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1 Introduction

The convexity concept for sets and functions plays a pivotal role in the area of continuous op-
timization (or nonlinear optimization with continuous variables) [7, 14, 15]. One of the most
important properties of convex functions is that the local optimality guarantees the global opti-
mality. This property allows us to find the minimum of a convex function by iteratively moving
in descent directions. Namely, the so-called “greedy algorithms” work for convex functions.

In discrete optimization, on the other hand, discrete analogues of convexity, or “discrete con-
vexity” for short, have been considered, with a view to identifying the discrete structure that
guarantees the success of greedy algorithms. Consequently, several different types of discrete
convexity have been proposed.

Miller [8] investigated a class of discrete functions, called “discretely-convex” functions, such
that local optimality implies global optimality (see Theorem 2.2). Favati-Tardella [1] considered
a certain special way of extending functions defined over the integer lattice to piecewise-linear
functions defined over the real space, and introduced the concept of “integrally-convex” functions.

The concepts of “M-convexity” and “L-convexity”, introduced by Murota [9, 10, 11], afford a
nice framework for discrete optimization problems. M-convex/L-convex functions have various de-
sirable properties as discrete convex functions: extendibility to ordinary convex functions, duality
theorems, conjugacy between M /L-convex functions, etc.

Variants of M-convex and L-convex functions, called “MP-convex” and “Li-convex” func-
tions, are introduced by Murota-Shioura [13] and Fujishige-Murota, [6], respectively. Mé-convex
(resp. Li-convex) functions are essentially equivalent to M-convex (resp. L-convex) functions,
whereas the class of Mf-convex (resp. Lf-convex) functions properly contains that of M-convex
(resp. L-convex) functions. It is shown in [6] that the class of L*-convex functions coincides with
that of submodular integrally-convex functions considered in [1].

In this paper, we clarify the relationship of M-convexity/L-convexity with discrete convexity
by Miller and by Favati-Tardella. Miller’s discrete convexity contains the other classes of dis-
crete convexity (Theorem 3.3), M-convexity /L-convexity are special cases of discrete convexity by
Favati-Tardella (Theorems 3.9, 3.12), and the class of separable-convex functions coincides with
the intersection of the classes of Mf-convex/L*-convex functions (Theorem 3.17). We also discuss
some fundamental operations for discrete convex functions, such as addition, convolution, and the
Fenchel-Legendre transformation. We check whether each discrete convexity is closed under each
operation, and provide a proof or a counterexample for the statement.

The organization of this paper is as follows. Section 2 explains notation and provides the
definitions of discrete convexity. We then show the relationship between various discrete convexity
in Section 3, and discuss the operations for discrete convexity in Section 4. Section 5 provides

proofs of some theorems.



2 Definitions on Discrete Convex Functions

We give the definitions of discretely-convex, integrally-convex, M-convex, and L-convex functions.
We denote by R the set of reals, and by Z the set of integers. Let V' be a nonempty finite set.
The characteristic vector of a subset X C V is denoted by xx (€ {0,1}"), i.e.,

)1 (weX),
XX(w)_{ 0 (weV—X).

In particular, we use the notation 0 = xp and 1 = yy .
Fora:V - RU{-o0} and b: V — RU {400} with a(v) < b(v) (v € V), we define the
interval [a, b] (C RY) by
[a,b] = {z € RY | a < z < b}.

For z € RV, we define the sets

No(z) = {yeZV|[z] <y
Ni(z) = {yeZ"||z] -

},
[«] + 1},

where |x]| (resp. [z]) denotes the vector obtained by rounding down (resp. up) the components

< [z]
1<y<

of x to the nearest integers. In particular, No(x) denotes the set of integral vectors in the smallest
hypercube containing x.

Let f:ZV — RU{+o0}. We define dom f = {z € Z" | f(z) < +oc}. A function f is said to
be discretely-convez if for any z', " € dom f and any « € [0, 1], it holds that

min{f(y) | y € No(ez' + (1 — 2)2")} < af (@) + (1 — ) f(2").

Remark 2.1 The definition of discretely-convex functions in this paper is slightly different from
the original one by Miller [8], where it is defined for functions over the set of integral vectors in a
closed interval. Our definition is based on the “weaker requirement” in [8]. O

The local optimality implies the global optimality for discretely-convex functions.

Theorem 2.2 ([8]) Let f:ZY — RU{+o0} be discretely-conver and x € dom f. Then, f(z) <
f(y) for ally € ZV if and only if f(x) < f(y) for all y € Ni(z).

We also introduce discrete convexity for sets. For any S C ZY, its indicator function dg :

ZV — {0,+oc} is defined as
0 x €S),
() = { (z €5)

+oo (z € 9).

A set S C ZV is called a discretely-convez set if g is a discretely-convex function. Alternatively,
aset S C ZV is discretely-convex if for any 2/, 2" € S and any « € [0, 1], it holds that No(az' +
(1—a)z")NS # 0. In this paper, we do not distinguish a set of integral vectors and its indicator
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function, and when a concept of “convex” functions is given, we call a set S C Z" “convex” if its
indicator function dg : Z¥ — {0,400} is a “convex” function.

Let f:ZY — RU{+o00}. A closed convex function fgr : RY — R U {+oo} is called a convez
extension of f if fr(x) = f(x) for all x € ZV. The convez closure f : RY — R U {400} of f is
defined by

f@)= sw {{pz)+alpy)+a<fly) (WyeZ’)} (zeRY), (2.1)

peRV ,acR

where (p,y) = ¥ ,cv p(v)y(v). For S C RY, the convez closure of S, denoted by S, is the smallest
closed convex set containing S.

Lemma 2.3 Let f : Z¥ — R U {+o0} be a function. Then, f(x) = f(z) for any z € ZV if and

only if there exists a conver extension of f.

We call a function f : ZV — R U {400} convez-extendible if f(x) = f(x) for any z € ZV. A set
S C ZV is said to be convez-extendible if SNZYV = S.

We next introduce the local convezr extension of a function f : ZV — R U {+oc}. Define
f:RY = RU{+00} by

fl@)= sup {(pa)+allpy)+a<f(y) (VyeNo(z))} (z€RY). (2:2)

peRV ,acR

Note that f~ is the convex closure of the restriction of f to the integral points around z. It admits
an alternative expression
Fo) =t A ) | Ay =2 XA =1, 4,20 @eN(x)} @eRY)  (23)
y€No(z) y€No(z) y€No(z)

by the linear programming duality. From the definitions, we have
fle)>F@) (vzeRY), f(z)=f(z) (VzeZ"). (2.4)

A function f : ZV — R U {+oo} is said to be integrally-convez if its local convex extension
f:RY = RU{+o0} is a convex function, or equivalently, if f = F. A set S C Z" is integrally-

convez if

SNNy(z) =SNNo(z) (vzeRY). (2.5)

We say a function f : Z — RU {400} is convezif f(a—1)+ f(a+1) > 2f(«) for any a € Z.
A function f: ZYV — R U {400} is said to be separable-convez if f(x) = X ey fo(z(v)) (x € ZV)
for a family of convex functions f, : Z - R U {400} (v € V). Note that a separable-convex set
is nothing but the set of integral vectors in the interval [a,b] for some a : V' — R U {—o0} and
b:V - RU{+o0}.

For any z,y € Z", the vectors x Ay,z Vy € Z" are such that

(@ Ay)(v) =min{z(v),y(v)}, (2Vy)(v) =max{z(v),y(v)} (veV).

A function f : Z¥ — R U {+oc} is said to be



f@ny)+ flavy) (Vo,yeZ’),
f@ny)+ flzvy) (Vo,yeZ’),
fleny)+flavy) (VYo,yeZY).

submodular <= f(z)+ f(y
supermodular <= f(z)+ f(y
modular <= f(x)+ f(y)

) >
) <

A function f : ZYV — R U {+00} is called M-conver if it satisfies

(M-EXCQC) Vz,y € dom f, Yu € supp™(z — y), v € supp™ (z — y) such that

f@)+ f(y) > [z —xu+ Xo) + Y+ Xu — Xo)s
where

supp”(z —y) ={v € V| 2(v) > y(v)}, supp”(z—y)={veV[a(v) <y()}.

A function is said to be M,-conver if it is represented as the sum of two M-convex functions. Note
that an M-convez set is nothing but the set of integral vectors in an integral base polyhedron [5].
The effective domain of an M-convex function is contained in a hyperplane {z € Z" |
Ywey &(v) = 1} for some r € Z (cf. [11, Theorem 4.3]). Therefore, no information is lost
when an M-convex function is projected onto a (|V|—1)-dimensional integer lattice. A func-
tion f : Z¥ — R U {+oc} is called M*-convex if the function fy : Z x Z¥ — R U {+oc} defined
by
f(@) (@0 + Xpev z(v) =0),
00 (x0 + Xev #(v) # 0),
is an M-convex function. The exchange property (M-EXC) for f; is translated as follows [13]:

fo(zo,x) = { (zg,2) € Z x ZV) (2.6)

(M!-EXCQC) Vz,y € domg f, Vu € supp™ (x — y), either (i) or (ii) (or both) holds:
(i) Fv €supp™ (z —y) such that f(z) + f(y) = f(z — xu+ Xo) + (U + Xu = X0),
(11) f(l")+f(2/)Ef(f—Xu)+f(y+Xu)-

Therefore, a function f : Z¥ — R U {+oo} is Mi-convex if and only if f satisfies (M*-EXC). M!-
convex functions are essentially equivalent to M-convex functions, whereas the class of Mf-convex
functions properly contains that of M-convex functions. A function is said to be Mg—convex if it is
represented as the sum of two M?-convex functions. An M?-convez set is equivalent to an integral
generalized polymatroid by Frank [2] (see also Frank—Tardos [3]).

A function f: ZY — R U {+oo} is called L-convez if it satisfies

(LF1) f is submodular,
(LF2) 3Jr € Rsuch that f(z+al) = f(z) +ar (Vz € dom f, YVa € Z).

For any two functions fi,fo : Z¥ — R U {400}, the convolution of f; and f,, denoted by
f10fy : ZV — R U {+o0}, is defined by

(f10f2) (@) = inf{ f1(z1) + fo(a2) | 21,32 € ZY, @1 + 20 = 7} (xeZ’).
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For any two sets Si, Sy C ZY, the Minkowski-sum of S; and Sy, denoted by S; + S5, is defined by
S1+ Sy = {$1 + o | 1 € S1, To € SQ} (g ZV).

A function is said to be Ly-convez if it is represented as the convolution of two L-convex functions.
Accordingly, a set is called Ly-convex if it is represented as the Minkowski-sum of two L-convex
sets.

Due to the property (LF2), an L-convex function loses no information when restricted to a
hyperplane {z € ZV | z(v) = 0} for any v € V. We call a function f : Z¥ — RU{+o0} L*-convex
if the function f°:Z x Z¥ — R U {+o0} defined by

(z0,2) = f(x —201) ((w0,7) € Z X ZY) (2.7)

is L-convex. It is known [6] that Lf-convex functions are essentially the same as L-convex functions,
while the class of Lf-convex functions properly contains that of L-convex functions. A function
is said to be Lg—convex if it is represented as the convolution of two Lf-convex functions. An
Lf-convex function can be characterized by the discrete mid-point convexity:

s+ f@) = (2D () veyez) (28

Theorem 2.4 ([6]) A function f : ZV — R U {+o0} is Li-convez if and only if f satisfies the
mid-point convezity (2.8).

Remark 2.5 The original definitions of M-convex/L-convex functions in [9, 10, 11] assume that
the effective domain is nonempty. This paper removes the nonemptyness assumption for conve-

nience. O

3 Relationship among Discrete Convex Functions

In this section, we clarify the relationship among various discrete convexity for functions de-
fined over the integer lattice. The relationship between discrete convexity and submodular-
ity /supermodularity is also discussed. As a special but important case, we also refer to functions
defined over {0, 1} vectors, which are equivalent to set functions p : 2V — RU{+oc0} under a nat-
ural correspondence between X C V and yx € {0,1}V. The results in this section are summarized
in Figure 1, which shows “M-convex N Li-convex = M}-convex N Li-convex = separable-convex”,
in particular.

First we note that there is no inclusion relationship between the class of discretely convex

functions and that of convex-extendible functions.

Example 3.1 (G. Kérolyi) This is an example of a discretely-convex set which is not convex-
extendible. The set

S={ze€Z |z +x2+a3=2, ;>0 (=1,2,3)}U{(1,2,0),(0,1,2),(2,0,1)}
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f:ZV - RU{+o0}

/" discretely-convex N
a

fintegrally-convex )

Mj}-convex
Mh-conve?

k separable-convea

Li-convex
\ Lg-convex /

%
\ convex-extendibley

Figure 1: Relationship among discrete convex functions

(Mf-convex N Li-convex = Mg-convex N Lhz—convex = separable-convex)

is discretely-convex. It is not convex-extendible since

1 1
—(1,2,0) + =
(’7)+3

. (0,1,2)+ 2(2,0,1) = (1,1,1) ¢ 5. .

3

Example 3.2 The set S = {(0,0),(2,1)} is an example of a convex-extendible set which is not
discretely-convex. O

Favati-Tardella [1] showed that an integrally-convex function is discretely-convex. It is obvious

from its definition that an integrally-convex function is also convex-extendible.
Theorem 3.3 An integrally-conver function is both discretely-convexr and convex-extendible.
The converse of Theorem 3.3 does not hold in general.

Example 3.4 The set S = {(0,0), (1,0),(2,1)} is both discretely-convex and convex-extendible,
but not integrally-convex. O

Remark 3.5 Recall that any function f : ZV — RU{+oo} with dom f C {0,1}" can be extended
to a convex function. Therefore, such a function f is integrally-convex, which implies that f is
also discretely-convex. Hence, there is no meaning to introduce these concepts for set functions
p:2Y = RU{+o0}. O



We review some properties of M-convex/L-convex functions. Let M (resp. M% My, Mg)
denote the class of M-convex (resp. M¥-convex, M-convex, Mg-convex) functions with nonempty
effective domain. Similarly, let £ (resp. £F, £, £3) be the class of L-convex (resp. Li-convex, Lo-
convex, Lg—convex) functions with nonempty effective domain. For any class of functions F, we
denote by (F), (n > 1) the subclass of F consisting of functions defined over the n-dimensional
integer lattice, and by F[Z] the subclass of F consisting of integer-valued functions. The cor-
respondence by projection or restriction (cf. (2.6), (2.7)) is indicated by “~”. For a function
f:ZV — RU{+o0} with dom f # 0, the conjugate function f*: ZV — RU{+oo} of f is defined
by

() = sup {p,2) — f@)}  (peZY). (3.1)

zeZV
This operation is called the (discrete) Fenchel-Legendre transformation. Note that f* = —oo if
dom f = ().

Theorem 3.6
(i) M C Mt~ M and My C Mg ~ My, to be more specific,

(M) € (M) = (Mg € (M1, (Ma)n © (ME)n = (Ma2)ps1 © (M)
(i) LC L~ L and Ly C [,g ~ Lq; to be more specific,
(L)n C (['h)n ~ (L)ny1 C (ﬁh)n+17 (L2)n C (['g)n ~ (L2)n41 € (['g)n-l-l-

(iii) The following pairs of function classes are conjugate to each other under the Fenchel-Legendre

transformation.:

(M[Z])n «— (L[Z))n, (Ma[Z]) > (Ls[Z])n,
(MEH[Z])5 < (LF[Z]), (ME[Z]) — (L5[Z])n-

In the following, we mainly consider M* /M3 /L? /Lé-convex functions instead of M /Mj/L/Ly-convex
functions.

The class of Mhz—convex functions properly contains that of Mf-convex functions, which follows
from the definition and the following example.

Example 3.7 This is an example of an Mg—convex set which is not Mf-convex. The set
S = {(O: 0, 0)7 (17 0, 0)7 (O: L 0)7 (07 0, 1)7 (17 0, 1)}

is an Mi-convex set represented as the intersection of Mf-convex sets S; = S U {(0,1,1)} and
S, = SU{(1,1,0)}. S is not an M"-convex set since the property (M*EXC) does not hold for
z = (1,0,1), y = (0,1,0), and uw =“1”. Note that S; and Sy each correspond to the family of
independent sets of a matroid. O



The class of Mg-convex functions is properly contained in the intersection of the classes of

integrally-convex/supermodular functions, as shown in the following theorems and example.

Theorem 3.8 An Mg—convea: function is supermodular. In particular, an M-convex function is

supermodular.

Theorem 3.9 An Mg—com}e:v function is integrally-convex. In particular, an MP-convez function

18 integrally-conver.
The proofs of Theorems 3.8 and 3.9 are given in Sections 5.1 and 5.2, respectively.

Example 3.10 This is an example of a set which is both integrally-convex and supermodular,
and not Mg—convex. The set S ={(1,0,0,0),(0,1,1,1)} is obviously integrally-convex and super-
modular. Suppose that S is an Mg—convex set expressed as S = S; N S, for some MP-convex sets
S1, S8y C Z*. Since (1,0,0,0),(0,1,1,1) € S; N Sy, the property (M*-EXC) implies the existence
of x € §1 NSy with Ele xr; = 2, a contradiction. O

We next consider the classes of Li-convex/ Li-convex functions. It is clear from the definition
and the following example that the class of Lg-convex functions properly contains that of Li-convex

functions.

Example 3.11 This is an example of an Lg-convex set which is not Li-convex. The set

{(0,0,0),(0,1,1),(1,1,0),(1,2,1)} (= {(0,0,0),(1,1,0)} + {(0,0,0), (0,1,1)})

is an Lhz—convex set. It is not Lf-convex, since the mid-point convexity (2.8) does not hold for
(1,1,0) and (0,1,1). O

The class of Lg—convex functions is properly contained in that of integrally-convex functions,

which is shown by the following theorem and example.

Theorem 3.12 An Lg—convea: function is integrally-convex. In particular, an LF-convezx function

18 integrally-conver.

Proof. The proof is given in Section 5.3. O

Example 3.13 This is an example of an integrally-convex set which is neither Mg—convex nor Lhz—
convex. The set S = {(0,0,0),(1,0,0),(0,1,0),(1,0,1)} is an integrally-convex set. It is not an
Lg—convex set by Lemma 3.14 below since it contains two maximal vectors. S is not supermodular,

and therefore not Mg—convex by Theorem 3.8. O



Lemma 3.14 A bounded Lg—convex set has the unique minimal and mazximal vectors.

Proof. First note that a bounded L*-convex set contains the unique minimal (resp. maximal)
vector. A bounded Lg—convex set is represented as the Minkowski-sum of two bounded Lf-convex
sets, and the unique minimal (resp. maximal) vector is the sum of the unique minimal (resp. max-

imal) vectors of the summands. O

From Theorem 3.12 and its definition we see that any Li-convex function is integrally-convex

and submodular. In fact, the converse of this statement holds true.

Theorem 3.15 ([6]) A function f : Z" — R U {+oo} is Li-convex if and only if it is integrally-
convez and submodular. In particular, a function f with dom f C {0,1}V, is Lf-conver if and only

if it is submodular.

Finally, we characterize separable-convex functions as those which are at the same time Mg—

convex and Lg—convex.
Lemma 3.16 ([6, 13]) A separable-convex function is both M:-convex and LP-convez.

Therefore, any separable-convex function is both Mg-convex and Lg-convex. In fact, the converse

of this statement holds true.

Theorem 3.17 A function f : ZV — R U {400} is separable-convez if and only if it is both
Mg—convex and Lg—convex.

Proof. The proof is given in Section 5.4. O

The class of separable-convex functions is properly contained in the classes of M*-convex/L"-

convex functions, respectively.
Example 3.18 The set S = {(1,0),(0,1)} is M*-convex and not separable-convex. O
Example 3.19 The set S = {(0,0),(1,1)} is Li-convex and not separable-convex. O

Remark 3.20 None of submodularity, supermodularity, and modularity imply discrete convexity.
For example, the set {(0,0),(2,0),(0,2),(2,2)}, which is modular (hence both submodular and

supermodular), is neither discretely-convex nor convex-extendible. O

4 Operations for Discrete Convex Functions

In this section, we discuss some operations for discrete convex functions and the corresponding
operations for discrete convex sets. We show proofs and examples to clarify whether each dis-
crete convexity is closed under such operations. We also investigate level sets of discrete convex
functions. The results in this section is summarized in Table 1.
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Table 1: Operations for discrete convex sets and functions

disc.-conv. conv.-ext. int.-conv. sep.-conv.
fi+ f2 x (Ex.4.2/4.4) | O (Th. 4.1) | x (Ex.44) | O
Si NS, x (Bx.4.4) | O (Th.4.1) | x (BEx.44) | O
f4sep—conv. | x (Ex.4.2) | O (Th.4.1) | O (Th.45) | O
SN la, bl O (Th.43) | O (Th.4.1) | O (Th.45) | O
f+ affine x (Ex.4.2) | O (Th.4.1) | O (Th.45) | O
fiOf, x (Ex. 4.12) | x (Ex.4.12) | x (Ex.4.12) | O
S1+ Sy x (Ex. 4.12) | x (Ex.4.12) | x (Ex. 4.12) | O
Iz x (Ex. 4.14) | O (Ex. 4.13) | x (Ex. 4.15) | O
L(f,A) | O (Th.4.16) | O(Th. 4.17) | x (Ex. 4.18) | x (Ex. 4.18)
dom f O (Th. 4.16) | O (Th. 4.17) | O (Th. 4.21) | O
arg min f O (Th. 4.16) | O(Th.4.17) | O(Th. 4.21) | O
M5-conv Lg—conv. M!-conv Li-conv.
fi+ fo x  (Ex. 4.6) x (Ex.4.44.8) | x (Mi-conv.) |O
51N S x  (Ex. 4.6) x (Ex.4.44.8) | x (Mi-conv.) |O
f+sep-conv. | O (Th. 4.7) x  (Ex. 4.8) O (Th. 4.7) O
Snlad | O (Th.47) | x (Ex.48) |O (Th.47) |O
f+ affine O (Th. 4.7) O (Th. 4.9) O (Th. 4.7) O
=1 x (Ex.4.11) | x (Ex.412) |[(Q (Th. 410) | x (Li-conv.)
Si+ S, x (Bx.4.11) | x (Bx.4.12) | (O (Th. 410) | x (L3-conv.)
fe x  (Li-conv.) x  (Mi-conv.) x (Li-conv.) x (M"-conv.)
L(f, \) x (Ex.4.18,4.19) | x (Fx.4.18,4.20) | x (Ex.4.18,4.19) | x (Ex.4.18,4.20)
dom f O (Th.4.25) | O (Th.426) | QO (Th.4.22) |(O (Th. 4.23)
argminf | O (Th.4.25) | (O (Th.4.26) | O (Th.4.22) | (O (Th.4.23)

11




4.1 Addition of Two Functions

It may be clear from the definitions that the classes of Li-convex/separable-convex functions are
closed under addition. Also, the class of convex-extendible functions is closed under addition.

Theorem 4.1 The sum of two convex-extendible functions is convex-extendible.

Proof. Let fi, f» be convex-extendible functions. Since fi + f» is a convex extension of f; + fo,
the function f; 4+ fo is convex-extendible by Lemma 2.3. O

The class of discretely-convex functions is not closed under addition.

Example 4.2 The sum of a discretely-convex function and an affine function is not necessarily a
discretely-convex function. Let f; : Z* — Z U {+o00} (i = 1,2) be functions defined by

0 if (z1,22) € {(0,0),(1,0),(2,1)},

filzi,me) = ¢ 2 if (z1,22) = (1,1),
+oc  otherwise,
fo(@1,m2) = 21— 219 ((z1,22) € Z%),

where f; is a discretely-convex function. The function f = f; + f5 is given by

0 if ($1,$2) € {(an)’(27 1)}a
f(.Tl,.TQ) = 1 if (l’l,l'Q) € {(1,0),(1,1)},
+oc  otherwise,

which is not discretely-convex since min{f(1,0), f(1,1)} =1> 0= {f(0,0) + f(2,1)}/2. O

Although the class of discretely-convex functions is not closed under the addition of a separable-
convex function, the class of discretely-convex sets is obviously closed under the corresponding

operation for sets, i.e., the intersection with a separable-convex set (an interval).

Theorem 4.3 The intersection of a discretely-convex set and a separable-convex set is discretely-

convezr.

The classes of integrally—conveX/Lg—convex functions are not closed under addition, as the

following example shows.

Example 4.4 The intersection of two Lg-convex sets is not necessarily discretely-convex. The

sets
D, = {(0,0,0),(0,1,1),(1,1,0),(1,2,1)}
{(0,0,0),(0,1,1)} + {(0,0,0), (1,1,0)},
D, = {(0,0,0),(0,1,0),(1,1,1),(1,2,1)}
= {(0,0,0),(0,1,0)} +{(0,0,0),(1,1,1)}

are both Lg—convex. We have D; N Dy = {(0,0,0),(1,2,1)}, which is not discretely-convex since
(D1 N Dy) N Ny(z) =0 for z = (1/2,1,1/2). O
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Though the class of integrally-convex functions is not closed under addition, it is closed under

the addition of a separable-convex function.

Theorem 4.5 The sum of an integrally-conver function and a separable-convex function is integrally-
Conver.

Proof. Define f : ZV — R U {+o0} by f(z) = fo(x) + Loy fo(z(v)) (z € ZV), where
fo: ZV — RU{+oo} is an integrally-convex function and f, : Z — RU{+oc} is a one-dimensional
convex function for each v € V. As shown below, we have

f(@) = fo(2) + 3 fulz(v))  (zeRY). (4.1)

veEV

Since the RHS of (4.1) is equal to fo(z) + Spey fo(z(v)), the function f is convex. Thus, f is
integrally-convex by its definition.
We now prove (4.1). Let z € RV, and A = (), | y € No(z)) be any vector such that

oo Ny=z, > A =1, A >0 (Vy € No(x)). (4.2)
yENg(z) yENo(z)
We have
Z )\yf(y) = Z )\y.fo(y) + Z )‘y Z fv(y(v))
y€ENo () y€ENo(z) yENo(z) veV
= 2 Ayfo )+ Y MAE) = X Afoly) + D fula(
yENg(z veV yENp(x) yENo(z) veV

where the last equality is due to the fact that a function f; is linear in each interval [a, o + 1]
(o € Z). Therefore, it holds that

flz) = 1nf{ S NSy

y€No(z)

= (Ay | vy € Ng(x)) satisfies (4.2)}

= (\y | y € No(z)) satisfies (4.2)} + 3 folz(v))

veEV

= 1nf{ Z Ay foly

y€ENp (m)

= ﬁ)%—Zfov

veEV

O

The sum of two M‘-convex functions is not Mf-convex in general (see Example 3.7) but Mg-
convex by definition. The class of Mg—convex functions is not closed under addition as shown in
Example 4.6 below, but closed under the addition of a separable-convex function.

Example 4.6 The intersection of three MP-convex sets is not necessarily Mg—convex. For any
i,7 €{1,2,3,4,5}, we denote x;; = x1i} € Z°. Let

S = {$12,$13,$34a$35ax45}:
St = 8SU {21, 223,85},  So =S U{z15, 203,224}, S3 =5 U{Z1s, Tos, Tas}.
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Each S; is M-convex, and therefore Mf-convex. In fact, each S; corresponds to the basis family
of a certain graphic matroid. As shown below, S = S; N S5 N S5 is not My-convex, which implies
that S is not Mg—convex. Note that a set S C ZY is My-convex if and only if S is Mg—convex and
z(V)=y(V) for any z,y € S.

Suppose S = SN S} for two M-convex sets S}, S5 C ZY. Then, the property (M-EXC) implies
that:

M-EXC
M-EXC
M-EXC
M-EXC

for x4s5, 212),

either {@os, 14} or {Tos, 15} )
for w13, 734),
)
)

(by
either {13,224} or {x14, 293} (by
either {.Z'13,.7)25} or {1623,3315} (by

(by

either {35,214} or {x34, x15}

each S; must contain

for 35, 212),

—~ o~ o~ o~
— N’ N N

for T45,T13)-

Hence, S] and S} must contain a common vector which is not in S, a contradiction. O

Theorem 4.7
(i) The sum of an MP-convex function and a separable-convex function is Mt-convez.

(ii) The sum of an Mg—com)ea: function and a separable-convex function is Mg—com}em.

Proof. (i) is shown in [12, Example 4.2], and (ii) is immediate from (i). O
The class of Lg—convex functions is not closed under addition.

Example 4.8 This example shows that the intersection of an Lg-convex set and a separable-

convex set (an interval) is not Li-convex. The set

S ={(0,0,0),(1,1,0),(0,1,1),(1,2,1)} (= {(0,0,0),(1,1,0)} + {(0,0,0),(0,1,1) })

is Lg—convex. We have SN {0,1}® = {(0,0,0),(1,1,0),(0,1,1)}, which is not Lg—convex by Lemma
3.14. O

As shown in the example above, the class of Lg—convex functions is not closed under the addition

of a separable-convex function. It is closed, however, under the addition of an affine function.

Theorem 4.9 The sum of an Lg—convefc function and an affine function s Lg—convefc.

Proof. Let f;:ZV — RU {400} (i = 1,2) be Li-convex functions, p € RY, and a € R. Put
f(z) = (fi0f)(z) + (p,z) + @) (x € ZV). Then, we have

f@) = inf A0+ @) [ o +a0 = 2h+ (o) + )
- w1,i1;£ZV{(fl(x1) + (P, 1) + @) + (fa(@2) + (P, 22)) | 21 + 22 = 7}

Since the functions fi + (p,-) + « and f, + (p, -) are Li-convex, the function f is Lg-convex. O
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4.2 Convolution
The convolution of two Mf-convex functions is known to be M?-convex.

Theorem 4.10 ([10, Theorem 6.10], [11, Theorem 5.8]) For two M*-convex functions fi, f :
ZV - RU {+o0}, the convolution f1Ofs is also M?-convez provided that f1Ofs > —o0.

Obviously, the class of separable-convex functions is closed under convolution.

The following two examples show that the classes of discretely-convex/convex-extendible/integrally-
convex/ Mg—convex/ Lg—convex functions are not closed under convolution. Recall that the convo-
lution of two indicator functions of sets corresponds to the Minkowski-sum of the two sets.

Example 4.11 The Minkowski-sum of an Mg-convex set and an M‘-convex set is not necessarily
Mg-convex. The set S; = {(0,0,1,1),(1,1,0,0),(1,0,1,0)} is an Ma-convex set expressed as the
intersection of two M-convex sets S; U {(0,1,0,1)} and S; U {(0,1,1,0),(1,0,0,1)}, and Sy =
{(1,0,0,1),(0,1,0,1)} is an M-convex set. The Minkowski-sum S = S; + S, is given by

S =1{(0,1,1,2),(1,1,1,1),(2,1,0,1), (1,0,1,2), (2,0,1,1), (1,2,0,1)}.

Suppose S = S] NS4 for two M-convex sets S}, S5 C ZY. Since x = (1,0,1,2) and y = (1,2,0,1)
are contained in S7 N S5, (M-EXC) implies that (1,1,0,2) € S{ NS, = S, a contradiction. Hence,

S is not My-convex, and therefore it is not Mg—convex since Z?:l zi=4forz € S. O

Example 4.12 The Minkowski-sum of three Li-convex sets is neither discretely-convex nor convex-

extendible in general. Each of
S1 ={(0,0,0),(1,1,0)}, S, =4{(0,0,0),(0,1,1)}, S3=1{(0,0,0),(1,0,1)}
is Li-convex. The Minkowski-sum S = S; + S, + S5 given by
S ={(0,0,0),(0,1,1),(1,1,0), (1,0,1),(2,1,1),(1,1,2),(1,2,1),(2,2,2)}

is not convex-extendible since (1,1,1) € S— S, nor discretely-convex since (z;+3)/2 = (1,1,1) ¢
S for z; = (1,1,0) € S and z, = (1,1,2) € S. O

The convolution of two Lf-convex functions, which is called Lg—convex by definition, is not

necessarily Li-convex, as shown in Example 3.11.

4.3 Fenchel-Legendre Transformation

In this section, we consider only functions f : Z¥ — RU{+oc} with dom f # (), since if dom f = §)
then f* = —o0.

It is clear that the class of separable-convex functions is closed under the Fenchel-Legendre
transformation. This is also the case with the class of convex-extendible functions. Moreover, the

conjugate of any function is convex-extendible.
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Theorem 4.13 For any function f : ZV — R U {+oo} with dom f # 0, its conjugate f*:Z"V —

R U {+00} is a convex-extendible function.

Proof. Define a function f§ : RV — R U {400} by (3.1), where p € RV. Then, it is easy to

see that the function fg is a convex extension of f°. O

As shown in Theorem 3.6 (iii), the classes of integer-valued M‘-convex/Lf-convex functions
are conjugate to each other, and the classes of integer-valued Mg—convex/Lg—convex functions
are conjugate to each other. Therefore, the classes of (real-valued) Mi-convex/L*-convex/Mj-
convex/ Li-convex functions are not closed under the Fenchel-Legendre transformation.

The classes of discretely-convex/integrally-convex functions are not closed under the Fenchel-

Legendre transformation.

Example 4.14 The conjugate of a discretely-convex function is not necessarily discretely-convex.
The set S = {(0,0),(—1,0),(1,1)} is a discretely-convex set and therefore its indicator function
ds : Z* — {0, +oo} is discretely-convex. The conjugate of ds is given by

65 (p1, p2) = max{0, —p1,p1 + P2} ((p1,p2) € Z7),
which is not discretely-convex since

min{53(~1,1), 85(0, 1)} = 1> £ = 155(~1,2) + 563(0,0).

O

Example 4.15 The conjugate of an integrally-convex function is not necessarily integrally-convex.
The set S = {(1,1,0,0),(0,1,1,0),(1,0,1,0),(0,0,0,1) } is an integrally-convex set and therefore

its indicator function &g : Z* — {0, +o00} is integrally-convex. The conjugate of dg is given by

0%(p1, D2, D3, P1) = max{py + P2, P2 + 3, P1 + P3, P4} (pe Z4)-

The convex closure g of g = §% is given by the same expression for p € R*. Since g(1/2,1/2,1/2,1) =
1<3/2=g(1/2,1/2,1/2,1), g is not integrally-convex. O

4.4 Level Sets

For a function f : Z¥ — RU{+o00} and a value A € RU{+oc}, the level set L(f, \) is defined by
L(f,A) = {x € ZV | f(z) < A\}. The effective domain dom f and the set of minimizers arg min f
can be seen as special cases of level sets with A = +0c0 and A = min f, respectively.

Level sets of a discretely-convex (resp. convex-extendible) function are discretely-convex (resp.

convex-extendible) sets.
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Theorem 4.16 For a discretely-convez function f : ZV — RU{+o0} and a value A\ € RU{+o0},

the level set L(f, \) is a discretely-conver set.

Proof. Let 2',2" € L(f,\) and « € [0,1]. Then, we have
min{f(y) [ y € No(ez' + (1 — a)2")} < af(@') + (1 — o) f(2") < A
This implies that No(az' + (1 — «)z”) N L(f, A) # 0. Hence, L(f, A) is a discretely-convex set. O

Theorem 4.17 For a convez-extendible function f : ZV — RU{+o0} and a value A € RU{+o0},

the level set L(f, \) is a convez-extendible set.

Proof. Since f is a convex function, the level set {x € R | f(z) < A} is a convex set. Since
L(f,A) ={z € RV | f(z) < A} NZY, the level set L(f,)) is a convex-extendible set. 0

For an integrally-convex /separable-convex/Mi-convex/Mj-convex/L!-convex /Li-convex func-
tion, a level set does not necessarily have the corresponding discrete convexity.

Example 4.18 A level set of a linear function is not necessarily integrally-convex. For a linear
function f : Z? — Z defined by f(z1,29) = 71 + 229 (%1, 22) € Z?), we have L(f,0) = {(z1,22) €
Z? | 1 + 2x9 < 0}, which is not an integrally-convex set. O

Example 4.19 A level set of a linear function defined over {0,1}" is neither M"-convex nor

Mg-convex in general. For a linear function f : Z? — Z defined by

—z1+ 1o ((21,22) € {0,1}?),
+00 (otherwise),

f(xl’:r?) = {

we have L(f,0) = {(0,0), (1,0), (1,1)}, which is not M}-convex since it is not a supermodular set.
O

Example 4.20 A level set of a linear function defined over {0,1}V is neither Li-convex nor Li-

convex in general. For a linear function f : Z?2 — Z defined by

$1+$2 ((.Tl,.'EQ) S {0a1}2)a
+00 (otherwise),

f(xl,xz) = {

we have L(f,1) = {(0,0), (1,0), (0, 1)}, which is not L3-convex since it is not a submodular set. O

The effective domain and the set of minimizers have the corresponding discrete convexity for
an integrally-convex /separable-convex/M?-convex/Mj-convex/Lf-convex /Li-convex function.
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Theorem 4.21 Let f: ZV — R U {400} be an integrally-convez function.

(i) dom f is an integrally-convez set. (ii) argmin f is an integrally-convex set.

Proof. (i): It suffices to show (2.5) for S = dom f. Since f = f, we have

dom f N No(z) = dom f N No(z) = dom f N Ny(z) = dom f N Ny(z),

where the last equality is by the definition of f .
(ii): Tt suffices to show (2.5) for S = argmin f. The inclusion S N Ny(z) € S N Ny(z) holds

obviously. For 2’ € S N Ny(z), we have inf f = f(z') = f(a'). Therefore, ' € S N Ny(z). O

Theorem 4.22 ([11, Theorem 4.3, 4.10]) Let f : ZV — RU{+o00} be an M*-convex function.

(i) dom f is an M*-convez set. (ii) argmin f s an M°-convez set.

Theorem 4.23 ([11, Theorem 4.16, 4.17]) Let f : ZV — RU{+o0} be an Li-convez function.

i) dom f is an L*-convez set. ii) argmin f is an Lf-convez set.
g

Theorem 4.24 ([9, Theorem 4.1]) Let fi, fo : Z¥ — R U {+oo} be Mi-conver functions and
z, € dom f; Ndom fy. Then,

fl(w*) + f2($*) S fl(x) + f2($) (\V/$ € ZV)

if and only if there exist p, € RY such that

fl[_p*]($*) S fl[_p*](m) (\V/.’L' € Zv)a f2[p*]($*) S f?[ *](‘T) (Va: € ZV)' (43)

Theorem 4.25 Let f : ZV — R U {+o0} be an Mj-convex function.

(i) dom f is an Mj-convez set. (i) argmin f is an Mi-convez set.

Proof. ~We show (ii) only, since (i) is obvious. Let fi, f; : Z¥ — R U {+o00} be Mf-convex
functions such that f = f; + fs, and z, € argmin f. By Theorem 4.24, there exists p, € RV
satisfying (4.3). We have arg min f = arg min f;[—p,] N argmin fo[p,], which is Mj-convex. O

Theorem 4.26 Let f : ZV — R U {+o0} be an Li-convex function.

(i) dom f is an Li-conver set. (ii) argmin f is an Li-conver set.

Proof. = We show (ii) only, since (i) can be shown similarly. Suppose that f is expressed

as f = f10f, for two L-convex functions f; and f,. Since inf f = inf f; + inf f5, we have

argmin f = arg min f; + arg min fy, which implies the Lg—convexity of arg min f by Theorem 4.23.
O
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5 Proofs

5.1 Proof of Theorem 3.8

We show the supermodularity of M*-convex functions only. Then, the supermodularity of M-

convex functions follows immediately since the supermodularity is closed under addition.
Lemma 5.1 Let f: Z¥ — RU {400} be an MP-convex function. Then, we have

fE+xu) +f@+x) <f@)+fE+xutx) (Vu,veV, uio). (5.1)
Proof. The claim follows immediately by applying (Mh—EXC) to & + Xu + Xv, = and u. O

Lemma 5.2 For any M°-conver set S C ZY and any z,y € S with v <y, we have [z,y] C S. In

particular, an MP-convez set is a supermodular set.

Proof. This follows from the polyhedral description of S (see [4, 5]). O

Let f:ZY — R U {+occ0} be an M*-convex function. We show the supermodular inequality

f@)+fy) < flany)+fzvy) (z,yeZ”) (5.2)

by induction on the numbers

a(z,y) = D {z(v) —y(v) | v € supp™(z - y)},

Blz,y) = Y {y(v) —=(v) |vesupp(z —y)}.
If a(z,y) =0 or B(x,y) =0, then we have either x < y or z > y, and therefore the inequality
(5.2) holds obviously. If a(x,y) = f(z,y) = 1, then (5.2) also holds by Lemma 5.1. Hence, we
may assume that a(z,y) > 2 and §(z,y) > 1. We may also assume that z A y,z V y € dom f,

which implies [x A y,2 V y] C dom f by Theorem 4.22 and Lemma 5.2. Let u € supp™(z — y).
Then, the inductive hypothesis implies

f)=flany) < fly+xu) = fleAy+x) < flzVy) — f(x).

5.2 Proof of Theorem 3.9

From the definition of Mg—convex functions, it suffices to show that any Ms-convex function is

integrally-convex. First, we consider the special cases of My-convex sets and M-convex functions.

Lemma 5.3 An M,-conver set is integrally-conver.

Proof. For an My-convex set S C Z" and any vectors a,b € Z" with a < b, the set SN |[a,b] is
an integral polyhedron (see, e.g., [5]). This implies (2.5), i.e, S is an integrally-convex set. O
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Lemma 5.4 An M-convez function f : ZV — R U {+oo} is integrally-conver.
Proof. For z ¢ dom f, we have f(z) = +oo, which, combined with (2.4), implies that f(z) =
f(z) = +o0.

To show f(z) = f (z) for z € dom f, we consider the following dual pair of linear programming

problems:

(LP1) Maximize (p,z)+ «
subject to  (p,y) + < f(y) (y € Ni(z)), peRY, a€R,

(LP2) Minimize > M fy)

yENi(z)
subject to Y Ay =z, YN =11 >0 (y€Ni(z)).
yEN1 () yEN1(z)

By Lemma 5.3, we have € N;(z) N dom f. Hence, (LP2) has a feasible solution. Let (p*, a*) (€
R” xR) and X* = (A | y € Ny(z)) be optimal solutions of (LP1) and (LP2), respectively. Then,
it holds that

J@) <o) +a = 3 Afy) < fla). (5-3)
y€N1(z)
We will show that both of the inequalities hold with equality.

Put

B={yeNi(z) | py)+a" = f(y)} = argyerglvilr(lz)f[—p*](y),

which is an M-convex set. The complementary slackness condition yields that {y € Ny(z) | A} >
0} C B, which implies z € B. In particular, we have x € B N Ny(z) by Lemma 5.3. Hence, there
is another optimal solution X = (), | ¥ € Ny(z)) of (LP2) such that if ), > 0 then y € BN Ny(x).
Since

YNIW= X M= X ANy > fa)

yEN1(z) yEN1(z) yENo(z)
the second inequality in (5.3) holds with equality.
Let yo € BN No(z). Then, we have f[—p"|(yo — Xu + Xuv) = [[=P"](%0) for any u,v € V.
Since local optimality means global optimality for M-convex functions [11, Theorem 4.6], we have

a" = fl=p"l(yo) < fl=p"1(y) = =(p" ) +f(y) (Vy € dom f), Le., (p*,y)+" < f(y) (Vy € dom f).
By the equation (2.1) for f, the first inequality in (5.3) holds with equality. O

The following theorem claims that we can choose a common optimal A in (2.3) for two M-convex
functions.

Lemma 5.5 For two M-conver functions f,g : ZV — R U {400} and a vector x € RY, there
exists A = (A\y | y € No(z)) such that

Y Ny ==z, S oA =1, X >0 (y € No(z)), (5.4)

y€ENo(z) y€ENo(z)
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and

F@)=fl@)= > Nf@), g@)=3@)= 3 XNb). (5.5)

y€ENo(z) y€ENo ()

Proof. We may assume & € dom f N dom g, which implies that both f(z) and §(x) are finite.
By (2.2), there exist (p, @), (¢, 3) € RV x R such that

Py +a<fly) (yeNo(2), (pa)+a=f(),
() +B<9g(y) (yeNu(z)), (g2 +8=47g).

Put
By ={y € No(z) [ (p,y) +a=f(y)}, By={y€No(z) (g, ) +8=29()},

where both sets are M-convex. Then, we have z € BN B, = B; N B,. Since B;N B, is integrally-
convex by Lemma 5.3, there exists A = (A, | y € Ny(x)) satisfying (5.4) and A\, = 0 (y € ByN By).
Such A satisfies (5.5) by the linear programming duality. O

We are now ready to prove that an Ms-convex function is integrally-convex. Let f = fi + fo
be an My-convex function given as a sum of two M-convex functions fi, fo : Z¥ — R U {+00}.
From Lemma 5.5 we have f(z) = fi(z) + fo(z) = fi(z) + fo(z) (z € RY). Hence, f is convex,
i.e., f is integrally-convex.

5.3 Proof of Theorem 3.12

From the definition of Lg-convex functions, it suffices to show that an Ly-convex function is
integrally-convex. First of all, we consider the special case of L-convex functions. The convex

closure of an L-convex function can be expressed explicitly as follows.

Theorem 5.6 ([11]) An L-convez function f : ZV — R U {+oo} is integrally-convexr; more
specifically, for any y € dom f and a € [0,1]V, we have

fly+a) = (1—a)f(y) + Z — i) f(y + xv;) + o f(y + xn), (5.6)
fly—a) = (1—a)f(y)+ Z — o) f(y — xv;) + o f (¥ — xv)s (5.7)
where o > ag > -+ > oy (> 0) are distinct values in {a(v)}yey, and V; = {v € V | a(v) > a;}

Proof. The equation (5.6) is shown in [11, Theorem 4.18], whereas (5.7) follows immediately
from (5.6) since the function f(—z) is L-convex in z € ZV. O
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We now prove that an Lo-convex function is integrally-convex. Let fi, fo : Z¥ — R U {+00}
be L-convex functions. Since f,Of, is a convex function, it suffices to show f= f,0f,, which

follows from the two claims below.
Claim 1 (f,0f,)(z) < f(z) for any z € R".
Proof. If f(z) = 400 then the inequality holds immediately. Hence, we assume f(z) < +o0.

Let € be any positive real number. Then, there exist vectors y;; € Z¥ (i = 1,2;j = 1,2,---,m)
and positive real values A; (j =1,---,m) such that

Y+ 92 €No(z) (G =1,---,m), DY N=1, D N{y+y,t=1
Jj=1 j=1
Z M filyis) + Fa(yz))} — Flo) <e. (5.8)

For i = 1,2, put @; = 327 A;y;;. Then,

Since x; + x9 = x, we have

(f10F2)(x) < fi(z1) + Folaa). (5.10)
Combining the inequalities (5.8), (5.9), and (5.10), we have (f,0f,)(z) — f(z) < &, from which
the claim follows since € can be chosen arbitrarily. O

Claim 2 f(z) < (f,0F,)(z) for any z € RV.
Proof. It suffices to show that

(@) < Fi(@1) + Falwe) (5.11)

holds for any z; € dom f; (i = 1,2) with z; + 1, = .
Put a; = z1 — |21], ag = [x9| — 2. Note that 0 < a;(v) <1 (i =1,2;v € V). Let a5 > g >
-+ > ay (> 0) be the distinct values in {a1(v), a2(v) | v € V}, and put V;; = {v € V | a;(v) > o}
(1=1,2;5=1,---,k). Then, we have

k—1
a4 =Y (05— aj)xvy +arxv,  (i=1,2). (5.12)
j=1

Theorem 5.6 implies that

_ k-1

fi(@) = (1 —a)fi(lzi]) + 1(043' —ajp) fi(lo] +xw,) +acfillz] + xv,),  (5.13)

fa(z2) = (1 —a)fo(fz2]) + Zl — aji1) f2([22] — Xw,) + awfol[z2] — Xv). (5.14)

<.
Il
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It follows from (5.12), (5.13) and (5.14) that

r1+ze = (1—a){|z1] + [z2]} + Z — o) { @] + xvy; + [72] — X }

+ Oék{LﬂhJ + xvip T [22] = Xvi b (5.15)
Fi(z1) + folze) = (1- al){fl([fUlJ) + fo[z2])}

+ Z o — ajr){fi([@1] + xw,) + follz2] — x,) }
+ Oék{fl(LﬂﬁlJ +XV1k) + fo([z2] = xvai) }

> (I—ar)f(l@1] + [22]) + Z —aj1) f(lzn] + xn, + [22] = xv;)

+ akf([iFlJ + Xvi T [22] = Xvi)- (5.16)

As shown below, we have
[21] + [2] € No(x), (5.17)
[21] + Xxv; + [22] — Xy €No(z) (G =1,2,---,k), (5.18)

which, together with (5.15) and (5.16), imply the desired inequality (5.11).
To conclude the proof, we show (5.17) and (5.18). It follows from

|z1]| + [22] =2 — a1 +ap € ZV,
lz(v)] < z() <|z(w)] +1, =1 < —a1(v) +az(v) <1 (veV),
that for any v € V' the value |z1(v)] + [22(v)] is equal to z(v) if z(v) € Z, and equal to either
|z(v)] or |z(v)] + 1 if x(v) & Z. Hence, we have (5.17).
Put
W={veV||z()]+ [z()] = |z(v)] +1}.
It holds that x(v) & Z for v € W and
L] + Xy + [2] = Xy = L2] + xw + Xy — Xy
To prove (5.18), it suffices to show that
(i) if z(v) € Z thenv € Vi; NV or v e V — (Vi U Vyy),
(ii) if v € W N V3, then v € Vyy,
(iii) if v € Vo; — W, then v € Vi;.

(i) If z(v) € Z, then we have a;(v) = a2(v) = «; for some j, from which (i) follows.
(ii) If v € W N V3, then v € Vy; since

a3(v) = [21(v) ] + [22(v)] = 2(v) + a1 (v) = [2(v)| + 1 = 2(v) + 1 (v) = a1 (v) > ;.

(iii) If v € Vo; — W, then v € Vj; since

a1 (v) = —[21(v)] = [22(0)] + 2(v) + a2 (v) = = |2(v)] + 2(v) + a2(v) > a2(v) > .

23



5.4 Proof of Theorem 3.17

The proof is based on the following fact.

Lemma 5.7 A set S C ZV is separable-convez if and only if S is both Mg—com}e:c and Lg—convea:.
Proof. = We show the “if” part only. For each v € V, put a(v) = inf,cs2(v) and b(v) =
Sup,eg (v). Obviously, S C [a, b] holds. In the following, we prove [a,b] C S.

Let S1,S C ZV be Li-convex sets such that S = S; + S5. Let z € [a,b]. Then, for each
v € V there exist vectors p,, ¢, € S such that p,(v) < z(v) < g,(v). Moreover, there exist vectors
Puis Qi € Si (i = 1,2) such that py1 + pw2 = Py, Go1 + G2 = ¢ Put

pi=/\pm'65i (t=1,2), p=p+p2 €S,
veEV

=V @wesS (i=12), g=q1+q €8S.
vEV

Then, we have

(v)  (weV),

p(U) - pl(?}) +p2(U) < pvl(v) +p02(v) - pv(v) x
z(v)  (veV),

<
q(v) = q1(v) + ©2(v) > @1 (v) + qu2(v) = g (v) >

i.e., z € [p,q]. Hence, we have z € [p,q] C S by Lemma 5.2 and the Mj-convexity of S. This
shows that [a,b] C S. O

We now prove the “if” part of Theorem 3.17. The “only if” part is obvious from Lemma 3.16.
Assume that f : Z¥ — R U {+oc} is both Mg—convex and Lg—convex. Then, f satisfies the
following properties:

(i) f is integrally convex (by Theorems 3.9, 3.12),

(ii) dom f is a separable convex set (by Theorems 4.25 (i), 4.26 (i), Lemma 5.7),

(iii) for any p € RY, argmin f[—p] is a separable-convex set (by Theorems 4.25 (ii),
4.26 (ii), Lemma 5.7).

Due to the property (iii), the function f is linear over each hypercube |2/, 2’ + 1] (=’ € Z"), which
implies that f(z + x) — f(z) = f(y + x») — f(y) for any z,y € dom f with z(v) = y(v). For all
veV, put

fola) = f(zo+ (e = 20(v))x0) — fl20) (€ Z),
where 7y € dom f. Then, we have f(z) = Y ,cv fo(z(v)) + f(x0) (z € ZV). Moreover, each f, is
convex since f is integrally-convex. Therefore, f is a separable-convex function.
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