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Abstract. We consider the maximization of a gross substitutes utility
function under budget constraints. This problem naturally arises in ap-
plications such as exchange economies in mathematical economics and
combinatorial auctions in (algorithmic) game theory. We show that this
problem admits a polynomial-time approximation scheme (PTAS). More
generally, we present a PTAS for maximizing a discrete concave function
called an M\-concave function under budget constraints. Our PTAS is
based on rounding an optimal solution of a continuous relaxation prob-
lem, which is shown to be solvable in polynomial time by the ellipsoid
method. We also consider the maximization of the sum of two M\-concave
functions under a single budget constraint. This problem is a general-
ization of the budgeted max-weight matroid intersection problem to the
one with a nonlinear objective function. We show that this problem also
admits a PTAS.

1 Introduction

We consider the problem of maximizing a nonlinear utility function under a
constant number of budget (or knapsack) constraints, which is formulated as

Maximize f(X) subject to X ∈ 2N , ci(X) ≤ Bi (1 ≤ i ≤ k), (1)

where N is a set of n items, f : 2N → R is a nonlinear utility function1 of a
consumer (or buyer) with f(∅) = 0, k is a constant positive integer, and ci ∈ RN+ ,
Bi ∈ R+ (i = 1, 2, . . . , k). For a vector a ∈ RN and a set X ⊆ N , we denote
a(X) =

P
v∈X a(v). The problem (1) is a natural generalization of budgeted

combinatorial optimization problems ([20, 21, 38], etc.), and naturally arises in
applications such as exchange economies with indivisible objects in mathemat-
ical economics ([18, 19], etc.) and combinatorial auctions in (algorithmic) game
theory ([4, 7, 22], etc.).

The problem (1) with a submodular objective function f is extensively dis-
cussed in the literature of combinatorial optimization, and constant-factor ap-
proximation algorithms have been proposed. Wolsey [39] considered the problem

1 Monotonicity of f is not assumed throughout this paper, although utility functions
are often assumed to be monotone.
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(1) with a monotone submodular f and k = 1, and proposed the first constant-
factor approximation algorithm with the ratio 1− e−β ' 0.35, where β satisfies
eβ = 2− β. Later, Sviridenko [38] improved the approximation ratio to 1− 1/e,
which is the best possible under the assumption that P 6= NP [10]. For the case
of a monotone submodular f and a general constant k ≥ 1, Kulik et al. [20] pro-
posed a (1 − 1/e)-approximation algorithm by using the approach of Calinescu
et al. [5] for the submodular function maximization under a matroid constraint.
For a non-monotone submodular f and a general constant k ≥ 1, a (1/5 − ε)-
approximation local-search algorithm was given by Lee et al. [21].

Submodularity for set functions is known to be equivalent to the concept of
decreasing marginal utility in mathematical economics. In this paper, we focus on
a more specific subclass of decreasing marginal utilities, called gross substitutes
utilities, and show that the problem (1) admits a polynomial-time approximation
scheme (PTAS) if f is a gross substitutes utility.

A gross substitutes utility (GS utility, for short) function is defined as a func-
tion f : 2N → R satisfying the following condition:

∀p, q ∈ RN with p ≤ q, ∀X ∈ argmaxU⊆N{f(U)− p(U)},
∃Y ∈ argmaxU⊆N{f(U)− q(U)} s.t. {v ∈ X | p(v)=q(v)} ⊆ Y ,

where p and q represent price vectors. This condition means that a consumer
still wants to get items that do not change in price after the prices on other
items increase. The concept of GS utility is introduced in Kelso and Crawford
[19], where the existence of a Walrasian (or competitive) equilibrium is shown
in a fairly general two-sided matching model. Since then, this concept plays a
central role in mathematical economics and in auction theory, and is widely used
in various models such as matching, housing, and labor market (see, e.g., [1, 3,
4, 7, 15, 18, 22]).

Various characterizations of gross substitutes utilities are given in the liter-
ature of mathematical economics [1, 15, 18]. Among them, Fujishige and Yang
[15] revealed the relationship between GS utilities and discrete concave func-
tions called M\-concave functions, which is a function on matroid independent
sets. It is known that a family F ⊆ 2N of matroid independent sets satisfies the
following property [30]:

(B\-EXC) ∀X,Y ∈ F , ∀u ∈ X \Y , at least one of (i) X−u, Y +u ∈ F ,
and (ii) ∃v ∈ Y \X: X − u+ v, Y + u− v ∈ F , holds,

where X−u+v is a short-hand notation for X\{u}∪{v}. We consider a function
f : F → R defined on matroid independent sets F . A function f is said to be
M\-concave [30] (read “M-natural-concave”) if it satisfies the following:2

(M\-EXC) ∀X,Y ∈ F , ∀u ∈ X \Y , at least one of (i) X−u, Y +u ∈ F
and f(X) + f(Y ) ≤ f(X − u) + f(Y + u), and (ii) ∃v ∈ Y \X: X−u+v,
Y+u−v ∈ F and f(X) + f(Y ) ≤ f(X−u+v) + f(Y+u−v), holds.

2 The concept of M\-concavity is originally introduced for functions defined on gener-
alized (poly)matroids (see [30]). In this paper we mainly consider a restricted class
of M\-concave functions.
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The concept of M\-concave function is introduced by Murota and Shioura
[30] as a class of discrete concave functions (independently of gross substitutes
utilities). It is an extension of the concept of M-concave function introduced by
Murota [25, 27]. The concepts of M\-concavity/M-concavity play primary roles
in the theory of discrete convex analysis [28], which provides a framework for
well-solved nonlinear discrete optimization problems.

It is shown by Fujishige and Yang [15] that gross substitutes utilities consti-
tute a subclass of M\-concave functions.

Theorem 1.1. A function f : 2N → R defined on 2N is a gross substitutes
utility if and only if f is an M\-concave function.

This result initiated a strong interaction between discrete convex analysis and
mathematical economics; the results obtained in discrete convex analysis are
used in mathematical economics ([3, 22], etc.), while mathematical economics
provides interesting applications in discrete convex analysis ([32, 33], etc.).

In this paper, we mainly consider the k-budgeted M\-concave maximization
problem:

(kBM\M) Maximize f(X) subject to X ∈ F , ci(X) ≤ Bi (1 ≤ i ≤ k),

which is (slightly) more general than the problem (1) with a gross-substitutes
utility. Here, f : F → R is an M\-concave function with f(∅) = 0 defined on
matroid independent sets F , and k, ci, and Bi are as in (1). We assume that the
objective function f is given by a constant-time oracle which, given a subset X ∈
2N , checks if X ∈ F or not, and if X ∈ F then returns the value f(X). The class
of M\-concave functions includes, as its subclass, linear functions on matroid
independent sets. Hence, the problem (kBM\M) is a nonlinear generalization of
the max-weight matroid independent set problem with budget constraints, for
which Grandoni and Zenklusen [16] has recently proposed a conceptually simple,
deterministic PTAS using the polyhedral structure of matroids.

Our Main Result In this paper, we propose a PTAS for (kBM\M) by ex-
tending the approach of Grandoni and Zenklusen [16]. We show the following
property, where opt denotes the optimal value of (kBM\M).

Theorem 1.2. A feasible solution X̃ ∈ 2N of (kBM\M) satisfying f(X̃) ≥
opt− 2kmaxv∈N f({v}) can be computed deterministically in polynomial time.

The algorithm used in Theorem 1.2 can be converted into a PTAS by using a
standard technique called partial enumeration, which reduces the original prob-
lem to a family of problems with “small” elements, which is done by guessing a
constant number of “large” elements contained in an optimal solution (see §A.1
in Appendix; see also [2, 16, 20, 34]). Hence, we obtain the following:

Theorem 1.3. For every fixed ε > 0, a (1−ε)-approximate solution of (kBM\M)
can be computed deterministically in polynomial time.



4 A. Shioura

To prove Theorem 1.2, we use the following algorithm, which is a natural
extension of the one in [16]:

Step 1: Construct a continuous relaxation problem (CR) of (kBM\M).
Step 2: Compute a vertex optimal solution x̂ ∈ [0, 1]N of (CR).
Step 3: Round down the non-integral components of the optimal solution x̂.

In [16], LP relaxation is used as a continuous relaxation, and it is shown
that a vertex optimal solution (i.e., an optimal solution which is a vertex of the
feasible region) of the resulting LP is nearly integral. Since the LP relaxation
problem can be solved in polynomial time by the ellipsoid method, rounding
down a vertex optimal solution yields a near-optimal solution of the budgeted
max-weight matroid independent set problem.

These techniques in [16], however, cannot be applied directly since the objec-
tive function in (kBM\M) is nonlinear. In particular, our continuous relaxation
problem (CR) is a nonlinear programming problem formulated as

(CR) Maximize f(x) subject to x ∈ F , c>i x ≤ Bi (1 ≤ i ≤ k). (2)

Here, F is a matroid polytope of the matroid (N,F) and f is a concave closure
of the function f (see §3 for definitions).
To extend the approach in [16], we firstly modify the definition of vertex

optimal solution appropriately since there may be no optimal solution which is
a vertex of the feasible region if the objective function is nonlinear. Under the
new definition, we show that a vertex optimal solution of (CR) is nearly integral
by using the polyhedral structure of M\-concave functions.

We then show that if f is an M\-concave function, then (CR) can be solved
(almost) optimally in polynomial time by the ellipsoid method [17]. Note that
the function f is given implicitly, and the evaluation of the function value is still
a nontrivial task; even if f is a monotone submodular function, the evaluation
of f(x) is NP-hard [5]. To solve (CR) we use the following new algorithmic
property concerning the concave closure of M\-concave functions, which is proven
by making full use of conjugacy results of M\-concave functions in the theory of
discrete convex analysis.

Lemma 1.1. Let x ∈ F .
(i) For every δ > 0, we can compute in polynomial time p ∈ QN and β ∈ Q
satisfying f(y)− f(x) ≤ p>(y − x) + δ (∀y ∈ F) and f(x) ≤ β ≤ f(x) + δ.
(ii) If f is an integer-valued function, then we can compute in polynomial time
p ∈ QN with f(y)− f(x) ≤ p>(y − x) (∀y ∈ F) and the value f(x).

Our Second Result We also consider another type of budgeted optimization
problem, which we call the budgeted M\-concave intersection problem:

(1BM\I) Maximize f1(X) + f2(X) subject to X ∈ F1 ∩ F2, c(X) ≤ B,

where fj : Fj → R (j = 1, 2) are M\-concave functions with fj(∅) = 0 defined
on matroid independent sets Fj , c ∈ RN+ and B ∈ R+. This is a nonlinear
generalization of the budgeted max-weight matroid intersection problem. Indeed,
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if each fj is a linear function on matroid independent sets Fj , then the problem
(1BM\I) is nothing but the budgeted max-weight matroid intersection problem,
for which Berger et al. [2] proposed a PTAS using Lagrangian relaxation and
a novel patching operation. We show that the approach can be extended to
(1BM\I).

Theorem 1.4. For every fixed ε > 0, a (1−ε)-approximate solution of (1BM\I)
can be computed deterministically in polynomial time.

The following is the key property to prove Theorem 1.4, where opt denotes
the optimal value of (1BM\I). We may assume that {v} ∈ F1∩F2 and f1({v})+
f2({v}) > 0 hold for all v ∈ N .

Theorem 1.5. For (1BM\I), there exists a polynomial-time algorithm which
computes a set X̃ ∈ F1∩F2 satisfying f1(X̃)+f2(X̃) ≥ opt−2·maxv∈N{f1({v})+
f2({v})} and c(X̃) ≤ B +maxv∈N c(v).

To extend the approach in [2], we use techniques in Murota [26] developed for
M\-concave intersection problem without budget constraints. An important tool
for the algorithm and its analysis is a weighted auxiliary graph defined by local
information around the current solution, while an unweighted auxiliary graph is
used in [2]. This makes it possible, in particular, to analyze how much amount
the value of the objective function changes after updating a solution.

Both of our PTASes for (kBM\M) and (1BM\I) are based on novel approaches
in Grandoni and Zenklusen [16] and in Berger et al. [2], respectively. The adap-
tion of these approaches in the present settings, however, are not trivial as they
involve nonlinear discrete concave objective functions. The main technical con-
tribution of this paper is to show that those previous techniques for budgeted
linear maximization problems can be extended to budgeted nonlinear maximiza-
tion problems by using some results in the theory of discrete convex analysis.

2 Gross Substitutes Utility and M\-concave Functions

We give some examples of gross substitutes utility and M\-concave functions and
explain some known results. Recall the notation a(X) =

P
v∈X a(v) for a ∈ RN

and X ⊆ N .
A simple example of M\-concave function is a linear function f(X) = a(X)

(X ∈ F) defined on a family F ⊆ 2N of matroid independent sets, where a ∈ RN .
In particular, if F = 2N then f is a GS utility function. Below we give some
nontrivial examples. See [28, 29] for more examples of M\-concave functions.

Example 1. (Weighted rank functions) Let I ⊆ 2N be the family of inde-
pendent sets of a matroid, and w ∈ RN+ . Define a function f : 2N → R+ by
f(X) = max{w(Y ) | Y ⊆ X, Y ∈ I} (X ∈ 2N ), which is called the weighted
rank function [6]. If w(v) = 1 (v ∈ N), then f is an ordinary rank function of the
matroid (N,I). Every weighted rank function is a GS utility function [5]. ut
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Example 2. (Laminar concave functions) Let T ⊆ 2N be a laminar family,
i.e., X ∩ Y = ∅ or X ⊆ Y or X ⊇ Y holds for every X,Y ∈ T . For Y ∈ T , let
ϕY : Z+ → R be a univariate concave function. Define a function f : 2N → R by
f(X) =

P
Y ∈T fY (|X∩Y |) (X ∈ 2N ), which is called a laminar concave function

[28, §6.3] (also called an S-valuation in [3]). Every laminar concave function is
a GS utility function. ut

Example 3. (Maximum-weight bipartite matching) Consider a bipartite graph
G with two vertex sets N, J and an edge set E (⊆ N × J), where N and
J correspond to workers and jobs, respectively. Every (u, v) ∈ E means that
worker u ∈ N has ability to process job v ∈ J , and profit p(u, v) ∈ R+ can
be obtained by assigning worker u to job v. Consider a matching between
workers and jobs which maximizes the total profit, and define F ⊆ 2N by
F = {X ⊆ N | ∃M : matching in G s.t. ∂NM = X}, where ∂NM denotes
the set of vertices in N covered by edges in M . It is well known that F is a
family of independent sets in a transversal matroid. Define f : F → R by

f(X) = max{
P

(u,v)∈M p(u, v) | ∃M : matching in G s.t. ∂NM = X} (X ∈ F).

Then, f is an M\-concave function [29, §11.4.2]. In particular, if G is a complete
bipartite graph, then F = 2N holds, and therefore f is a GS utility function. ut

GS utility is a sufficient condition for the existence of a Walrasian equilibrium
[19]; it is also a necessary condition in some sense [18]. GS utility is also related to
desirable properties in the auction design (see [4, 7]); for example, an ascending
item-price auction gives an approximate equilibrium, while an exact equilibrium
can be computed in polynomial time (see, e.g., [22, §5]).
M\-concave functions have various desirable properties as discrete concavity.

Global optimality is characterized by local optimality, which implies the validity
of a greedy algorithm for M\-concave function maximization. Maximization of
the sum of two M\-concave functions is a nonlinear generalization of the max-
weight matroid intersection problem, and can be solved in polynomial time as
well. A budget constraint with uniform cost is equivalent to a cardinality con-
straint. Hence, (kBM\M) and (1BM\I) with uniform cost can be solved in poly-
nomial time as well. The maximization of a single M\-concave function under a
general matroid constraint can be also solved exactly in polynomial time, while
the corresponding problem for the sum of two M\-concave functions is NP-hard
(see [28]).

3 PTAS for k-budgeted M\-concave Maximization

We prove Theorem 1.2, a key property to show the existence of a PTAS for
(kBM\M). Due to the page limitation, we mainly consider the case where f is
an integer-valued function, and a more complicated proof for the general case is
given in §A.5, §A.6, and §A.7 in Appendix; the proof for the integer-valued case
is much simpler, but gives an idea of our algorithm for the general case.
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Continuous Relaxation. Our continuous relaxation of (kBM\M) is given by
(2), where F and f are defined as follows. For X ⊆ N the characteristic vector
of X is denoted by χX ∈ {0, 1}N . We denote by F ⊆ [0, 1]N the convex hull of
vectors {χX | X ∈ F}, which is called a matroid polytope. The concave closure
f : F → R of function f is given by

f(x) = max
©P

X∈F λXf(X) |
P

X∈F λXχX = x,P
X∈F λX = 1, λX ≥ 0 (X ∈ F)

ª
(x ∈ F).

Note that for a general (not necessarily M\-concave) f , the concave closure f
is a polyhedral concave function satisfying f(χX) = f(X) for all X ∈ F . Let
S ⊆ [0, 1]N denote the set of feasible solutions to (CR), which is a polyhedron.
The set P = {(x,α) ∈ [0, 1]N × R | x ∈ S,α ≤ f(x)} is a polyhedron. We

say that x is a vertex feasible solution of (CR) if (x, f(x)) is a vertex of the
polyhedron P . There always exists an optimal solution of (CR) which is a vertex
feasible solution, and we call such a solution a vertex optimal solution. Note that
a vertex optimal solution does not correspond to a vertex of S in general.

Solving Continuous Relaxation. We show that if f is an integer-valued
function, then (CR) can be solved exactly in polynomial time by using the el-
lipsoid method. Similar approach is used in Shioura [37] for the problem with
a monotone M\-concave function. We here extend the approach to the case of
non-monotone M\-concave function.
The ellipsoid method finds a vertex optimal solution of (CR) in time poly-

nomial in n and in logmaxX∈F |f(X)| if the following oracles are available [17]:

(O-1) polynomial-time strong separation oracle for the set S,
(O-2) polynomial-time oracle for computing a subgradient of f .

The oracle (O-1) can be realized as follows. Let x ∈ [0, 1]N be a vector. We
firstly check whether the inequalities c>i x ≤ Bi are satisfied or not. If not, then
the corresponding inequality can be used as a separating hyperplane of S. We
next check whether x ∈ F or not. Recall that for a given subset X ⊆ N , we
have an oracle to check X ∈ F in constant time. This enables us to compute
the rank function ρ : 2N → Z+ of the matroid (N,F) in polynomial time (see,
e.g., [14, 28]). We have F = {y ∈ [0, 1]N | y(X) ≤ ρ(X) (∀X ∈ 2N )}. Hence, the
membership in F can be checked by solving the problem minX∈2N {ρ(X)−x(X)},
which is a submodular function minimization and can be done in polynomial time
[8, 14, 17]. Let X∗ ∈ argminX∈2N {ρ(X)− x(X)}. If ρ(X∗) ≥ x(X∗), then x ∈ F
holds; otherwise, ρ(X∗) ≥ x(X∗) gives a separating hyperplane of S.
We then consider the oracle (O-2). A vector p ∈ RN is called a subgradient

of f at x ∈ F if it satisfies f(y) − f(x) ≤ p>(y − x) for all y ∈ F . Lemma 1.1
(ii) states that if f is an integer-valued function, then a subgradient of f can be
computed in polynomial time, i.e., the oracle (O-2) is available.

We give a proof of Lemma 1.1 (ii) by using conjugacy results of M\-concave
functions. We define a function g : RN → R by g(p) = inf{p>y − f(y) | y ∈ F}
(p ∈ RN ). Note that inf{p>y − f(y) | y ∈ F} = inf{p(Y ) − f(Y ) | Y ∈ F}
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holds, and therefore the evaluation of the function value of g can be done in
polynomial time by using an M\-concave function maximization algorithm [36].
It is well known in the theory of convex analysis (see, e.g., [35]) that p ∈ RN is
a subgradient of f at x ∈ F if and only if p ∈ argmax{g(q) − q>x | q ∈ RN}.
The next lemma shows that the maximum in max{g(q)− q>x | q ∈ RN} can be
achieved by an integral vector in a finite set.

Lemma 3.1. For every x ∈ F , there exists a subgradient p of f at x such that
p ∈ ZN and |p(v)| ≤ 2nmaxX∈F |f(X)| for all v ∈ N .

Proof of this lemma is given in §A.2 in Appendix. The discussion above and
Lemma 3.1 imply that it suffices to compute an optimal solution of the problem
max{g(q)− q>x | q ∈ ZN , |p(v)| ≤ 2nmaxX∈F |f(X)| (v ∈ N)}. The function g
has a nice combinatorial structure called L-concavity [27, 28], and this problem
can be solved exactly in time polynomial in n and in logmaxX∈F |f(X)|. Hence,
we obtain the following property:

Lemma 3.2. If f is an integer-valued function, then a vertex optimal solution
of (CR) can be computed in polynomial time.

Rounding of Continuous Solution. It is shown that there exists an optimal
solution of (CR) which is nearly integral.

Lemma 3.3. Let x̂ ∈ [0, 1]N be a vertex optimal solution of (CR). Then, x̂ has
at most 2k non-integral components.

This generalizes a corresponding result in [16] for the budgeted matroid inde-
pendent set problem. Below we give a proof of Lemma 3.3.

In the proof we use the concept of g-polymatorids. A g-polymatroid [13] is a
polyhedron Q = {x ∈ RN | μ(X) ≤ x(X) ≤ ρ(X) (X ∈ 2N )} given by a pair of
submodular/supermodular functions ρ : 2N → R ∪ {+∞}, μ : 2N → R ∪ {−∞}
satisfying the inequality ρ(X) − μ(Y ) ≥ ρ(X \ Y ) − μ(Y \ X) (X,Y ∈ 2N ). If
ρ and μ are integer-valued, then Q is an integral polyhedron; in such a case, we
say that Q is an integral g-polymatroid.

Let x̂ ∈ [0, 1]N be a vertex optimal solution of (CR). Then, x̂ is a vertex of a
polyhedron given as the intersection of a set Q = argmax{f(x)− p>x | x ∈ F}
for some p ∈ RN and the set K = {x ∈ [0, 1]N | c>i x ≤ Bi (i = 1, . . . , k)}. Since
f is an M\-concave function, Q is an integral g-polymatroid [31, §6]. Hence, x̂
is contained in a d-dimensional face F of Q with d ≤ k. The proof of the next
lemma, which is a generalization of [16, Th. 3], is given in §A.3 in Appendix.

Lemma 3.4. Let Q ⊆ RN be an integral g-polymatroid and let F ⊆ Q be a face
of dimension d. Then, every x ∈ F has at most 2d non-integral components.

By Lemma 3.4, the number of non-integral components in x̂ is at most 2d ≤ 2k.
This concludes the proof of Lemma 3.3.

Lemma 3.3 implies the following property, stating that a solution obtained
by rounding down non-integral components of a vertex optimal solution satisfies
the condition in Theorem 1.2. The proof is given in §A.4 in Appendix.
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Lemma 3.5. The set X̃ = {v ∈ N | x̂(v) = 1} is a feasible solution to (kBM\M)
satisfying f(X̃) ≥ opt− 2kmaxv∈N f({v}).

This, together with Lemma 3.2, implies Theorem 1.2 for integer-valued functions.

Algorithm for General Case. If the function f is not integer-valued, then
it is difficult to compute a vertex optimal solution of (CR). Instead, we compute
the set X̃ in Lemma 3.5 directly, without computing a vertex optimal solution,
by using Lemma 3.3 and Lemma 3.6 below. See §A.6 and §A.7 in Appendix for
the proof of Lemma 3.6 and for details of the algorithm, respectively.

Lemma 3.6. For every fixed ε > 0, we can compute a feasible solution x ∈
[0, 1]N of (CR) with f(x) ≥ (1 − ε)opt in polynomial time, where opt is the
optimal value of (CR).

4 PTAS for 1-budgeted M\-concave Intersection

We give a proof of Theorem 1.5 for (1BM\I). With a parameter λ ∈ R+, the
Lagrangian relaxation of (1BM\I) is given by

(LR(λ)) Maximize f1(X) + f2(X) + λ{B − c(X)} subject to X ∈ F1 ∩ F2.

The problem (LR(λ)) is an instance of the M\-concave intersection problem
without budget constraint, which is essentially equivalent to the valuated matroid
intersection problem discussed in [25] (see §A.8 in Appendix). Therefore, the
theorems and algorithms in [25] can be used to (LR(λ)) with slight modification.
In particular, (LR(λ)) can be solved in polynomial time.
Below we explain how to compute a set X̃ ∈ F1∩F2 satisfying the condition in

Theorem 1.5. We firstly compute the value λ = λ∗ minimizing the optimal value
of (LR(λ)), together with two optimal solutions X∗, Y∗ of (LR(λ∗)) satisfying
c(X∗) ≤ B ≤ c(Y∗). This can be done by Megiddo’s parametric search technique
(see [24]; see also [2, 34]). Note that the inequality c(X∗) ≤ B ≤ c(Y∗) implies
f1(X∗) + f2(X∗) ≤ opt ≤ f1(Y∗) + f2(Y∗), where opt is the optimal value of
the original problem (1BM\I). Hence, if X∗ = Y∗ then we have c(X∗) = B and
f(X∗) = opt, implying that X̃ = X∗ satisfies the condition in Theorem 1.5.
Otherwise (i.e., X∗ 6= Y∗), “patching” operations are applied to X∗ and Y∗ to
construct a better approximate solution.

The patching operations are done by using cycles in a weighted auxiliary
graph. In the following, we assume that |X∗| = |Y∗| holds, since in this case the
description of the algorithm can be simplified (and does not lose the generality
so much). We define an auxiliary graph GY∗X∗ = (V,A) with arc weight ω : A→ R
associated with X∗ and Y∗ by V = (X∗ \ Y∗) ∪ (Y∗ \X∗), A = E1 ∪E2, and

E1 = {(u, v) | u ∈ X∗ \ Y∗, v ∈ Y∗ \X∗, X∗ − u+ v ∈ F1},
ω(u, v) = f1(X∗ − u+ v)− f1(X∗) + λ∗{c(u)− c(v)} ((u, v) ∈ E1),

E2 = {(v, u) | v ∈ Y∗ \X∗, u ∈ X∗ \ Y∗, X∗ + v − u ∈ F2},
ω(v, u) = f2(X∗ + v − u)− f2(X∗) ((v, u) ∈ E2).
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A cycle in GY∗X∗ is a directed closed path which visits each vertex at most once.

In every cycle in GY∗X∗ , arcs in E1 and arcs in E2 appear alternately, and every
cycle contains an even number of arcs.

For a cycle C in the graph GY∗X∗ , we define a set X∗ ⊕ C (⊆ N) by

X∗ ⊕ C = X∗ \ {u ∈ X∗ \ Y∗ | (u, v) ∈ C ∩E1} ∪ {v ∈ Y∗ \X∗ | (u, v) ∈ C ∩ E1}.

Lemma 4.1. (i) A maximum-weight cycle in GY∗X∗ is a zero-weight cycle.

(ii) Let C be a zero-weight cycle in GY∗X∗ with the minimum number of arcs. Then,
X∗ ⊕ C is an optimal solution of (LR(λ∗)) with X∗ ⊕ C 6= X∗.

Lemma 4.1 (i) implies that a zero-weight cycle C in GY∗X∗ with the minimum
number of arcs can be computed by using a shortest-path algorithm. The set
X 0 = X∗ ⊕ C is an optimal solution of (LR(λ∗)) by Lemma 4.1 (ii). If X 0 = Y∗,
then an additional patching operation explained below is applied. If c(X 0) = B,
then we stop since X 0 satisfies the condition in Theorem 1.5. If c(X 0) < B then
we replace X∗ with X 0; otherwise (i.e., c(X 0) > B), we replace Y∗ with X 0; in
both cases, we repeat the same patching operations.

We explain the additional patching operation in the case where X∗⊕C = Y∗.
In this case, C contains all vertices in the graph GY∗X∗ . Let a1, a2, . . . , a2h ∈ A be
a sequence of arcs in the cycle C, where 2h is the number of arcs in C. We may
assume that aj ∈ E1 if j is odd and aj ∈ E2 if j is even. For j = 1, 2, . . . , h, let

αj = ω(a2j−1) + ω(a2j). Since C is a zero-weight cycle, we have
Ph

j=1 αj = 0.

Lemma 4.2 (Gasoline Lemma (cf. [23])). Let α1,α2, . . . ,αh be real num-

bers satisfying
Ph

j=1 αj = 0. Then, there exists some t ∈ {1, . . . , h} such thatPt+i
j=t αj(modh) ≥ 0 (i = 0, 1, . . . , h−1), where α0 = αh.

By Lemma 4.2, we may assume that
Pi

j=1 αj ≥ 0 for all i = 1, 2, . . . , h.
For j = 1, 2, . . . , h, we denote a2j−1 = (uj , vj), and let ηj = c(vj) − c(uj).

Then, c(Y∗) = c(X∗) +
Ph

j=1 ηj holds. Let t ∈ {1, 2, . . . , h} be the minimum

integer such that c(X∗) +
Pt

j=1 ηj > B. Since c(X∗) < B, we have t ≥ 1. In

addition, the choice of t implies that c(X∗) +
Pt−1

j=1 ηj ≤ B. With the arc set

C 0 = {a1, a2, . . . , a2t−1, a2t}, we define X̃ ⊆ N by

X̃ = X∗ \ {u ∈ X∗ | (u, v) ∈ C 0 ∩ E1 or u = ut+1} ∪ {v ∈ N \X∗ | (u, v) ∈ C 0 ∩ E1}.

We show that the set X̃ satisfies the desired condition in Theorem 1.5.
We have

opt ≤ f1(X∗) + f2(X∗) + λ∗{B − c(X∗)}+
Pt

j=1 αj

≤ [f1(X∗) +
Pt

j=1{f1(X∗ − uj + vj)− f1(X∗)}]

+ [f2(X∗) +
Pt

j=1{f1(X∗ − uj+1 + vj)− f1(X∗)}].

We define X̃1 = X̃ ∪ {ut+1} and X̃2 = X̃ ∪ {u1}. Note that X̃1 ∩ X̃2 = X̃.
By using the fact that C 0 is a subpath of a zero-weight cycle with the smallest
number of arcs, we can show the following:
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Lemma 4.3. We have X̃1 ∈ F1, X̃2 ∈ F2, f1(X̃1) = f1(X∗) +
Pt

j=1{f1(X∗ −
uj+vj)−f1(X∗)}, and f2(X̃2) = f2(X∗)+

Pt
j=1{f1(X∗−uj+1+vj)−f1(X∗)}.

Hence, we obtain f1(X̃1) + f2(X̃2) ≥ opt. M\-concavity of f1 and f2 implies

f1(X̃) + f2(X̃) ≥ f1(X̃1)− {f1(X̃1)− f1(X̃)}+ f2(X̃2)− {f2(X̃2)− f2(X̃)}

≥ f1(X̃1)− {f1({ut+1})− f1(∅)}+ f2(X̃2)− {f2({u1})− f2(∅)}

≥ opt− 2 ·maxv∈N{f1({v}) + f2({v})},

from which the former inequality in Theorem 1.5 follows. The latter inequality
in Theorem 1.5 can be shown as follows:

c(X̃) = c(X∗) +
Pt

j=1 ηj − c(ut+1)

≤ {c(X∗) +
Pt−1

j=1 ηj}+ ηt ≤ B + ηt ≤ B +maxv∈N c(v).
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function subject to a matroid constraint. Proc. IPCO 2007, 182—196.

6. G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set
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A Appendix

A.1 Partial Enumeration Technique for PTAS

Theorems 1.2 and 1.5 state that there exist polynomial-time algorithms which
compute high-quality feasible solutions for (kBMM) and for (1BMI), respec-
tively. We show that by using a standard technique called “partial enumera-
tion” (see, e.g., [2, 16, 34]), these algorithms can be transformed into PTASes for
(kBMM) and for (1BMI), respectively.
We here consider a more general setting. Let F ⊆ 2N be an independence

system, i.e., if X ∈ F and Y ⊆ X then Y ∈ F . Let f : F → R be a submodular
function defined on F , i.e.,

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (∀X,Y ∈ F s.t. X ∩ Y,X ∪ Y ∈ F). (3)

For X ∈ F and Y ⊆ N with X ⊆ Y , we define a set family FYX (⊆ 2Y \X) and a
function fYX : FYX → R by

FYX = {U | U ⊆ Y \X, U ∪X ∈ F}, (4)

fYX (U) = f(X ∪ U)− f(X) (U ∈ FYX ). (5)

Note that FYX is an independence system and fYX is a submodular function on
FYX with fYX (∅) = 0. We say that F

Y
X (resp., fYX ) is a minor of F (resp., f).

Let S be a family of submodular functions f : F → R defined on indepen-
dence systems F such that f(∅) = 0, and assume that S is minor-closed, i.e.,
every minor of f ∈ S is also in S. We consider the following budgeted optimiza-
tion problem:

(kBSM) Maximize f(X) subject to X ∈ F , ci(X) ≤ Bi (1 ≤ i ≤ k), (6)

where f : F → R is a function in S, k is a constant positive integer, and ci ∈ RN+
and Bi ∈ R+ for i = 1, 2, . . . , k. We denote by opt the optimal value of (kBSM).
Note that the problems (kBMM) and (1BMI) are special cases of (kBSM). We
may assume that f({v}) > 0 for all v ∈ N ; if f({v}) ≤ 0 then the submodularity
of f implies that there exists an optimal solution which does not contain v, and
therefore the element v can be ignored.

We prove the following theorem by applying the partial enumeration tech-
nique to (kBSM).

Theorem A.1. Let α ∈ [0, 1] and η ∈ Z+. Suppose that the problem (kBSM)
has a polynomial-time algorithm which computes a set X̃ ∈ F satisfying

f(X̃) ≥ α · opt− η ·max
v∈N

f({v}),

ci(X̃) ≤ Bi + η ·max
v∈N

ci(v) (i = 1, 2, . . . , k).

Then, (kBSM) has a polynomial-time (α− ε)-approximation algorithm for every
fixed constant ε ∈ (0,α].
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Then, Theorem 1.3 (resp., Theorem 1.4) is an immediate consequence of Theo-
rem A.1 and Theorem 1.2 (resp., Theorem 1.5), where α = 1 and η = 2k (resp.,
η = 2).

We now give a proof of Theorem A.1. Let ε0 = ε/(α+ 1), and X∗ ∈ F be an
optimal solution of (kBSM) which is fixed in the following discussion. We may
assume that |X∗| > (k+1)η/ε0 since otherwise the cardinality of X∗ is bounded
by a constant number and therefore such X∗ can be found by a brute-force
algorithm in polynomial time.

Our algorithm consists of the following three major steps:

Step 1: Guess a subset Xb of X∗ with |Xb| = (k+ 1)η/ε0 consisting of “large”
elements.

Step 2: Compute a set Xs satisfying the following condition

Xb ∪Xs ∈ F ,
f(Xb ∪Xs) ≥ (α− ε0)opt,
ci(Xb ∪Xs) ≤ (1 + ε0)Bi (i = 1, 2, . . . , k).

⎫⎬⎭ (7)

Step 3: Compute a subset U of Xb ∪ Xs such that (Xb ∪ Xs) \ U is an (1 −
ε0)(α− ε0)-approximate feasible solution to (kBSM).

Note that the output in Step 3 is an (α − ε)-approximate solution since (1 −
ε0)(α− ε0) ≥ α− ε.

We firstly guess a subset Z0 of X∗ with |Z0| = η/ε0 which maximizes the
value f(Z0). Here, we assume, for simplicity and without loss of generality, that
η/ε0 is an integer. This is done by enumerating all subsets of N with cardinality
η/ε0. Since η/ε0 is a constant, this can be done in polynomial time.
Let

N0 = {v ∈ N \ Z0 | f(Z0 ∪ {v})− f(Z0) ≤ (ε
0/η)f(Z0)}.

We claim that X∗ \ Z0 ⊆ N0 holds. Assume, to the contrary, that there exists
some v ∈ X∗ \Z0 which is not in N0. It follows from the submodularity (3) of f
that

min
u∈X0

{f(Z0)− f(Z0 \ {u})} ≤
1

|Z0|

X
u∈Z0

{f(Z0)− f(Z0 \ {u})}

≤
1

|Z0|
{f(Z0)− f(∅)} =

ε0

η
f(Z0). (8)

For every u ∈ X0, we have

f((Z0 \ {u}) ∪ {v})− f(Z0 \ {u}) ≥ f(Z0 ∪ {v})− f(Z0) >
ε0

η
f(Z0), (9)

where the first inequality is by submodularity (3) and the second follows from
v 6∈ N0. Combining (8) and (9), we obtain

f(Z0) ≤ f(Z0 \ {u∗}) +
ε0

η
f(Z0) < f((Z0 \ {u∗}) ∪ {v}),
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where u = u∗ ∈ X0 minimizes the value f(Z0) − f(Z0 \ {u}). This, however, is
a contradiction to the choice of Z0. Hence, X∗ \ Z0 ⊆ N0 holds.

Next, for i = 1, 2, . . . , k, we iteratively guess a set Zi of η/ε
0 largest elements

in X∗ \ (Z0 ∪ Z1 ∪ · · · ∪ Zi−1) with respect to the cost ci(v), and let

Ni = {v ∈ Ni−1 \ Zi | ci(v) ≤ min
u∈Zi

ci(u)}.

Then, we have X∗ \ (Z0 ∪ Z1 ∪ · · · ∪ Zi−1 ∪ Zi) ⊆ Ni. It should be noted that
guessing the sets Z1, . . . , Zk can be done in polynomial time since k and η/ε0

are constant numbers. We put Xb = ∪
k
i=0Zi and Y = Xb ∪Nk. Note that Xb is

a feasible solution to (1).
We claim that if Xb ⊆ X∗ then Xb is a feasible solution to (kBSM) with

f(Xb) ≥ 0. The feasibility of Xb is easy to see, and the inequality follows from
f(Xb) ≥ f(X∗) − f(X∗ \ Xb) ≥ 0, where the first inequality is by the sub-
modularity of f and the second by the optimality of X∗. This means that if
Xb is not feasible to (kBSM) or f(Xb) < 0 holds, then some of the guesses for
Z0, Z1, . . . , Zk are not done correctly, and therefore the current Xb should be ig-
nored. In the following, we may assume that Xb is a feasible solution to (kBSM)
with f(Xb) ≥ 0.

We then consider Step 2. We denote F 0 = FYXb
(⊆ 2Nk) and f 0 = fYXb

(see

(4) and (5) for the definitions of FYXb
and fYXb

). Then, f 0 is a function defined
on F 0 with f 0 ∈ S. We consider an instance of (kBSM) given by

Maximize f 0(U) subject to U ∈ F 0, ci(U) ≤ B0i (1 ≤ i ≤ k),

where B0i = Bi − ci(Xb) for each i. We denote by opt
0 the optimal value of this

instance. Then, opt0+f(Xb) = opt holds, provided that the sets Z0, Z1, . . . , Zk
are guessed correctly. The assumption of Theorem A.1 implies that in polynomial
time we can compute a set Xs ∈ F 0 satisfying

f 0(Xs) ≥ α · opt0 − η · max
v∈Nk

f 0({v}), (10)

ci(Xs) ≤ B
0
i + η · max

v∈Nk

ci(v) (i = 1, 2, . . . , k). (11)

We show that the set Xb ∪ Xs satisfies the three conditions in (7). Since
Xs ∈ F 0, we have Xb ∪Xs ∈ F , i.e., the first condition in (7) holds.

By the submodularity (3) of f , Z0 ⊆ Xb, and Nk ⊆ N0, we have

max
v∈Nk

f 0({v}) = max
v∈Nk

{f(Xb ∪ {v})− f(Xb)}

≤ max
v∈Nk

{f(Z0 ∪ {v})− f(Z0)}

≤ max
v∈N0

{f(Z0 ∪ {v})− f(Z0)} ≤
ε0

η
f(Z0). (12)

By the choice of Zi and Nk ⊆ Ni, we have

max
v∈Nk

ci(v) ≤ max
v∈Ni

ci(v) ≤ min
u∈Zi

ci(u) ≤
1

|Zi|
ci(Zi) =

ε0

η
ci(Zi). (13)
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Hence, it follows that

f(Xb ∪Xs) = f
0(Xs) + f(Xb)

≥ α · opt0 − η · max
v∈Nk

f 0({v}) + f(Xb)

= α · opt+ (1− α)f(Xb)− η · max
v∈Nk

f 0({v})

≥ α · opt+ (1− α)f(Xb)− η ·
ε0

η
f(Z0)

≥ α · opt− ε0f(Z0)
≥ (α− ε0)opt, (14)

where the first inequality is by (10), the second by (12), the third by f(Xb) ≥ 0,
and the fourth by f(Z0) ≤ opt. Hence, the second condition in (7) holds.

It follows from (11), (13), and ci(Zi) ≤ Bi that

ci(Xb ∪Xs) ≤ Bi + η · max
v∈Nk

ci(v)

≤ Bi + ε0ci(Zi) ≤ (1 + ε0)Bi (i = 1, 2, . . . , k). (15)

That is, the third condition in (7) holds.
In Step 3, we finally construct an (1−ε0)(α−ε0)-approximate feasible solution

by deleting some elements in Xb ∪ Xs. We assume, for simplicity, that 1/ε0 is
an integer. Let {U1, U2, . . . , U(1/ε0)−1, U1/ε0} be an arbitrarily chosen partition
of Xs such that |Uj ∩ Zh| = η for each j and h; recall that |Zh| = η/ε0 for all
h = 0, 1, . . . , k. We also set t = (1/ε0) + 1 and Ut = Xs. Then, {U1, U2, . . . , Ut}
is a partition of Xb ∪Xs.
It is easy to see that (Xb ∪Xs) \ Ut = Xb is a feasible solution to (kBSM).

For each i = 1, 2, . . . , k and j = 1, 2, . . . , 1/ε0, it holds that

ci(Uj) ≥ ci(Uj ∩ Zi) ≥ η · min
u∈Zi

ci(u) ≥ η · max
v∈Ni

ci(v) ≥ η · max
v∈Nk

ci(v)

since Nk ⊆ Ni. By (15), we have

ci((Xb ∪Xs) \ Uj) = ci(Xb ∪Xs)− ci(Uj)

≤ Bi + η · max
v∈Nk

ci(v)− η · max
v∈Nk

ci(v) = Bi.

Hence, (Xb∪Xs)\Uj is a feasible solution to (kBSM) for each j = 1, 2, . . . , t−1.
Recall that (Xb ∪Xs) \ Ut = Xb is also feasible solution to (kBSM).

To conclude the proof of Theorem A.1, we show that the following inequality
holds:

max
1≤j≤t

f((Xb ∪Xs) \ Uj) ≥ (1− ε0)(α− ε0)opt.

This can be shown by using the following property of f :

Lemma A.1 (cf. [11]). Let f : F → R be a function defined on an indepen-
dence system F ⊆ 2N , and suppose that f is submodular in the sense of (3).
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Then, for every U ∈ F and a positive integer t, it holds that

f(U) ≤
tX

j=1

λjf(Vj)

for any t subsets V1, V2, . . . , Vt of U and nonnegative real numbers λj (j =

1, 2, . . . , t) such that
Pt

j=1 λj = 1 and
Pt

j=1 λjχVj = χU .

By Lemma A.1 and (14), it holds that

max
1≤j≤t

f((Xb ∪Xs) \ Uj) ≥
1

t

tX
j=1

f((Xb ∪Xs) \ Uj)

≥
1

t
· (t− 1)f(Xb ∪Xs)

≥ (1− ε0)f(Xb ∪Xs) ≥ (1− ε0)(α− ε0)opt.

This concludes the proof of Theorem A.1.

A.2 Proof of Lemma 3.1

Let x ∈ F . Recall that f is a polyhedral concave function defined on F , and by
assumption F is a full-dimensional polytope. Therefore, there exists a subgradi-
ent p ∈ RN at x such that the set

D = {y ∈ F | f(y)− f(x) = p>(y − x)}

is a full-dimensional polytope. We show that such a subgradient p satisfies the
inequality

|p(v)| ≤ 2nmax
X∈F

|f(X)| (v ∈ N). (16)

The set D can be represented as

D = argmax{f(y)− p>y | y ∈ F}.

Since f is an M\-concave function, D is an integral g-polymatroid with D ⊆
[0, 1]N (cf. [31, §6]). Let x0 be a vertex of D, which is a 0-1 vector corresponding
to some set X0 ⊆ N . We consider the tangent cone of D at x0, which is generated
by the set W of the following vectors (cf. [14, Th. 3.28]):

+χv (v ∈ N, x0 + χv ∈ D), −χv (v ∈ N, x0 − χv ∈ D),
+χu − χv (u, v ∈ N, x0 + χu − χv ∈ D).

Since D is full-dimensional, its tangent cone is also full-dimensional, which im-
plies that W contains n linear independent vectors. Hence, the vector p is a
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(unique) solution of the system of the following linear equations, where q ∈ RN
is a variable vector:

+q(v) = f(x0 + χv)− f(x0) (= f(X0 + v)− f(X0)) (v ∈ N, x0 + χv ∈ D),

−q(v) = f(x0 − χv)− f(x0) (= f(X0 − v)− f(X0)) (v ∈ N, x0 − χv ∈ D),

+q(u)− q(v) = f(x0 + χu − χv)− f(x0) (= f(X0 + u− v)− f(X0))

(u, v ∈ N, x0 + χu − χv ∈ D).

Recall that for every X ∈ F we have f(X) = f(χX). Since the coefficient
matrix of this system of linear equations is totally unimodular, this system has
an integral solution, i.e., p ∈ ZN .

The linear equations above imply that

|p(v)| ≤ 2max
X∈F

|f(X)| (v ∈ N, x0 + χv ∈ D or x0 − χv ∈ D), (17)

|p(u)− p(v)| ≤ 2max
X∈F

|f(X)| (u, v ∈ N, x0 + χu − χv ∈ D). (18)

From these inequalities we derive the inequality (16), where we use an undirected
graph G = (N,E) with the vertex set N and the edge set

E = {(u, v) | u, v ∈ N, x0 + χu − χv ∈ D}.

In addition, we define R = {v ∈ N | x0 + χv ∈ D or x0 − χv ∈ D}, and call
each element in R a root vertex. By using the fact that W contains n linear
independent vectors, we can show that for every vertex v in G, there exists a
path from v to some root vertex r ∈ R. Let v0 = v, v1, v2, . . . , vk = r be the
sequence of the vertices in such a path between v and r, where k ≤ n − 1. By
(17) and (18), it holds that

|p(v)| ≤ |p(v0)− p(v1)|+ |p(v1)− p(v2)|+ · · ·+ |p(vk−1)− p(vk)|+ |p(vk)|
≤ 2(k + 1)max

X∈F
|f(X)| ≤ 2nmax

X∈F
|f(X)|.

A.3 Proof of Lemma 3.4

To prove Lemma 3.4, we use the concept of base polyhedron [14] which is deeply
related to the concept of g-polymatroid. A base polyhedron is a polyhedron S ⊆
RN given by S = {x ∈ RN | x(X) ≤ ρ(X) (X ⊆ N), x(N) = ρ(N)} with a
submodular function ρ : 2N → R ∪ {+∞} with ρ(∅) = 0 and ρ(N) < +∞. If ρ
is integer-valued, then S is an integral polyhedron; in such a case, we say that
Q is an integral base polyhedron. It is shown that a polyhedron Q ⊆ RN is a
g-polymatroid if and only if the set

Q̃ = {(−x(N), x) ∈ R{0}∪N | x ∈ Q}, (19)

where 0 is a new element not in N , is a base polyhedron (see [14]). Lemma 3.4
for g-polymatroids can be restated in terms of base polyhedra as follows.
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Lemma A.2. Let S ⊆ RN be an integral base polyhedron associated with an
integer-valued submodular function ρ : 2N → Z ∪ {+∞} satisfying ρ(∅) = 0 and
ρ(N) < +∞, and F ⊆ S be a face of dimension d. Then, every x ∈ F has at
most 2d non-integral components.

Proof. Since the dimension of F is d and every x ∈ F satisfies x(N) = ρ(N),
there exist n− d− 1 distinct sets Y1, Y2, . . . , Yn−d−1 ⊂ N such that

F = {x ∈ S | x(Yj) = ρ(Yj) (j = 1, 2, . . . , n− d)},

where Yn−d = N . By a standard uncrossing argument (see, e.g., [14, 17]), we can
assume that ∅ 6= Y1 ⊂ Y2 ⊂ · · · ⊂ Yn−d = N holds. Let x̂ ∈ RN be an arbitrarily
chosen vector in F . Putting Sj = Yj \ Yj−1 (6= ∅) (j = 1, 2, . . . , n − d), it holds
that x̂(Sj) = ρ(Yj) − ρ(Yj−1) ∈ Z, where Y0 = ∅. This implies that if |Sj | = 1
then x̂(v) ∈ Z for the unique element v in Sj . Since |N | = n, at least n− 2d sets
among S1, S2, . . . , Sn−d are singleton sets. Hence, x̂ has at most 2d non-integral
components. ut

Lemma 3.4 can be shown as follows. LetQ ⊆ RN be an integral g-polymatroid
and F ⊆ Q be a d-dimensional face of Q. We define an integral base polyhedron
Q̃ ⊆ R{0}∪N as in (19). Then, the set F̃ = {(−x(N), x) ∈ R{0}∪N | x ∈ F} is a
d-dimensional face of Q̃. By Lemma A.2, every x̃ ∈ F̃ has at most 2d non-integral
components. Hence, every x ∈ F has at most 2d non-integral components.

A.4 Proof of Lemma 3.5

We prove that the set X̃ = {v ∈ N | x̂(v) = 1} is a feasible solution to (kBM\M)
satisfying f(X̃) ≥ opt− 2kmaxv∈N f({v}).

Recall that x̂ ∈ [0, 1]N is a vertex optimal solution of (CR). Let x̃ ∈ {0, 1}N

be a vector obtained by rounding down the non-integral components of x̂, i.e.,
x̃(v) = 1 if x̂(v) = 1 and x̃(v) = 0 otherwise. Note that x̃ is the characteristic
vector of X̃ and therefore satisfies f(x̃) = f(X̃).
We firstly show that X̃ is a feasible solution to (kBM\M). Since x̂ is a vector

in the matroid polytope F and 0 ≤ x̃ ≤ x̂, the vector x̃ is also in F . This fact and
the integrality of x̂ implies that X̃ ∈ F . We also have ci(X̃) = c>i x̃ ≤ c

>
i x̂ ≤ Bi

for all i = 1, . . . , k since 0 ≤ x̃ ≤ x̂. Hence, X̃ is a feasible solution to (kBM\M).
We next show the inequality f(X̃) ≥ opt − 2kmaxv∈N f({v}). We use the

following property of the concave closure f of an M\-concave function f .

Lemma A.3 ([28, 31, 37]).
(i) Let x, y ∈ F be vectors with x ≤ y, v ∈ N , and α ∈ R+ be a real number such
that y + αχv ∈ F . Then, it holds that

x+ αχv ∈ F , f(x+ αχv)− f(x) ≥ f(y + αχv)− f(y).

(ii) For every v ∈ N and α ∈ [0, 1], it holds that

f(αχv)− f(0) = α{f({v})− f(∅)}.
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Let u ∈ N be any element with 0 < x̂(u) < 1, and x̂0 ∈ [0, 1]N be a vector
given by x̂0 = x̂− x̂(u)χu. It holds that

f(x̂) ≤ f(x̂0) + f(x̂(u)χu)− f(0)
= f(x̂0) + x̂(u)f({u}) ≤ f(x̂0) + max

v∈N
f({v}),

where the inequality is by Lemma A.3 (i) and the first equality is by Lemma A.3
(ii). By repeated application of this argument, we obtain the inequality

opt ≤ f(x̂) ≤ f(x̃) + 2kmax
v∈N

f({v}) = f(X̃) + 2kmax
v∈N

f({v});

recall that there exist at most 2k non-integral components in x̂ by Lemma 3.3.

A.5 Proof of Lemma 1.1 (i)

We show that for every x ∈ F and δ > 0, we can compute p ∈ QN and β ∈ Q
satisfying

f(y)− f(x) ≤ p>(y − x) + δ (∀y ∈ F), f(x) ≤ β ≤ f(x) + δ (20)

in time polynomial in n and in logmaxX∈F |f(X)|.
We define a function g : RN → R as in Section 3, i.e.,

g(p) = inf{p>y − f(y) | y ∈ F} (p ∈ RN ).

Lemma A.4 ([37, Lemma 3.3]). Let p ∈ RN be a vector satisfying ||p −
p∗||∞ ≤ δ/n for some p∗ ∈ argmax{g(q) − q>x | q ∈ RN}. Then, the vector p
and the value β = −g(p) + p>x satisfy the inequalities in (20).

Recall that p∗ ∈ argmax{g(q) − q>x | q ∈ RN} holds if and only if p∗ is a
subgradient of f at x ∈ F , and that there exists such p∗ satisfying |p∗(v)| ≤
2nmaxX∈F |f(X)| for all v ∈ N (see Lemma 3.1).
We can compute a vector p in Lemma A.4 by finding a maximizer of the

function g(q)−q>x among vectors q such that each component of q is an integer
multiple of δ0 = δ/n2. We consider a function h : ZN → R defined by

h(q) = g(δ0q)− δ0q>x (q ∈ ZN ).

Lemma A.5 ([37, Theorem 3.5]). Let p0 ∈ ZN be a maximizer of h under
the constraint that |δ0p0(v)| ≤ 2nmaxX∈F |f(X)| (v ∈ N). Then, there exists a
maximizer p∗ ∈ argmax{g(q)− q>x | q ∈ RN} such that

||p∗ − δ0p0||∞ ≤ nδ0 =
δ

n
.

By Lemmas A.4 and A.5, it suffices to solve the following problem:

Maximize h(q) subject to |q(v)| ≤
1

δ0
· 2nmax

X∈F
|f(X)| (v ∈ N),

which can be solved exactly in time polynomial in n, in logmaxX∈F |f(X)|, and
in log(1/δ0) by using the fact that the function g is an L-concave function [27,
28]. This concludes the proof of Lemma 1.1 (i).
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A.6 Proof of Lemma 3.6

We show that for a fixed ε > 0, a feasible solution x ∈ [0, 1]N of (CR) with
f(x) ≥ (1− ε)opt can be computed in polynomial time.
For β ∈ R, we define the set

L(β) = {(y,α) ∈ [0, 1]N × R | y ∈ S, β ≤ α ≤ f(y)}.

Recall that S ⊆ [0, 1]N denotes the set of feasible solutions to (CR). We show
that the nonemptyness of L(β) can be checked approximately in polynomial
time. We denote by opt the optimal value of (CR).

Lemma A.6. There exists a polynomial-time algorithm which, for every β ∈ R
and ε0 > 0, either asserts β > opt− ε0 or finds a feasible solution x ∈ [0, 1]N of
(CR) such that β ≤ f(x) + ε0.

The proof of Lemma A.6 is given below. By combining this property and binary
search with respect to β, we can compute a feasible solution x ∈ [0, 1]N of (CR)
with f(x) ≥ (1− ε)opt in polynomial time, as follows.

In each iteration we maintain an interval [β,β] and a feasible solution x∗ of
(CR) such that

β ≤ f(x∗) +
ε

3
·max
v∈N

f({v}), β ≥ opt−
ε

3
·max
v∈N

f({v}).

Note that maxv∈N f({v}) (> 0) is a non-zero lower bound of opt which can
be computed easily. Initially, we set β = 0, β =

P
v∈N f({v}), and x∗ = 0; the

value
P

v∈N f({v}) is an upper bound of the function value of f , and therefore
it is also an upper bound of opt.
In each iteration, we use Lemma A.6 with β = (β + β)/2 and ε0 = ε/3 ·

maxv∈N f({v}). If β > opt − ε0 holds, then we update β = β, and proceed to
the next iteration. If we find a feasible solution x ∈ [0, 1]N of (CR) such that
β ≤ f(x)+ ε0, then we update β = β, x∗ = x, and proceed to the next iteration.
Suppose that β − β ≤ ε0 holds in some iteration. Then, it holds that

f(x∗) ≥ β − ε0 ≥ β − 2ε0 ≥ opt− 3ε0

= opt− ε ·max
v∈N

f({v}) ≥ (1− ε)opt.

Hence, the current x∗ is a desired feasible solution of (CR). This implies that
the number of iterations required by binary search is

O

µ
log

P
v∈N f({v})

ε/3 ·maxv∈N f({v})

¶
= O

µ
log

3n

ε

¶
.

which is polynomial in the input size.
Below we give a proof of Lemma A.6, which is done by using the ellipsoid

method of Grötschel et al. [17], in a similar way as in Shioura [37]. By the results
in [17, Chapter 3], it suffices to prove that the following oracle for the set L(β)
is available:
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for every (y,α) ∈ [0, 1]N × R and δ > 0, either asserts that y is a
feasible solution to (CR) with β ≤ α ≤ f(y) + δ, or outputs a vector
(s, ξ) ∈ RN × R with k(s, ξ)k∞ = 1 such that s>(x− y) + ξ(α0 − α) ≤ δ
for all (x,α0) ∈ L(β).

We construct such an oracle as follows.

Let (y,α) ∈ [0, 1]N × R. We firstly check whether y ∈ S or not, as in the
case where f is an integer-valued function. If y 6∈ S, then we output a separating
hyperplane of S (see Section 3).

Suppose that y is a feasible solution to (CR). If α < β, then (y,α) is not
in L(β), and we output the vector (0,−1). If α ≥ β, then we compute an
approximate value of f(y). By Lemma 1.1 (i) shown in Section A.5, we can
compute in polynomial time η ∈ Q satisfying f(y) ≤ η ≤ f(y)+δ. If η ≥ α, then
we have α ≤ f(y) + δ, and therefore assert that y is a feasible solution to (CR)
with β ≤ α ≤ f(y) + δ. Otherwise (i.e., η < α), the vector (y,α) is not in L(β),
and we compute an “approximate” subgradient of f at y. By Lemma 1.1 (i), we
can compute in polynomial time p ∈ QN satisfying f(x)− f(y) ≤ p>(x− y) + δ
(∀x ∈ F). It holds that f(y) ≤ η < α and α0 ≤ f(x) for all (x,α0) ∈ L(β).
Hence,

α0 − α < f(x)− f(y) ≤ p>(x− y) + δ

holds for all (x,α0) ∈ L(β). Therefore, we output the vector (1/k(−p, 1)k∞)(−p, 1).
This concludes the proof of Lemma A.6.

A.7 Proof of Theorem 1.2

In §2, we have given a proof of Theorem 1.2 for the case where f is an integer-
valued function. We here consider the general case where f is not necessarily an
integer-valued function, and show a slightly weaker statement:

Lemma A.7. For every fixed ε > 0, a feasible solution X̃ ∈ 2N of (kBM\M)
satisfying

f(X̃) ≥ (1− ε)opt− 2kmax
v∈N

f({v}) (21)

can be computed in polynomial time.

Although the bound in (21) is slightly weaker than the bound opt−2kmaxv∈N f({v})
in Theorem 1.2, it is sufficient to obtain a PTAS for (kBM\M).

Let S, T ∈ 2N be disjoint sets. We denote by (CR[S, T ]) the problem (CR)
with the additional constraints that x(v) = 0 for v ∈ S and x(v) = 1 for v ∈ T .
Similarly, we denote by (P[S, T ]) the problem (kBM\M) with the additional
constraints that X ∩ S = ∅ and T ⊆ X. That is, (P[S, T ]) is the problem
formulated as

Maximize f
N\S
T (X) subject to X ∈ F

N\S
T ,

X
v∈X∪T

ci(v) ≤ Bi (1 ≤ i ≤ k);
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recall the definitions of F
N\S
T and f

N\S
T in (4) and in (5), respectively. Hence,

(P[S, T ]) is an instance (kBM\M). Note that (CR[S, T ]) coincides with the con-
tinuous relaxation of (P[S, T ]), which follows from the fact that F is the family
of matroid independent sets and f is an M\-concave function. This observation
and Lemma 3.6 shown in Section A.6 imply that for every ε > 0 we can compute
(1− ε)-approximate solution of (CR[S, T ]) in polynomial time.
Below we present an algorithm which finds a pair of disjoint sets F0, F1 ⊆ N

with |F0 ∪ F1| ≥ n − 2k such that there exists a (1 − ε)-approximate solution
x of (CR) with x(v) = 0 for v ∈ F0 and x(v) = 1 for v ∈ F1. Once we obtain
such sets, we can show in the same way as Lemma 3.5 that the set X̃ = F1 is a
feasible solution to (kBM\M) satisfying the inequality (21).

The algorithm maintains two sets F0 and F1 satisfying the condition that

the optimal value of (CR[F0, F1]) ≥ (1−
|F0 ∪ F1|ε

n
)opt. (22)

Initially, we set F0 = ∅ and F1 = ∅, and in the following iterations an element
in N \ (F0 ∪ F1) is repeatedly added to either F0 or F1 until |F0 ∪ F1| ≥ n− 2k
holds.

In each iteration of the algorithm, we check whether an element u ∈ N \
(F0 ∪ F1) can be added to F0 or F1. For each u ∈ N \ (F0 ∪ F1), we compute
values ηu0 and ηu1 such that

optu0 ≥ ηu0 ≥ (1−
ε

n
)optu0 , optu1 ≥ ηu1 ≥ (1−

ε

n
)optu1 ,

where optu0 (resp., opt
u
1 ) is the optimal value of (CR[F0 ∪ {u}, F1]) (resp.,

(CR[F0, F1 ∪ {u}])). Let η∗ be a value such that

opt∗ ≥ η∗ ≥ (1−
|F0 ∪ F1|ε

n
)opt∗,

where opt∗ is the optimal value of (CR[F0, F1]). Note that such η∗ is already
computed in the previous iteration of the algorithm.

Suppose that ηu0 ≥ (1 − ε
n )η∗ holds for some u ∈ N \ (F0 ∪ F1). Then, we

have

optu0 ≥ ηu0 ≥ (1−
ε

n
)η∗ ≥ (1−

ε

n
)(1−

|F0 ∪ F1|ε

n
)opt

≥ (1−
|F0 ∪ F1|+ 1

n
· ε)opt.

Hence, we add the element u to F0, and proceed to the next iteration. Similarly,
if ηu1 ≥ (1 −

ε
n
)η∗ holds for some u ∈ N \ (F0 ∪ F1), then we add u to F1, and

proceed to the next iteration.
Suppose that ηu0 < (1−

ε
n )η∗ and ηu1 < (1−

ε
n )η∗ hold for all u ∈ N \(F0∪F1).

Then, we have

(1−
ε

n
)optub ≤ ηub < (1−

ε

n
)η∗ ≤ (1−

ε

n
)opt∗,
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i.e., optub < opt∗ holds for all b = 0, 1 and all u ∈ N \(F0∪F1). This means that
any optimal solution of the problem (CR[F0, F1]) has no integral component. On
the other hand, the problem (CR[F0, F1]) has n

0 = n− |F0 ∪ F1| free variables,
and Lemma 3.3 applied to (CR[F0, F1]) implies that there exists an optimal
solution of (CR[F0, F1]) which has at least (n

0−2k) integral components. Hence,
we must have n0 ≤ 2k, i.e., |F0 ∪ F1| ≥ n− 2k holds. Therefore, we can stop the
algorithm in this case. This concludes the proof of Lemma A.7.

A.8 M\-concave Intersection Problem without Budget Constraint

We show that the M\-concave intersection problem without budget constraint
can be solved in polynomial time by a “combinatorial” algorithm in the sense of
Megiddo [24]. A “combinatorial” algorithm is an algorithm which applies only
comparison and addition operations to input numbers such as function values;
this means, in particular, the multiplication of input numbers is not allowed.
To show this, we use a reduction to the valuated matroid intersection problem
discussed by Murota [26].

M-concave Function We explain the concept of M-concave function, which is
used in the objective function of the valuated matroid intersection problem.
Let B ⊆ 2N be the family of bases in a matroid; such B can be characterized

by the following property (see, e.g., [28]):

∀X,Y ∈ B, ∀u ∈ X \ Y , ∃v ∈ Y \X: X − u+ v ∈ B, Y + u− v ∈ B.

Recall that |X| = |Y | for every X,Y ∈ B.
We consider a function g : B → R defined on a base family B, which is called

an M-concave function [25, 27] if it satisfies the following property:

(M-EXC) ∀X,Y ∈ B, ∀u ∈ X \ Y , ∃v ∈ Y \X:

X−u+v ∈ B, Y +u−v ∈ B, g(X)+g(Y ) ≤ g(X−u+v)+g(Y +u−v).

The concept of M-concave function is originally introduced for functions defined
on integer lattice points, and is deeply related to that of M\-concave function.
For set functions, M-concavity is equivalent to the concept of valuated matroid
by Dress and Wenzel [9].

For every M\-concave function f : F → R, we can construct an M-concave
function g : B → R which is essentially equivalent to f . Let r = max{|X| |
X ∈ F}. Also, let u1, u2, . . . , ur be elements not in N , and put Ñ = N ∪

{u1, u2, . . . , ur}. Define B̃ ⊆ 2Ñ and a function g : B̃ → R by

B̃ = {X̃ ⊆ Ñ | |X̃| = r, X̃ ∩N ∈ F}, g(X̃) = f(X̃ ∩N) (X̃ ∈ B̃).

We show that g is indeed an M-concave function. In the proof below we use the
following property of M\-concave functions.
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Lemma A.8 ([30]). Let f : F → R be an M\-concave function and X,Y ∈ F .
(i) If |X| ≤ |Y |, then for every u ∈ X \ Y there exists some v ∈ Y \X such that

X − u+ v ∈ F , Y + u− v ∈ F , f(X) + f(Y ) ≤ f(X − u+ v) + f(Y + u− v).

(ii) If |X| < |Y |, then there exists some v ∈ Y \X such that

X + v ∈ F , Y − v ∈ F , f(X) + f(Y ) ≤ f(X + v) + f(Y − v).

Proof (M-concavity for g). Let X̃, Ỹ ∈ B̃ and u ∈ X̃ \ Ỹ . We show that there
exists some v ∈ Ỹ \ X̃ such that

X̃−u+v ∈ B̃, Ỹ +u−v ∈ B̃, g(X̃)+g(Ỹ ) ≤ g(X̃−u+v)+g(Ỹ +u−v). (23)

Put X = X̃ ∩N and Y = Ỹ ∩N . By definition, we have X,Y ∈ F , g(X̃) =
f(X), and g(Ỹ ) = f(Y ).

[Case 1: u ∈ N ] We have u ∈ X \ Y . By (M\-EXC), we have either (a) or
(b) (or both) holds:

(a) X − u, Y + u ∈ F and f(X) + f(Y ) ≤ f(X − u) + f(Y + u),
(b) ∃v ∈ Y \X: X − u + v, Y + u − v ∈ F and f(X) + f(Y ) ≤ f(X −
u+ v) + f(Y + u− v).

By Lemma A.8 (i), the statement (b) always holds whenever |X| ≤ |Y |.
Suppose that (a) occurs. Then, we may assume |X| > |Y |. Since |X̃| = |Ỹ |,

there exists some v = uh ∈ (Ỹ \ X̃) \N . We have X̃ −u+ v, Ỹ + u− v ∈ B̃ since
(X̃ − u+ v) ∩N = X − u ∈ F and (Ỹ + u− v) ∩N = Y + u ∈ F . Moreover, it
holds that

g(X̃) + g(Ỹ ) = f(X) + f(Y ) ≤ f(X − u) + f(Y + u)

= g(X̃ − u+ v) + g(Ỹ + u− v).

Hence, (23) holds.
We then suppose that (b) occurs. Then, the element v ∈ Y \X in (b) satisfies

v ∈ Ỹ \ X̃, X̃ − u+ v, Ỹ + u− v ∈ B̃, and

g(X̃) + g(Ỹ ) = f(X) + f(Y ) ≤ f(X − u+ v) + f(Y + u− v)

= g(X̃ − u+ v) + g(Ỹ + u− v).

Hence, (23) holds.
[Case 2: u ∈ Ñ \ N ] We denote U = {u1, u2, . . . , ur}. Suppose that there

exists some v ∈ (Ỹ \ X̃) ∩ U . Then, we have X̃ − u+ v, Ỹ + u− v ∈ B̃ and

g(X̃) + g(Ỹ ) = f(X) + f(Y ) = g(X̃ − u+ v) + g(Ỹ + u− v),

i.e., (23) holds.
We then consider the case where (Ỹ \ X̃) ∩ U = ∅. Then, we have Ỹ ∩ U ⊆

(X̃ ∩ U) \ {u}, implying that |Ỹ ∩ U | < |X̃ ∩ U |. Since |X̃| = |Ỹ |, it holds that
|X| = |X̃|− |Ỹ ∩U | < |Ỹ |− |X̃ ∩U | = |Y |. By Lemma A.8 (ii), there exists some
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v ∈ Y \X such that X + v, Y − v ∈ F and f(X)+ f(Y ) ≤ f(X + v)+ f(Y − v).
This implies that v ∈ Ỹ \ X̃, X̃ − u+ v, Ỹ + u− v ∈ B̃, and

g(X̃) + g(Ỹ ) = f(X) + f(Y ) ≤ f(X + v) + f(Y − v)

= g(X̃ − u+ v) + g(Ỹ + u− v),

i.e., (23) holds. ut

Note that the integer r in the construction of g can be computed in poly-
nomial time by using an algorithm for the (unweighted) matroid intersection
problem.

Reduction to Valuated Matroid Intersection Problem The valuated ma-
troid intersection problem considered in [26] is formulated as follows:

Maximize g1(X) + g2(X) subject to X ∈ B1 ∩ B2,

where gi : Bi → R (i = 1, 2) are M-concave functions defined on matroid base
families Bi satisfying B1 ∩ B2 6= ∅. It is shown in [26] that this problem can be
solved in polynomial time by an augmenting-type “combinatorial” algorithm.
We show that the maximization of the sum of two M\-concave functions can be
reduced to the valuated matroid intersection problem.

Consider the maximization of the sum of two M\-concave functions fi : Fi →
R (i = 1, 2) defined on the families of matroid independent sets Fi. For each M\-
concave function fi, we consider an M-concave functions gi : B̃i → R defined as in
the previous section, where B̃i ⊆ 2

Ñ . We have B̃1∩B̃2 6= ∅ since {u1, . . . , ur} ∈ B̃i.
Moreover, for a set X̃ ⊆ Ñ , we have X̃ ∈ argmax(g1+ g2) if and only if |X̃| = r
and X̃ ∩N ∈ argmax(f1+ f2). This shows that the maximization of the sum of
two M\-concave functions can be reduced to the valuated intersection problem,
and hence can be solved by a “combinatorial” algorithm in polynomial time.

A.9 Proof of Theorem 1.5

In this section we give a more detailed proof of Theorem 1.5 for (1BM\I), showing
that a set X̃ ∈ F1 ∩ F2 satisfying the condition

f1(X̃)+f2(X̃) ≥ opt−2 ·max
v∈N

{f1({v})+f2({v})}, c(X̃) ≤ B+max
v∈N

c(v) (24)

can be computed in polynomial time. Recall the assumption that {v} ∈ F1 ∩F2
and f1({v}) + f2({v}) > 0 hold for all v ∈ N .

We use the Lagrangian relaxation of (1BM\I) in a similar way as in [2, 34]. Us-
ing a parameter λ ∈ R+ called Lagrangian multiplier, the Lagrangian relaxation
is given by

(LR(λ)) Maximize f1(X)+f2(X)+λ{B−c(X)} subject to X ∈ F1∩F2.

The problem (LR(λ)) is an instance of the M\-concave intersection problem with-
out budget constraint, which is essentially equivalent to the valuated matroid
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intersection problem discussed in [25] (see Section A.8). Therefore, the theo-
rems and algorithms in [25] can be used to (LR(λ)) with slight modification. In
particular, (LR(λ)) can be solved in polynomial time.
The value λ = λ∗ minimizing the optimal value of (LR(λ)) is called an optimal

Lagrangian multiplier. We firstly compute an optimal Lagrangian multiplier λ∗
and two optimal solutions X∗, Y∗ of (LR(λ∗)) with c(X∗) ≤ B ≤ c(Y∗). This
can be done by Megiddo’s parametric search technique (see [24]; see also [2, 34]).
Recall that opt denotes the optimal value of the problem (1BM\I).

Lemma A.9. Let X∗, Y∗ ∈ 2N be optimal solutions of (LR(λ∗)). If c(X∗) ≤
B ≤ c(Y∗), then f(X∗) ≤ opt ≤ f(Y∗) holds.

Proof. If c(X∗) ≤ B then X∗ is a feasible solution of (1BM\I). Hence, we have
f(X∗) ≤ opt. Since (LR(λ∗)) is a relaxation of (1BM\I), it holds that f(Y∗) +
λ∗{B − c(Y∗)} ≥ opt, which, combined with B ≤ c(Y∗) and λ∗ ≥ 0, yields
f(Y∗) ≥ opt. ut

This lemma implies that if X∗ = Y∗, then we have c(X∗) = B and f(X∗) =
opt, and therefore X̃ = X∗ satisfies the condition in Theorem 1.5. Otherwise
(i.e., X∗ 6= Y∗), we apply “patching” operations to X∗ and Y∗ to construct a
better approximate solution.

The patching operations are done by using cycles in a weighted auxiliary
graph constructed as follows. Given X,Y ∈ F1 ∩ F2, we define an auxiliary
graph GYX = (V,A) with arc weight ω : A → R as follows; V = (X \ Y ) ∪ (Y \
X) ∪ {va, vd}, where va and vd are new elements not in N , and A and ω are
given by

A = E1 ∪ E2 ∪A1 ∪ A2 ∪D1 ∪D2,
E1 = {(u, v) | u ∈ X \ Y, v ∈ Y \X, X − u+ v ∈ F1},

ω(u, v) = f1(X − u+ v)− f1(X) + λ∗{c(u)− c(v)} ((u, v) ∈ E1),
E2 = {(v, u) | v ∈ Y \X, u ∈ X \ Y, X + v − u ∈ F2},

ω(v, u) = f2(X + v − u)− f2(X) ((v, u) ∈ E2),
A1 = {(va, v) | v ∈ Y \X, X + v ∈ F1},

ω(va, v) = f1(X + v)− f1(X)− λ∗c(v) ((va, v) ∈ A1),
A2 = {(v, va) | v ∈ Y \X, X + v ∈ F2},

ω(v, va) = f2(X + v)− f2(X) ((v, va) ∈ A2),
D1 = {(u, vd) | u ∈ X \ Y, X − u ∈ F1},

ω(u, vd) = f1(X − u)− f1(X) + λ∗c(u) ((u, vd) ∈ D1),
D2 = {(vd, u) | u ∈ X \ Y, X − u ∈ F2},

ω(vd, u) = f2(X − u)− f2(X) ((vd, u) ∈ D2).

The auxiliary graph defined here is a variant of the auxiliary graph for the
valuated matroid intersection problem used in [25]. Hence, properties of the
auxiliary graph for the valuated matroid intersection problem can be used for
the auxiliary graph GYX with some appropriate modification.
A cycle in the graph GYX is a directed closed path which visits each vertex

at most once. We note that in every cycle in GYX , arcs in E1 ∪A1 ∪D1 and arcs
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in E2 ∪ A2 ∪D2 appear alternately, and therefore every cycle contains an even
number of arcs. We call a cycle in GYX admissible if the cycle visits at most one
of va and vd.

For an admissible cycle C in GYX , we define a set X ⊕ C (⊆ N) by

X ⊕ C = X \ {u ∈ X \ Y | (u, v) ∈ C ∩ E1 or (u, vd) ∈ C ∩D1}

∪ {v ∈ Y \X | (u, v) ∈ C ∩ E1 or (va, v) ∈ C ∩ A1}.

It is easy to see that

• if C visits neither of va and vd, then |X ⊕ C| = |X|,
• if C visits va but not vd, then |X ⊕ C| = |X|+ 1,
• if C visits vd but not va, then |X ⊕ C| = |X|− 1.

To the end of this section, we denote

fλ∗(X) = f1(X) + f2(X) + λ∗{B − c(X)} (X ∈ 2N ).

Lemma A.10 (cf. [25]). Let X,Y ∈ F1 ∩ F2.
(i) Let C be a maximum-weight admissible cycle in GYX with the minimum num-
ber of arcs. Then, X ⊕ C ∈ F1 ∩ F2 and fλ∗(X ⊕ C) = fλ∗(X) + ω(C), where
ω(C) denotes the total weight of the cycle C.
(ii) If X is an optimal solution of (LR(λ∗)), then there exists no positive-weight
admissible cycle in GYX .
(iii) If Y is an optimal solution of (LR(λ∗)) and X is not optimal, then there
exists a positive-weight admissible cycle in GYX .

Lemma A.11. The weight of a maximum-weight admissible cycle in GY∗X∗ is
zero.

Proof. By Lemma A.10 (ii), there is no admissible cycle in GY∗X∗ which has pos-
itive weight. We consider a slight purturbation of the objective function in
(LR(λ∗)) so that Y∗ is optimal but X∗ is not. By applying Lemma A.10 (iii)
to the purturbed problem, we can show that there is a positive-weight admis-
sible cycle in the auxiliary graph GY∗X∗ with respect to the perturbed problem.
This implies the existence of an admissible cycle with zero weight in the original
auxiliary graph GY∗X∗ , which is a maximum-weight admissible cycle. ut

Our patching operation is based on the following property, which is immedi-
ate from Lemma A.10 (i) and Lemma A.11.

Lemma A.12. Let C be a zero-weight admissible cycle in GY∗X∗ with the min-
imum number of arcs. Then, X∗ ⊕ C is an optimal solution of (LR(λ∗)) with
X∗ ⊕ C 6= X∗.

In the patching operation, we compute a zero-weight cycle C in GY∗X∗ with the
minimum number of arcs. This can be done by using a shortest-path algorithm
since a zero-weight cycle is a maximum-weight cycle by Lemma A.11. Then,
set X 0 = X∗ ⊕ C, which is an optimal solution of (LR(λ∗)) by Lemma A.12.
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If X 0 = Y∗, then we apply an additional patching operation to be explained
below. If c(X 0) = B, then X 0 satisfies the condition (24) and stop. If c(X 0) < B
then we replace X∗ with X 0; otherwise (i.e., c(X 0) > B), we replace Y∗ with
X 0; in both cases, we repeat the same patching operations. It is noted that
whenever the patching operation above is repeated, then the cardinality of the
set (X∗ \ Y∗) ∪ (Y∗ \ X∗) decreases, and therefore the operation is repeated at
most n times.

Finally, we explain the additional patching operation used in the case where
X∗ ⊕ C = Y∗. In this case, the cycle C contains all vertices in the graph GY∗X∗ .
Let a1, a2, . . . , a2h ∈ A be a sequence of arcs in the cycle C, where 2h is the
number of arcs in C. It may be assumed that aj ∈ E1 ∪A1 ∪D1 if j is odd and
aj ∈ E2 ∪ A2 ∪D2 if j is even. For j = 1, 2, . . . , h, let αj = ω(a2j−1) + ω(a2j).

Since C is a zero-weight cycle, we have
Ph

j=1 αj = 0.

Lemma A.13 (Gasoline Lemma (cf. [23])). Let α1,α2, . . . ,αh ∈ R be a

sequence of real numbers satisfying
Ph

j=1 αj = 0. Then, there exists some t ∈
{1, 2, . . . , h} such that

t+iX
j=t

αj(modh) ≥ 0 (i = 0, 1, . . . , h− 1),

where α0 = αh. ut

By Gasoline Lemma, we may assume that
Pi

j=1 αj ≥ 0 for all i = 1, 2, . . . , h.
For j = 1, 2, . . . , h, we define ηj ∈ R by

ηj =

⎧⎨⎩ c(v)− c(u) (a2j−1 = (u, v) ∈ E1),c(v) (a2j−1 = (va, v) ∈ A1),
−c(u) (a2j−1 = (u, vd) ∈ D1).

Then, c(Y∗) = c(X∗) +
Ph

j=1 ηj holds. Let t ∈ {1, 2, . . . , h} be the minimum

integer such that c(X∗) +
Pt

j=1 ηj > B. Since c(X∗) < B, we have t ≥ 1. In

addition, the choice of t implies that c(X∗) +
Pt−1

j=1 ηj ≤ B.
In the following, we assume that C ⊆ E1∪E2 for simplicity of the description,

since the remaining cases can be shown similarly. We consider the arc set C 0 =
{a1, a2, . . . , a2t−1, a2t}. For j = 1, 2, . . . , h, denote a2j−1 = (uj , vj). We define a
set X̃ ⊆ N by

X̃ = X∗ \ {u ∈ X∗ | (u, v) ∈ C 0 ∩E1 or u = ut+1}
∪{v ∈ N \X∗ | (u, v) ∈ C 0 ∩ E1}.

We show that the set X̃ satisfies X̃ ∈ F1 ∩ F2 and the condition (24).
We have

c(X̃) = c(X∗) +
tX

j=1

ηj − c(ut+1) ≤ {c(X∗) +
t−1X
j=1

ηj}+ ηt

≤ B + ηt ≤ B +max
v∈N

c(v).
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Hence, X̃ satisfies the second inequality in (24).

We also have

opt ≤ f1(X∗) + f2(X∗) + λ∗{B − c(X∗)}

≤ f1(X∗) + f2(X∗) + λ∗{B − c(X∗)}+
tX

j=1

αj

=

·
f1(X∗) +

tX
j=1

{f1(X∗ − uj + vj)− f1(X∗)}
¸

+

·
f2(X∗) +

tX
j=1

{f1(X∗ − uj+1 + vj)− f1(X∗)}
¸

+ λ∗

·
{B − c(X∗)}−

tX
j=1

ηj

¸

<

·
f1(X∗) +

tX
j=1

{f1(X∗ − uj + vj)− f1(X∗)}
¸

+

·
f2(X∗) +

tX
j=1

{f1(X∗ − uj+1 + vj)− f1(X∗)}
¸
, (25)

where the last inequality is by the choice of t.

We define X̃1, X̃2 ⊆ N by

X̃1 = X∗ \ {u1, . . . , ut} ∪ {v1, . . . , vt} (= X̃ ∪ {ut+1}),

X̃2 = X∗ \ {u2, u3, . . . , ut, ut+1} ∪ {v1, . . . , vt} (= X̃ ∪ {u1}).

By using the fact that C 0 is a subpath of a zero-weight admissible cycle with the
smallest number of arcs, we can show the following properties by using a similar
proof technique as in [25]:

X̃1 ∈ F1, X̃2 ∈ F2,

f1(X̃1) = f1(X∗) +
tX

j=1

{f1(X∗ − uj + vj)− f1(X∗)}, (26)

f2(X̃2) = f2(X∗) +
tX

j=1

{f1(X∗ − uj+1 + vj)− f1(X∗)}. (27)

Hence, we obtain X̃ ∈ F1 ∩F2 since X̃ is a common subset of X̃1 and X̃2. From
(25), (26), and (27) follows

f1(X̃1) + f2(X̃2) ≥ opt.
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By the submodularity of f1 and f2 in the sense of (3), it holds that

f1(X̃) + f2(X̃) ≥ f1(X̃1)− {f1(X̃1)− f1(X̃)}+ f2(X̃2)− {f2(X̃2)− f2(X̃)}

≥ f1(X̃1)− {f1({ut+1})− f1(∅)}+ f2(X̃2)− {f2({u1})− f2(∅)}

≥ opt− 2 ·max
v∈N

{f1({v}) + f2({v})}.

Hence, the set X̃ satisfies the first inequality in (24). This concludes the proof
of Theorem 1.5.

A.10 Extension of Our Results

Our PTAS for (kBM\M) can be extended for a more general problem with M\-
concave objective functions defined on integral polymatroids. Let P ⊆ ZN+ be an
integral polymatroid, i.e., P is given as

P = {x ∈ ZN+ | x(S) ≤ ρ(S) (S ∈ 2N )}

with an integer-valued monotone submodular function ρ : 2N → Z+ satisfying
ρ(∅) = 0.

We consider a function h : P → R, which is called an M\-concave function if
it satisfies the following property:

∀x, y ∈ P , ∀u ∈ supp+(x− y), either (i) or (ii) (or both) holds:
(i) x− χu, y + χu ∈ P and

h(x) + h(y) ≤ h(x− χu) + h(y + χu),

(ii) ∃v ∈ supp−(x− y): x−χu+χv, y+χu−χv ∈ P and

h(x) + h(y) ≤ h(x−χu+χv) + h(y+χu−χv),

where χu ∈ {0, 1}N is the characteristic vector of u ∈ N , and for vectors x, y ∈
RN we define supp+(x−y) = {i ∈ N | x(i) > y(i)} and supp−(x−y) = {i ∈ N |
x(i) < y(i)}. For an M\-concave function h : P → R with h(0) = 0, we consider
the following problem:

Maximize h(x) subject to x ∈ P, c>i x ≤ Bi (1 ≤ i ≤ k),

where k is a positive integer given as a constant, ci ∈ RN+ , and Bi ∈ R+.
If P ⊆ {0, 1}N , then this problem is equivalent to (kBM\M). Our PTAS for
(kBM\M) can be naturally extended to this problem by using the results in
discrete convex analysis.


