more
difficult due to the nonlinearity of valuation function. We overcome this
difficulty by utilizing discrete concavity of the function called M♮-concavity.
M♮-concavity of the valuation function plays a crucial role in the analysis for
competitive ratio of our online algorithm. It should be noted that while M♮-
concave functions satisfy a variant of submodular inequality, submodularity
alone is not enough to obtain the current result; see Concluding Remarks.

1.2.1. Buyback Problem with Gross Substitutes Valuations and Matching
Weight Valuations

We first consider a nonlinear valuation function called a gross substitutes
valuation. A valuation function v : 2N → R defined on 2N is called a gross
substitutes valuation (GS valuation, for short) if it satisfies the following
condition:

∀p, q ∈ RN with p ≤ q, ∀X ∈ arg max
U⊆N

{v(U)−
∑
i∈U

p(i)},

∃Y ∈ arg max
U⊆N

{v(U)−
∑
i∈U

q(i)} such that {i ∈ X | p(i)=q(i)} ⊆ Y .

Intuitively, this condition is understood as follows, where N is regarded as a
set of discrete items, and p and q are price vectors: if a buyer wants a set X
of items at price p but some of the item prices are increased, then the buyer
still wants items in X with unchanged prices (and possibly other items).
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A natural but nontrivial example of GS valuations arises from the maximum-
weight matching problem on a complete bipartite graph, called an assign-
ment valuation [30] (or OXS valuation [21]). Going back to the situation
at the company in Section 1.1, we suppose that the company has a set J
of m jobs, to which hired workers are assigned. Each worker is assigned
to at most one job in J , each job can be assigned to at most one worker,
and if worker i ∈ N is assigned to a job j ∈ J , then profit q(i, j) given
by a positive real number is obtained. Given a set X ⊆ N of workers, the
maximum total profit v(X) obtained by assigning workers in X to jobs in J
can be formulated as the maximum-weight matching problem on a complete
bipartite graph G with the vertex sets N and J :

v(X) = max

{ ∑
(i,j)∈M

q(i, j)

∣∣∣∣ M : matching in G s.t. ∂NM = X

}
, (1.2)

where ∂NM denotes the set of vertices in N covered by edges in M . It is
known that the function v : 2N → R is a GS valuation function [21, 30].

The concept of GS valuation is introduced by Kelso and Crawford [19],
where the existence of a Walrasian equilibrium is shown in a fairly general
two-sided matching model. Since then, this concept is widely used in various
economic models and plays a central role in mathematical economics and in
auction theory (see, e.g., [5, 6, 11, 13, 14, 21]). The class of GS valuations
is a proper subclass of submodular functions, and includes natural classes
of valuations such as weighted rank functions of matroids [7, 9] and laminar
concave functions [25] (or S-valuations [5]), in addition to assignment valu-
ations explained above. While GS valuation is a sufficient condition for the
existence of a Walrasian equilibrium [19], it is also a necessary condition in
some sense [14]. GS valuation is also related to desirable properties in the
auction design [6, 11, 21]. See [28, 33] for more details on GS valuations as
well as other related concepts.

We propose an online algorithm for the nonlinear buyback problem with
a GS valuation function and a cardinality constraint. We assume that a
positive real number ℓ satisfying

ℓ ≤ min{v(X)/|X| | ∅ ̸= X ∈ F} (1.3)

is known in advance. Note that this condition is a natural generaliza-
tion of the condition used in [18]; indeed, for a linear valuation function
v(X) =

∑
i∈X w(i), condition (1.3) is simply rewritten as ℓ ≤ mini∈N w(i).

In addition, if v is an assignment valuation function in (1.2), then every ℓ
with ℓ ≤ min{q(i, j) | i ∈ N, j ∈ J} satisfies (1.3).
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Theorem 1.2. For a gross substitutes valuation function v : 2N → R and a
cardinality constraint F = {X ⊆ N | |X| ≤ m}, the nonlinear buyback prob-
lem admits an online algorithm with the competitive ratio r∗(ℓ, c) in (1.1).

By Theorem 1.1, there exists no online deterministic algorithm with a com-
petitive ratio smaller than r∗(ℓ, c). Hence, Theorem 1.2 shows that our
online algorithm achieves the tight upper bound matching the lower bound.

It should be noted that our online algorithm does not require the infor-
mation about the number of elements in N and the integer m. We also note
that even if the value ℓ with (1.3) is not known in advance, we can obtain
the same competitive ratio by slight modification of the proposed algorithm;
see Concluding Remarks.

1.2.2. Buyback Problem with Discrete Concave Valuations

Moreover, we consider a more general setting where F is a matroid and
valuation function v : F → R is a discrete concave function called M♮-
concave function. A function v : F → R is said to be M♮-concave [27] (read
“M-natural-concave”) if it satisfies a certain exchange axiom similar to that
for matroid (see Section 2 for a precise definition of M♮-concave function).

The concept of M♮-concave function is introduced by Murota and Sh-
ioura [27] (independently of GS valuations) as a class of discrete concave
functions. M♮-concavity is originally introduced for functions defined on in-
teger lattice points (see, e.g., [25]), and the present definition of M♮-concavity
for set functions can be obtained by specializing the original definition
through the one-to-one correspondence between set functions and functions
defined on {0, 1}-vectors. The concept of M♮-concave function is an exten-
sion of the concept of M-concave function introduced by Murota [22, 24].
The concepts of M♮-concavity/M-concavity play primary roles in the theory
of discrete convex analysis [25], which provides a framework for tractable
nonlinear discrete optimization problems.

M♮-concave functions have various desirable properties as discrete con-
cavity. Global optimality is characterized by local optimality, which implies
the validity of a greedy algorithm for M♮-concave function maximization.
Maximization of an M♮-concave function can be done efficiently in polyno-
mial time (see, e.g., [25, 27]).

The class of M♮-concave functions includes linear functions on matroids.
Hence, the M♮-concave buyback problem (i.e., the buyback problem with
an M♮-concave valuation function) is a proper generalization of the linear
buyback problem with a matroid constraint discussed by Kawase et al. [18].
Furthermore, the M♮-concave buyback problem also includes the problem
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Figure 2: Relationship among the three classes of the buyback problems.

with a GS valuation function and a cardinality constraint as a special case.
See Figure 2 for the relationship among the classes of buyback problems.

In this paper, we show the following result for the M♮-concave buyback
problem.

Theorem 1.3. If F ⊆ 2N is the family of independent sets of a matroid and
v : F → R is an M♮-concave function, then the nonlinear buyback problem
admits an online algorithm with the competitive ratio r∗(ℓ, c) in (1.1).

This theorem implies Theorem 1.2 as a corollary. In addition, this the-
orem also implies the former statement of Theorem 1.1, hence generalizing
the result of Kawase et al. [18]. The latter statement in Theorem 1.1 shows
that the competitive ratio in Theorem 1.3 is the best possible for the M♮-
concave buyback problem, i.e., our online algorithm achieves the tight upper
bound matching the lower bound.

1.3. Related Work

We review previous results on the linear buyback problem and some
related problems. In the literature of the linear buyback problem, two types
of cancellation cost are considered so far: proportional cost and unit cost;
the latter one is used in this paper. In the case of proportional cost, we are
given a constant f > 0 such that the cancellation cost of an element u with
the value w(u) is equal to fw(u). In the case of unit cost, we are given a
constant c > 0 such that the cancellation cost of each element u is equal to c.
Note that in the nonlinear buyback problem, unit cancellation cost is more
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suitable since proportional cancellation cost is dependent on the linearity of
a valuation function.

The linear buyback problem is originally modeled by using proportional
cost. In this setting, Babaioff et al. [3] and Constantin et al. [10] inde-
pendently proposed deterministic online algorithms for the problem with a
single matroid constraint, where the competitive ratio is 1+2f+2

√
f(1 + f).

Babaioff et al. [4] also showed that this competitive ratio is the best possible
bound for deterministic algorithms, and presented a randomized algorithm
with a better competitive ratio in the case of small f . Later, Ashwinku-
mar and Kleinberg [2] proposed a randomized algorithm with an improved
competitive ratio, which is shown to be the best possible. Ashwinkumar [1]
considered a more general constraints such as the intersection of multiple
matroids, and proposed online algorithms with theoretical bounds for the
competitive ratio. Some variants of knapsack constraint were also considered
in [3, 4, 15].

The linear buyback problem with unit cost was first introduced by Han
et al. [15]. Some variants of knapsack constraints are considered in [15,
18], while single matroid constraint is considered by Kawase et al. [18] (see
Theorem 1.1).

Variants of the buyback problem with zero cancellation cost are also ex-
tensively discussed in the literature. One such example is the problem under
a knapsack constraint, which is referred to as the online removable knapsack
problem (see, e.g., [16, 17]). Recently, the nonlinear buyback problem with
zero cancellation cost and submodular valuation function (called the online
submodular maximization with preemption) is considered by Buchbinder et
al. [8]. Note that the linear buyback problem with a single matroid con-
straint is trivial if the cancellation cost is zero; indeed, existing online algo-
rithms for this problem reduce to variants of greedy algorithms that find an
(offline) optimal solutions.

The buyback problem with an assignment valuation function can be seen
as a variant of online bipartite matching problems, where vertices on the one
side of a bipartite graph (corresponding to applicants) arrive online one by
one (see, e.g., [20] and the references therein). Among many variants of such
online matching problems, our problem setting is different in the following
two points. First, we allow re-assignment of previously accepted vertices to
the vertices on the other side whenever a newly arrived vertex is accepted.
Second, we allow exchange of a previously accepted vertex with a newly
arrived vertex by paying a cancellation cost. Without a cancellation cost,
our online matching problem is trivial since we allow re-assignment; indeed,
it is easy to construct an online algorithm that finds an (offline) optimal
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matching under this setting.

2. M♮-concave Functions and GS Valuations

In this section we review the concept of M♮-concavity and its connection
with GS valuation. In the following, we denote by R+ and Z+ the sets of
nonnegative real numbers and nonnegative integers, respectively.

Consider a function v : 2N → R ∪ {−∞} defined on all subsets X of N
such that v(X) is a finite value or equal to −∞ for every X ∈ 2N . The
effective domain of function v is defined as

dom v = {X ∈ 2N | v(X) > −∞}.

Hence, function v can be regarded as a function defined on dom v. We
say that function v is monotone nondecreasing if v(X) ≤ v(Y ) holds for
every X,Y ∈ dom v with X ⊆ Y . Note that for a monotone nondecreasing
function v, it is possible that v(X) > −∞ = v(Y ) holds for some X,Y ∈
dom v with X ⊊ Y .

A function v : 2N → R ∪ {−∞} is said to be M♮-concave if dom v is
nonempty and v satisfies the following condition:

(M♮-EXC) ∀X,Y ∈ dom v, ∀i ∈ X \ Y ,

v(X)+v(Y ) ≤ max
[
v(X− i)+v(Y + i), max

j∈Y \X
{v(X− i+j)+v(Y + i−j)}

]
,

where X − i + j is a short-hand notation for (X \ {i}) ∪ {j}. We see from
(M♮-EXC) that the effective domain F = dom v of an M♮-concave function
satisfies the following condition:2

(B♮-EXC) ∀X,Y ∈ F , ∀i ∈ X \ Y , at least one of (i) and (ii) holds:
(i) X − i ∈ F , Y + i ∈ F ,
(ii) ∃j ∈ Y \X: X − i+ j ∈ F , Y + i− j ∈ F .

It is known that a set family F ⊆ 2N is the family of independent sets of
a matroid if and only if F satisfies (B♮-EXC) and contains an empty set,
i.e., ∅ ∈ F (see, e.g., [34]). In this paper, we deal with M♮-concave functions
such that dom v is the family of independent sets of a matroid.

It is known that every M♮-concave function is a submodular function
in the following sense (cf. [25]), where we admit the inequality of the form
−∞ ≥ −∞ for convenience.

2It is shown [27] that the condition (B♮-EXC) for a set family F ⊆ 2N characterizes
the concept of g-matroid by Tardos [34].
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Proposition 2.1 ([25, Th. 6.19]). Let v : 2N → R∪{−∞} be an M♮-concave
function such that dom v is the family of matroid independent sets. Then,
it holds that

v(X) + v(Y ) ≥ v(X ∪ Y ) + v(X ∩ Y ) (∀X,Y ∈ 2N ).

An M♮-concave function also satisfies the following property.

Proposition 2.2 ([27, Th. 4.2]). Let v : 2N → R∪{−∞} be an M♮-concave
function. For every X,Y ∈ dom v with |X| = |Y | and i ∈ X \Y , there exists
some j ∈ Y \X such that

v(X) + v(Y ) ≤ v(X − i+ j) + v(Y + i− j).

Note that the sum of an M♮-concave function and a linear function is
again an M♮-concave function, while the sum of two M♮-concave functions is
not M♮-concave in general.

The next property shows the connection between M♮-concavity and gross
substitute valuation. In particular, the property below implies that the
buyback problem with a gross substitute valuation function is a special case
of M♮-concave buyback problem.

Theorem 2.3 (cf. [13]). Let v : 2N → R be a function defined on 2N .
(i) v is a GS valuation function if and only if it is M♮-concave.
(ii) Suppose that v is a GS valuation function and let m be a nonnegative
integer. Then, the function vm : 2N → R ∪ {−∞} such that

dom vm = {X ∈ 2N | |X| ≤ m}, vm(X) = v(X) (X ∈ dom vm)

is an M♮-concave function.

A simple example of M♮-concave function is a linear function. For a
vector w ∈ RN

+ and a family F ⊆ 2N of matroid independent sets, the
function v : 2N → R ∪ {−∞} such that

dom v = F , v(X) =
∑
i∈X

w(i) (X ∈ dom v) (2.1)

is an M♮-concave function; in particular, v is a GS valuation function if
dom v = 2N . In Appendix we give some nontrivial examples of M♮-concave
functions and GS valuation functions; see [25, 26] for more examples.
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3. Our Online Algorithm

Given an M♮-concave function v : 2N → R∪{−∞} such that F = dom v
is the family of matroid independent sets, we consider M♮-concave buyback
problem formulated as follows:

Maximize v(B)− c|C| subject to B ∈ F , C ⊆ N, B ∩ C = ∅,

where B is a set of hired applicants at the end of the interviews and C is a
set of applicants who are once accepted but later canceled. We assume that
function v is monotone nondecreasing (i.e., v(X) ≤ v(Y ) holds for X,Y ∈ F
with X ⊆ Y ) and satisfies v(∅) = 0. In this section, we propose an online
algorithm for M♮-concave buyback problem.

We denote n = |N |, and assume that N = {i1, i2, . . . , in} and the el-
ements in N arrive in this order. Our online algorithm is based on the
following greedy algorithm for M♮-concave function maximization problem,
i.e., the special case of M♮-concave buyback problem with zero cancellation
cost. In each iteration, the greedy algorithm maintains a set Bk ∈ F . In the
k-th iteration, the algorithm adds an element ik (i.e., it sets Bk = Bk−1+ik)
if Bk−1 + ik ∈ F ; recall that the valuation function v is assumed to be non-
decreasing. Otherwise, the greedy algorithm tries to “cancel” some element
jk in Bk−1 by replacing it with ik, where the element jk is chosen so that the
value v(Bk−1− ik+ jk) is maximized. If the value v(Bk−1− jk+ ik) is larger
than v(Bk−1), then the greedy algorithm replace jk with ik; otherwise, the
algorithm keeps the current set Bk−1 unchanged (i.e., it sets Bk = Bk−1).

Algorithm M♮Greedy
Step 0: Set B0 = ∅.
Step 1: For each element ik, k = 1, 2, . . . , n, in order of arrival,

do the following:
[Case 1: Bk−1 + ik ∈ F ] Set Bk = Bk−1 + ik.
[Case 2: Bk−1 + ik ̸∈ F ] Let jk ∈ Bk−1 be an element satisfying

v(Bk−1 − jk + ik) = max{v(Bk−1 − j + ik) | j ∈ Bk−1}. (3.1)

If v(Bk−1 − jk + ik) > v(Bk−1), then set Bk = Bk−1 − jk + ik
(“cancel jk”); otherwise, set Bk = Bk−1 (“reject ik”).

Step 2: Output Bn.

Proposition 3.1 (cf. [12, 31]). For an M♮-concave function v : 2N →
R ∪ {−∞} such that dom v is the family of matroid independent sets, the
algorithm M♮Greedy outputs a maximizer of v.
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A rigorous proof of Proposition 3.1 is given in Appendix.
Our online algorithm is obtained by modifying M♮Greedy as follows.

Recall that if we cancel some element, then we need to pay the cost c > 0.
Hence, it is natural to allow cancellation if we can increase the function value
of v sufficiently. That is, we replace some element jk in Bk−1 with ik if the
value v(Bk−1 − jk + ik) is large enough compared to v(Bk−1). To control
the number of cancellations, we use an increasing sequence of real numbers
ψ(t) (t = 1, 2, . . .) as parameters, which will be determined later by using c
and ℓ. We assume that ψ(1) = 0 and ψ(t+ 1)− ψ(t) is nondecreasing with
respect to t.

Use of numbers ψ(t) plays a key role in the analysis of competitive ratio
in Section 4. This technique is already used by Kawase et al. [18] in the case
of linear valuation functions; we generalize the technique in a nontrivial way
so that it can be applied to nonlinear (M♮-concave) valuation functions.

A detailed description of the algorithm is as follows.

Algorithm M♮BP
Step 0: Set B0 = ∅.
Step 1: For each element ik, k = 1, 2, . . . , n, in order of arrival,

do the following:
[Case 1: Bk−1 + ik ∈ F ]

Set Bk = Bk−1 + ik.
[Case 2: Bk−1 + ik ̸∈ F ]

Let tk−1 be the integer with

ψ(tk−1) ≤ v(Bk−1)− ℓ · |Bk−1| < ψ(tk−1 + 1).

Let jk ∈ Bk−1 be an element satisfying (3.1).
If v(Bk−1−jk+ik)−ℓ·|Bk−1| ≥ ψ(tk−1+1), then set Bk = Bk−1−jk+ik
(“cancel jk”); otherwise, set Bk = Bk−1 (“reject ik”).

Step 2: Output Bn.

Note that if the values ψ(t + 1) − ψ(t) are sufficiently small for all t,
then the cancellation occurs whenever v(Bk−1 − jk + ik) > v(Bk−1) holds,
implying that the behavior of the algorithm M♮BP coincides with that of
the algorithm M♮Greedy. We also note that Bk ∈ F holds if Bk is set to
Bk−1 − jk + ik since

v(Bk−1 − jk + ik) ≥ ψ(tk−1 + 1) + ℓ · |Bk−1| > −∞.

Hence, we have Bk ∈ F for k = 0, 1, . . . , n. The behavior of the algorithm,
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the monotonicity of function v, and the inequality (1.3) for ℓ imply that

v(B0) ≤ v(B1) ≤ v(B2) ≤ · · · ≤ v(Bn),

0 ≤ v(B1)− ℓ · |B1| ≤ v(B2)− ℓ · |B2| ≤ · · · ≤ v(Bn)− ℓ · |Bn|.

4. Analysis of Proposed Algorithm

In this section, we analyze the competitive ratio of the online algorithm
proposed in Section 3.

4.1. Bounding the Optimal Value

Let B∗ ∈ F be an (offline) optimal solution of M♮-concave buyback
problem. That is, B∗ ∈ argmax{v(B) | B ∈ F}. To analyze the competitive
ratio of the algorithm above, we bound the value of v(B∗) from above.

We denote m = max{|X| | X ∈ F}. We will derive the following upper
bound of v(B∗).

Lemma 4.1. v(B∗) ≤ v(Bn) +m(ψ(tn−1 + 1)− ψ(tn−1)).

To prove Lemma 4.1, we first show that the value v(B∗) can be bounded
from above using the output Bn of the algorithm.

For two sets B,B′ ∈ F with |B| = |B′|, we define an exchangeability
graph G(B,B′) as a bipartite graph having the vertex bipartition (B\B′, B′\
B) and the edge set

{(j, i) | j ∈ B \B′, i ∈ B′ \B}.

Note that |B \B′| = |B′ \B| holds since B and B′ have the same cardinality.
For each edge (j, i) in G(B,B′), we define the weight ṽ(B, j, i) of (j, i)

by
ṽ(B, j, i) = v(B − j + i)− v(B).

The value ṽ(B, j, i) is well defined and satisfies ṽ(B, j, i) ∈ R ∪ {−∞} since
B ∈ F . It is known that the graph G(B,B′) has a perfect matching with a
finite weight (see, e.g., [29, Cor. 39.12a]). Denote by v̂(B,B′) the maximum
weight of a perfect matching in G(B,B′) with respect to the edge weight
ṽ(B, j, i). We can bound the value v(B′) from above by using v(B) and
v̂(B,B′) as follows.

Proposition 4.2 (cf. [22, Lemma 3.4]). For B,B′ ∈ F with |B| = |B′|, it
holds that v(B′) ≤ v(B) + v̂(B,B′).
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The statement follows from Lemma 3.4 in [22] and Proposition 2.2; a rigorous
proof of this proposition is given in Appendix.

We have |Bn| = |B∗| = m since F is a family of matroid independent sets
and v is monotone nondecreasing. Hence, the following inequality follows
immediately from Proposition 4.2.

Lemma 4.3. v(B∗) ≤ v(Bn) +
∑

i∈B∗\Bn
max{ṽ(Bn, j, i) | j ∈ Bn}.

To bound the value max{ṽ(Bn, j, i) | j ∈ Bn} in Lemma 4.3, we show
useful inequalities for the value ṽ(Bk, j, i); proofs are given in Section 4.3.
Let Nk = {i1, i2, . . . , ik} for k = 1, 2, . . . , n. In the following, we use the
convention −∞ ≤ −∞.

Lemma 4.4. For k = 2, 3, . . . , n, if Bk = Bk−1 + ik, then it holds that

ṽ(Bk, j, i) ≤ ṽ(Bk−1, j, i) (∀j ∈ Bk, ∀i ∈ Nk \Bk).

Lemma 4.5. For k = 2, 3, . . . , n, if Bk = Bk−1 − jk + ik, then it holds that

ṽ(Bk, j, jk) ≤ 0 (∀j ∈ Bk), (4.1)

ṽ(Bk, ik, i) ≤ ṽ(Bk−1, jk, i) (∀i ∈ Nk \ (Bk ∪ {jk})), (4.2)

ṽ(Bk, j, i) ≤ max{ṽ(Bk−1, j, i), ṽ(Bk−1, jk, i)}
(∀j ∈ Bk \ {ik}, ∀i ∈ Nk \ (Bk ∪ {jk})). (4.3)

Lemma 4.6. For k = 2, 3, . . . , n, if Bk = Bk−1, then it holds that

ṽ(Bk, j, i) = ṽ(Bk−1, j, i) (∀j ∈ Bk, ∀i ∈ Nk \ (Bk ∪ {ik})), (4.4)

ṽ(Bk, j, ik) ≤ ψ(tk−1 + 1)− ψ(tk−1) (∀j ∈ Bk). (4.5)

From the three lemmas above, we can obtain a bound for the value
max{ṽ(Bn, j, i) | j ∈ Bn} as follows.

Lemma 4.7. For k = 2, 3, . . . , n, it holds that

ṽ(Bk, j, i) ≤ ψ(tk−1 + 1)− ψ(tk−1) (∀j ∈ Bk, ∀i ∈ Nk \Bk). (4.6)

Proof. We prove the claim by induction on k.
Suppose that k = 2. We may assume B2 ̸= ∅ and N2 \ B2 ̸= ∅ since

otherwise the inequality (4.6) is trivial. Then, we have at least one of the
following three cases:

(a) B1 = ∅, B2 = {i2}, (b) B1 = {i1}, B2 = {i2}, (c) B1 = B2 = {i1}.
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In each case, j ∈ B2 and i ∈ N2 \B2 are uniquely determined. We will prove
the inequality ṽ(B2, i2, i1) ≤ ψ(t1 + 1)− ψ(t1) for the cases (a) and (b) and
ṽ(B2, i1, i2) ≤ ψ(t1 + 1)− ψ(t1) for the case (c).

If (a) holds, then we have B2 − i2 + i1 = {i1} ̸∈ F and therefore

ṽ(B2, i2, i1) = v(B2 − i2 + i1)− v(B2) = −∞ < ψ(t1 + 1)− ψ(t1).

If (b) holds, then we have B2 = B1 − i1 + i2, and therefore the inequality
(4.1) in Lemma 4.5 implies

ṽ(B2, i2, i1) ≤ 0 ≤ ψ(t1 + 1)− ψ(t1).

Finally, if (c) holds, then the desired inequality follows immediately from
the inequality (4.5) in Lemma 4.6.

We then suppose that k ≥ 3. By the induction hypothesis, it holds that

max{ṽ(Bk−1, j, i) | j ∈ Bk−1} ≤ ψ(tk−2 + 1)− ψ(tk−2)

≤ ψ(tk−1 + 1)− ψ(tk−1), (4.7)

where the second inequality is by the assumption that the value ψ(t+1)−ψ(t)
is monotone nondecreasing with respect to t. By Lemmas 4.4, 4.5, and 4.6,
we have

ṽ(Bk, j, i) ≤ max
[
max{ṽ(Bk−1, j, i) | j ∈ Bk−1}, 0, ψ(tk−1 + 1)− ψ(tk−1)

]
≤ ψ(tk−1 + 1)− ψ(tk−1),

where the second inequality is by (4.7). This concludes the proof.

Lemma 4.1 follows immediately from Lemmas 4.3 and 4.7.

4.2. Analysis of Competitive Ratio

We now prove that our online algorithm achieves the competitive ratio
r∗(ℓ, c) in (1.1) by setting the values ψ(t) (t = 1, 2, . . .) appropriately.

We consider the set of intervals given by values ψ(t), and denote the
length of the t-th interval as λ(t) = ψ(t+ 1)−ψ(t). Note that whenever an
element is canceled in an iteration of our algorithm, the value v(Bk)− ℓ|Bk|
moves to some upper interval. Let tn be the integer with v(Bn) − ℓm ∈
[ψ(tn), ψ(tn+1)). Then, our algorithm cancels at most tn− 1 elements, and
therefore the payoff obtained by the algorithm is at least v(Bn)− (tn − 1)c.
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By this fact and Lemma 4.1, the competitive ratio of the algorithm is at
most

v(B∗)

v(Bn)− (tn − 1)c
≤ v(Bn) +mλ(tn−1)

v(Bn)− (tn − 1)c

≤ v(Bn) +mλ(tn)

v(Bn)− (tn − 1)c

≤ (ψ(tn) + ℓm) +mλ(tn)

(ψ(tn) + ℓm)− (tn − 1)c

≤ max
t≥1

(ψ(t) + ℓm) +mλ(t)

(ψ(t) + ℓm)− (t− 1)c
, (4.8)

where the third inequality follows from the inequality ψ(tn) + ℓm ≤ v(Bn)
and the fact that for p, q ∈ R+ the function (x+p)/(x−q) in x is decreasing
in the interval (q,+∞).

Let

r = max
t≥1

(ψ(t) + ℓm) +mλ(t)

(ψ(t) + ℓm)− (t− 1)c
.

Then, r ≥ 1 holds. We set values ψ(t) so that r > 1 and

(ψ(t) + ℓm) +mλ(t)

(ψ(t) + ℓm)− (t− 1)c
=

(ψ(t) + ℓm) +m(ψ(t+ 1)− ψ(t))

(ψ(t) + ℓm)− (t− 1)c
= r

for all t ≥ 1. This implies the following recursive formula for ψ(t):

ψ(1) = 0, ψ(t+ 1) =
m− 1 + r

m
(ψ(t) + ℓm)− cr

m
(t− 1)− ℓm. (4.9)

From the recursive formula (4.9) for ψ(t), we obtain a recursive formula
for λ(t):

λ(1) = (r − 1)ℓ, λ(t+ 1) = αλ(t)− β, where α =
m− 1 + r

m
, β =

cr

m
,

and its solution is given by

λ(t) = (λ(1)− γ)αt−1 + γ, where γ =
β

α− 1
=

cr

r − 1
.

Since λ(t) is monotone nondecreasing with respect to t, it holds that

0 ≤ λ(t+ 1)− λ(t) = (λ(1)− γ)αt−1(α− 1). (4.10)
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We have α > 1 if r > 1. Therefore, (4.10) implies that

0 ≤ λ(1)− γ = (r − 1)ℓ− cr

r − 1
.

If r > 1, then this inequality is equivalent to the following inequality:

r ≥ 1 +
c+

√
c2 + 4ℓc

2ℓ
= r∗(ℓ, c);

recall the definition of r∗(ℓ, c) in (1.1). Hence, we set r = r∗(ℓ, c), so that
the competitive ratio of our algorithm is r∗(ℓ, c).

4.3. Proofs

4.3.1. Proof of Lemma 4.4

To prove Lemma 4.4, we use the following property.

Lemma 4.8.
(i) For k = 1, 2, . . . , n, if the element ik is rejected in the k-th iteration, then
we have Bk−1 + ik ̸∈ F .
(ii) For k = 1, 2, . . . , n, if an element j ∈ Bk−1 is canceled in the k-th
iteration, then we have Bk + j ̸∈ F .
(iii) For k = 0, 1, . . . , n− 1, if Bk + j ̸∈ F holds for some j ∈ N \ Bk, then
we have Bk+1 + j ̸∈ F .

Proof. [Proof of (i)] Since ik is rejected in the k-th iteration of the algo-
rithm, Case 2 occurs in this iteration and therefore Bk−1 + ik ̸∈ F holds.

[Proof of (ii)] Since the element j is canceled in the k-th iteration of
the algorithm, Case 2 occurs in this iteration, and we have Bk−1 + ik ̸∈ F
and Bk = Bk−1 − j + ik. Therefore, Bk + j = Bk−1 + ik ̸∈ F holds.

[Proof of (iii)] If Bk+1 ⊇ Bk, then we have Bk+1+j ̸∈ F since Bk+j ̸∈
F and F is the family of independent sets of a matroid and therefore satisfies
the hereditary property. Hence, we assume Bk+1 ̸⊇ Bk in the following.
Then, we must have Case 2 in the (k + 1)-st iteration and therefore

Bk + ik+1 ̸∈ F , Bk+1 = Bk − jk+1 + ik+1.

Assume, to the contrary, that Bk+1 + j ∈ F . We have

Bk ∈ F , |Bk| < |Bk+1 + j|, (Bk+1 + j) \Bk = {j, ik+1},

which, together with the augmentation property of the matroid F , implies
that at least one of Bk + j ∈ F and Bk + ik+1 ∈ F , a contradiction. Hence,
we have Bk+1 + j /∈ F .
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Proof of Lemma 4.4. Put B = Bk − j + i. If B ̸∈ F , then we have

ṽ(Bk, j, i) = −∞ < ṽ(Bk−1, j, i).

Hence, we assume B ∈ F in the following.
Lemma 4.8 implies that Bk−1+i ̸∈ F since i ∈ Nk\Bk is an element that

is rejected or canceled in a previous iteration of the algorithm. If j = ik,
then we have B = Bk−1 + i ̸∈ F , a contradiction to the assumption B ∈ F .
Hence, we have j ∈ Bk \ {ik} = Bk−1, implying B = Bk−1 \ {j} ∪ {i, ik}.
Since Bk−1+ i ̸∈ F , (M♮-EXC) applied to B, Bk−1, and i ∈ B \Bk−1 implies
that

B − i+ j = Bk ∈ F , Bk−1 + i− j ∈ F ,
v(B) + v(Bk−1) ≤ v(Bk) + v(Bk−1 + i− j).

It follows that

ṽ(Bk, j, i) = v(B)− v(Bk) ≤ v(Bk−1 + i− j)− v(Bk−1) = ṽ(Bk−1, j, i).

4.3.2. Proof of Lemma 4.5

We first prove the inequality (4.1). If j = ik, then

ṽ(Bk, ik, jk) = v(Bk−1)− v(Bk) ≤ 0.

If j ∈ Bk \ {ik}, then

ṽ(Bk, j, jk) = v(Bk − j + jk)− v(Bk)

= v(Bk−1 − j + ik)− v(Bk−1 − jk + ik)

= ṽ(Bk−1, j, ik)− ṽ(Bk−1, jk, ik) ≤ 0,

where the inequality follows from the choice of jk since Bk \ {ik} ⊆ Bk−1.
Hence, (4.1) follows.

We next prove the inequality (4.2). It holds that

ṽ(Bk, ik, i) = v(Bk − ik + i)− v(Bk)

= v(Bk−1 − jk + i)− v(Bk−1 − jk + ik)

= ṽ(Bk−1, jk, i)− ṽ(Bk−1, jk, ik) < ṽ(Bk−1, jk, i),

where the inequality follows from the fact that jk is canceled in the k-th
iteration. Hence, (4.2) holds.
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We finally prove (4.3). Let

B = Bk − j + i (= Bk−1 \ {j, jk} ∪ {i, ik}).

Since |B| = |Bk−1|, Proposition 2.2 applied to B and Bk−1 implies that

v(B) + v(Bk−1)

≤ max{v(B + j − i) + v(Bk−1 − j + i), v(B + j − ik) + v(Bk−1 − j + ik)}
= max{v(Bk−1 − jk + ik) + v(Bk−1 − j + i),

v(Bk−1 − jk + i) + v(Bk−1 − j + ik)},

from which follows that

v(B)− v(Bk−1)

≤ max{ṽ(Bk−1, jk, ik) + ṽ(Bk−1, j, i), ṽ(Bk−1, jk, i) + ṽ(Bk−1, j, ik)}.

Hence, it holds that

ṽ(Bk, j, i) = v(B)− v(Bk)

≤ max{ṽ(Bk−1, jk, ik) + ṽ(Bk−1, j, i), ṽ(Bk−1, jk, i) + ṽ(Bk−1, j, ik)}
+ v(Bk−1)− v(Bk)

= max{ṽ(Bk−1, jk, ik) + ṽ(Bk−1, j, i), ṽ(Bk−1, jk, i) + ṽ(Bk−1, j, ik)}
− ṽ(Bk−1, jk, ik)

= max{ṽ(Bk−1, j, i), ṽ(Bk−1, jk, i) + ṽ(Bk−1, j, ik)− ṽ(Bk−1, jk, ik)}
≤ max{ṽ(Bk−1, j, i), ṽ(Bk−1, jk, i)},

where the last inequality follows from the choice of jk since Bk\{ik} ⊆ Bk−1.
Hence, (4.3) holds.

4.3.3. Proof of Lemma 4.6

Since Bk = Bk−1, (4.4) holds trivially. To prove (4.5), let j ∈ Bk. Since
ik is rejected, we have

ψ(tk−1 + 1) + ℓ · |Bk−1| > v(Bk−1 − j + ik).

Hence, it holds that

ṽ(Bk, j, ik) = v(Bk − j + ik)− v(Bk)

= v(Bk−1 − j + ik)− v(Bk−1)

< (ψ(tk−1 + 1) + ℓ · |Bk−1|)− (ψ(tk−1) + ℓ · |Bk−1|)
= ψ(tk−1 + 1)− ψ(tk−1),

where we use the fact that v(Bk−1)− ℓ · |Bk−1| ≥ ψ(tk−1).
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5. Concluding Remarks

We have shown that the competitive ratio of our online algorithm for M♮-
concave buyback problem is r∗(ℓ, c). Note that limc↓0 r

∗(ℓ, c) = r∗(ℓ, 0) = 1,
which means that our online algorithm finds an offline optimal solution if c
is a sufficiently small positive real number. Indeed, if c is sufficiently small,
then the values ψ(t+ 1)− ψ(t) are also sufficiently small for all t, implying
that the behavior of the algorithm M♮BP with a sufficiently small c coincides
with that of the algorithm M♮Greedy.

In this paper, we consider the setting where the cancellation cost is the
same for all items. We may consider the setting where the cancellation
cost is non-uniform and ci denotes the cancellation cost of item i ∈ N .
The problem with non-uniform costs includes as a special case the linear
buyback problem with proportional cancellation costs discussed in [3, 4, 10].
If the cancellation costs ci (i ∈ N) are known in advance before starting the
algorithm, then the same online algorithm with c = maxi∈N ci achieves the
competitive ratio r∗(ℓ, c). On the other hand, if the cancellation costs are
not known in advance, then we do not know any non-trivial bound of the
competitive ratio.

To obtain our main result (i.e., Theorem 1.3), we have assumed that the
value ℓ with (1.3) is known in advance. In fact, even if such ℓ is not known in
advance, we can obtain the same competitive ratio by a slight modification
of the proposed algorithm. The idea is to use the value ℓk given by

ℓ1 = 0, ℓk = min{v(Bi)/|Bi| | 1 ≤ i ≤ k − 1} (k = 2, 3, . . . , n)

in the k-th iteration instead of the original ℓ. By definition, we have

ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓn ≥ min{v(X)/|X| | ∅ ≠ X ∈ F},
0 ≤ v(B1)− ℓk · |B1| ≤ v(B2)− ℓk · |B2| ≤ · · · ≤ v(Bk)− ℓk · |Bk|

(k = 1, 2, . . . , n).

Therefore, we can show that if v(Bn)−ℓnm ∈ [ψ(t), ψ(t+1)) for some integer
t, then the cancellation occurs at most t − 1 times. Hence, we can obtain
the same competitive ratio r∗(ℓ, c) with ℓ = min{v(X)/|X| | ∅ ̸= X ∈ F} in
a similar way as in Section 4.2.

Finally, we note that our approach does not extend to the nonlinear
buyback problem with a general submodular valuation function. To illus-
trate this, let us consider an instance of the buyback problem such that

20



N = {i1, i2, i3, i4}, the valuation function v : 2N → R is given by

v(∅) = 0, v({i1}) = v({i2}) = 2, v({i3}) = v({i4}) = 3,

v(X) = 6 if |X| ≥ 2 and X ⊇ {i3, i4}
v(X) = 4 if |X| = 2 and X ̸= {i3, i4},
v(N \ {i3}) = v(N \ {i4}) = 5,

and the constraint is F = {X ∈ 2N | |X| ≤ 2}. It can be checked that the
function v is submodular but not M♮-concave.

Suppose that our online algorithm is applied to this instance, where the
elements i1, i2, i3, i4 arrive in this order. Then, the algorithm first accepts
elements i1 and i2, and then rejects i3 and i4 since the function value cannot
be increased by swapping new elements with old elements one by one. Hence,
the value of the output is v({i1, i2}) = 4. Note that this behavior of the
algorithm is irrelevant to the choice of the cancellation cost c. On the other
hand, an offline optimal solution is B∗ = {i3, i4}, for which v(B∗) = 6.
Hence, the competitive ratio of our algorithm is at least 6/4 = 1.5, while
the ratio r∗(ℓ, c) can be close to 1 if we choose a sufficiently small positive c.
This fact shows that our algorithm and analysis in this paper do not extend
to submodular valuation functions.
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Appendix A. Examples of M♮-concave Functions and GS Valua-
tion Functions

We give some nontrivial examples of M♮-concave functions and GS val-
uation functions.

Example 1 (Maximum-weight bipartite matching). In Section 1.2 we ex-
plained an assignment valuation as an example of GS valuations, where a
complete bipartite graph is used. By using a non-complete bipartite graph
instead, we can obtain an example of M♮-concave functions as follows.

Consider a bipartite graph G with two vertex sets N, J and an edge set
E (⊆ N × J), where N and J correspond to workers and jobs, respectively.
An edge (i, j) ∈ E means that worker i ∈ N has ability to process job
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j ∈ J , and profit q(i, j) ∈ R+ can be obtained by assigning worker i to job
j. Consider a matching between workers and jobs, and define F ⊆ 2N by

F = {X ⊆ N | ∃M : matching in G s.t. ∂NM = X}.

It is well known that F is the family of independent sets in a transversal
matroid (see, e.g., [29]). Define a function v : 2N → R ∪ {−∞} by

dom v = F ,

v(X) = max
{ ∑

(i,j)∈M

q(i, j)
∣∣ M : matching in G s.t. ∂NM = X

}
(X ∈ dom v).

Then, v is an M♮-concave function (see, e.g., [23], [26, Sec. 11.4.2]).

Example 2 (Laminar concave functions). Let T ⊆ 2N be a laminar family,
i.e., X ∩ Y = ∅ or X ⊆ Y or X ⊇ Y holds for every X,Y ∈ T . For
Y ∈ T , let φY : Z+ → R be a univariate concave function. Define a function
v : 2N → R by

v(X) =
∑
Y ∈T

φY (|X ∩ Y |) (X ∈ 2N ),

which is called a laminar concave function [25, Sec. 6.3] (also called an S-
valuation in [5]). Special cases of laminar concave functions are a downward
sloping symmetric function [11] given as v(X) = φ(|X|) and a nested concave
function given as

v(X) =

n∑
i=1

φi(|X ∩ {1, 2, . . . , i}|),

where φ and φi (i ∈ N) are univariate concave functions. Every laminar
concave function is a GS valuation function.

Example 3 (Weighted rank functions). Let I ⊆ 2N be the family of inde-
pendent sets of a matroid, and w ∈ RN

+ . Define a function v : 2N → R+

by
v(X) = max{w(Y ) | Y ⊆ X, Y ∈ I} (X ∈ 2N ),

which is called the weighted rank function [9]. If w(i) = 1 (i ∈ N), then
v is an ordinary rank function of the matroid (N, I). Every weighted rank
function is a GS valuation function [32].
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Appendix B. Proof of Proposition 3.1

The validity of the algorithm M♮Greedy can be shown by using the fol-
lowing properties of an M♮-concave function.

Proposition B.1 (cf. [31, Th. 2.1], [25, Th. 6.28]). Let v : 2N → R∪{−∞}
be an M♮-concave function. Let X ∈ dom v and i ∈ N \ X be such that
X + i ̸∈ dom v. If h ∈ X + i satisfies

v(X − h+ i) = max{v(X − j + i) | h ∈ X + i},

then there exists a maximizer X∗ ⊆ N of function v such that h ̸∈ X∗.

Proof. Let Y ∗ be a maximizer of function v. If h ̸∈ Y ∗, then we are done.
Hence, we assume h ∈ Y ∗ in the following, and show that there exists
another maximizer of v not containing h.

Putting Y = X − h + i, we have h ∈ Y ∗ \ Y . Therefore, (M♮-EXC)
implies that we have either

v(Y ∗) + v(Y ) ≤ v(Y ∗ − h) + v(Y + h)

or
v(Y ∗) + v(Y ) ≤ v(Y ∗ − h+ j) + v(Y + h− j) (B.1)

for some j ∈ Y \ Y ∗ (or both). Since Y + h = X + i ̸∈ dom v, we have
v(Y + h) = −∞, implying that the inequality (B.1) holds. Since j ∈ Y ⊆
(X + i), we have

v(Y ) = v(X − h+ i) ≥ v(X + i− j) = v(Y + h− j),

which, together with (B.1), implies that v(Y ∗) ≤ v(Y ∗−h+j), i.e., Y ∗−h+j
is also a maximizer of function v not containing h.

We now give a proof of Proposition 3.1. We claim that

(P) for each k = 0, 1, . . . , n, there exists a maximizer B∗
k of

function v such that B∗
k ⊆Mk and |B∗

k| ≥ |Bk|,

where Mk = Bk ∪ {ik+1, ik+2, . . . , in}. Note that (P) implies B∗
n = Bn,

and therefore the output Bn of the algorithm is a maximizer of v. In the
following we prove (P) by induction on k. The property (P) holds trivially
if k = 0. Hence, we assume k > 0.

We first consider the case with Bk = Bk−1 + ik. Then, we have Mk =
Mk−1. By the induction hypothesis, there exists a maximizer B∗

k−1 of func-
tion v such that B∗

k−1 ⊆ Mk−1 and |B∗
k−1| ≥ |Bk−1|. Since Bk ∈ F and
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Bk ⊆Mk, repeated application of the augmentation property of the matroid
F implies that there exists some B∗ ∈ F such that B∗

k−1 ⊆ B∗ ⊆ Mk and
|B∗| ≥ |Bk|. By the monotonicity of function v, we have v(B∗) ≥ v(B∗

k−1),
i.e., B∗ is also a maximizer of v. Hence, (P) holds by setting B∗

k = B∗.
We then consider the case with Bk = Bk−1 − jk + ik or Bk = Bk−1. In

this case, we have Bk−1+ik ̸∈ F by the behavior of the algorithm. Denoting

h =

{
jk (if Bk = Bk−1 − jk + ik),

ik (if Bk = Bk−1),

we have Bk = Bk−1 − h+ ik.
Define a function vk−1 : 2

Mk−1 → R ∪ {−∞} by

vk−1(X) =

{
v(X) (if |X| ≥ |Bk−1|),
−∞ (otherwise)

(X ⊆Mk−1).

Note that vk−1 is an M♮-concave function. The induction hypothesis implies
that

max{vk−1(X) | X ⊆Mk−1} = max{v(X) | X ⊆ N}. (B.2)

We also have

vk−1(Bk) = max{vk−1(Bk−1 + ik − j) | j ∈ Bk−1 + ik}

by the definition of Bk. This equation, together with Proposition B.1 applied
to vk−1, implies that there exists a maximizer B∗∗ ⊆ Mk−1 of function
vk−1 such that h ̸∈ B∗∗. Hence, we have B∗∗ ⊆ Mk−1 − h = Mk. Since
B∗∗ ∈ dom vk−1, we have |B∗∗| ≥ |Bk−1| = |Bk| by the definition of vk−1.
Moreover, B∗∗ is a maximizer of v by (B.2). Therefore, (P) holds. This
concludes the proof of Proposition 3.1.

Appendix C. Proof of Proposition 4.2

We prove the inequality by induction on the cardinality of B \ B′. If
|B \ B′| = 0, then we have B = B′ and v̂(B,B′) = 0 since G(B,B′) has no
vertex. Hence, v(B′) = v(B) + v̂(B,B′) holds.

We then assume |B \ B′| > 0 and let j ∈ B \ B′. Then, Proposition 2.2
applied to B, B′, and j implies that there exists some i ∈ B′ \B such that

v(B) + v(B′) ≤ v(B − j + i) + v(B′ + j − i).
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We denote B′′ = B′ + j − i. Then, we have

v(B′) ≤ v(B′′) + ṽ(B, j, i).

Since |B \ B′′| < |B \ B′|, we can apply the induction hypothesis to B and
B′′ to obtain

v(B′′) ≤ v(B) + v̂(B,B′′).

Hence, it follows that

v(B′) ≤ v(B′′) + ṽ(B, j, i) ≤ v(B) + v̂(B,B′′) + ṽ(B, j, i)

≤ v(B) + v̂(B,B′),

where the last inequality follows from the fact that edges in a perfect match-
ing in G(B,B′′), together with the edge (j, i), gives a perfect matching in
G(B,B′).
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