
Journal of the Operations Research
Society of Japan

20??, Vol. ??, No. ?, ???-???

Efficient Strategy Proof Fair Allocation Algorithms

Akiyoshi Shioura Ning Sun Zaifu Yang
Tohoku University Akita Prefectural University Yokohama National University

(Received November 16, 2004; Revised September 7, 2005)

Abstract We study a fair division problem with indivisible objects like jobs, houses, and one divisible
good like money. Each individual is to be assigned with one object and a certain amount of money. The
preferences of individuals over the objects are private information but individuals are assumed to have quasi-
linear utilities in money. It is shown that there exist efficient algorithms for eliciting honest preferences and
assigning the objects with money to individuals efficiently and fairly.
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1. Introduction

There is by now a large literature on fair allocation (or division) problems (in particular on
divisible goods); see, e.g., Moulin [10], Young [21] and Fujishige [4, Chapter 5] and references
therein. The existence problem of fair allocation with indivisible objects and money has
been studied by Svensson [17], Maskin [9], Alkan et al. [1], Tadenuma and Thomson [19],
Su [14], Yang [20], Sun and Yang [15] in quite general settings. Meanwhile, several efficient
procedures have been proposed by Aragones [2], Klijn [7], and Haake et al. [6] to find
fair allocations in the quasi-linear utility case. Although the strategic issue was explicitly
raised in Alkan et al. [1, pp.1038–1039], none of these existing procedures can guarantee the
elicitation of honest preferences from the individuals.

This paper addresses a fair division problem with indivisible objects like jobs, tasks,
cars, houses, and one divisible good like money. The objects are to be distributed with a
certain amount of money among a group of individuals in a way which is efficient and fair.
The objects may be desirable like houses or undesirable like tasks which must be performed,
and moreover the amount of money may be negative as, for example, costs to be shared
by the individuals. The preferences of individuals over the objects are private information
but individuals are assumed to have quasi-linear utilities in money. It is required that each
individual be assigned with exactly one object even if it may be still unprofitable to him
after a compensation is made. Each object j is associated with a maximum compensation
limit c(j). This upper bound c(j) is known to all individuals prior to the announcement
of their preferences over the objects and is independent of whatever preferences might be
reported by the individuals. Unlike market economies in which the influence of any single
individual is almost negligible compared with the market size, strategic issues arising from
the current economic model are quite severe because the number of individuals is usually
relatively small and therefore it is not inconceivable that some agents may have incentive
to manipulate when they have advantage in doing so. In addition, since the preferences of
each individual over the objects is private information and thus known only to himself, he



is free to report anything at his discretion. He will reveal his true preferences only when
doing so is in his interest.

In this paper we show that the fair allocation problem we deal with is essentially equiva-
lent to the assignment problem plus the single-source shortest-path problem and then show
that any algorithms for the latter two problems can be used to induce all the individuals to
reveal truthfully their preferences over the objects, and to assign the objects with money
to individuals efficiently and fairly. Those algorithms can be seen as a realization of the
strategy proof fair allocation mechanism introduced by Sun and Yang [16] for more general
environments. This mechanism is further studied in Svensson [18] and is closely related to
the mechanisms given by Clark [3], Groves [5], and Leonard [8] in different contexts.

2. The Main Results

Let Ik denote the set of the first k positive integers and R the set of real numbers. Further-
more, let R

n stand for the n-dimensional Euclidean space.
Now we will briefly describe the fair allocation model which consists of n agents, n

indivisible objects and a certain amount of money. The set of agents is denoted by In and
the set of objects by N , where N = In. Objects could be any inherently indivisible goods
like houses, cars, and could be positions or tasks as well. Each object j has an upper bound
compensation limit c(j) units of money. It is required that each agent should be assigned
with exactly one object. All agents are assumed to have quasi-linear utilities in money.
Each agent i places a monetary value, namely, a reservation value V (i, j) on each object j.
These values V (i, j) are private information and thus known only to agent i himself. Thus,
the set of all possible reservation value functions of each agent can be represented by the
n-dimensional real space R

n. A list V = (V (1, ·), · · · , V (n, ·)) of all individual reservation
value functions is called a preference profile or simply a profile. Let V denote the family of
all profiles. A profile V = (V (1, ·), · · · , V (n, ·)) is also written as V = (V (i, ·), V (−i, ·)) for
i ∈ In, where V (−i, ·) denotes (V (1, ·), · · · , V (n, ·)) without V (i, ·).

Let C = (c(1), · · · , c(n)) be the vector of maximum compensations. This model is
denoted by E = [C, V (i, j), i ∈ In, j ∈ N ] for a given profile V ∈ V. An allocation (π, x)
consists of a permutation π of the n objects and a function x : N → R called a compensation
scheme. The set of all allocations is denoted by A. At the allocation (π, x), agent i gets
object π(i) and x(π(i)) units of money. In case x(π(i)) is negative, agent i has to pay the
amount of |x(π(i))|. A compensation scheme x : N → R is feasible if x(j) ≤ c(j) for all
j ∈ N . An allocation (π, x) is fair if

V (i, π(i)) + x(π(i)) ≥ V (i, π(j)) + x(π(j)) (∀i ∈ In, ∀j ∈ In).

A fair allocation (π, x) is compatible with the vector C if x is a feasible compensation
scheme. A fair allocation is Pareto optimal if there exists no other allocation (ρ, y) such
that V (i, ρ(i)) + y(ρ(i)) ≥ V (i, π(i)) + x(π(i)) for every i ∈ In, and V (j, ρ(j)) + y(ρ(j)) >

V (j, π(j)) + x(π(j)) for some j ∈ In and
∑n

j=1
x(j) =

∑n

j=1
y(j). It is easy to see that

every fair allocation is Pareto optimal. For a given profile V ∈ V, the set of compatible
fair allocations is denoted by CF (V ). Clearly, CF (V ) is a subset of A. For a given profile
V ∈ V, a compatible fair allocation (π, x) is optimal if for every compatible fair allocation
(ρ, y) in CF (V ) it holds that x ≥ y. The problem of finding an optimal fair allocation is
called the optimal fair allocation problem.

A mechanism is a rule or a recipe that specifies an allocation for each profile V ∈ V. In
other words, we can regard a mechanism as a function f : V → A; i.e., for every V ∈ V,



the mechanism f specifies an allocation f(V ) = (π, x). However, not every mechanism is
economically sensible. In many situations, since the rule of a mechanism is written precisely
and known to everyone, it is not inconceivable that some agents may have incentive to
manipulate and abuse when they have advantage in doing so. Therefore, it is very important
to design mechanisms that can induce people to behave honestly. In the current model,
because the reservation values of each agent over the objects are known only to himself, he
will report his true reservation values only when truth-telling advances his own economic
interest. This implies that any viable mechanism must be strategy proof.

Precisely, a mechanism is strategy proof if no agent can make himself strictly better off
by misreporting his reservation values over the objects, given that all other agents reveal
their true reservation values. Formally, a mechanism f : V → A is strategy proof if, for
every agent i ∈ In, every profile V ∈ V, and every reservation value function V ′(i, ·) ∈ R

n

of agent i, f satisfies the following no-incentive-to misrepresent condition:

V (i, π(i)) + x(π(i)) ≥ V (i, ρ(i)) + y(ρ(i)),

where (π, x) = f(V ) and (ρ, y) = f((V ′(i, ·), V (−i, ·)). That is, in the face of a strategy
proof mechanism, honesty is a best strategy for every individual.

A mechanism that always selects an optimal fair allocation for each profile V ∈ V
is called the optimal fair allocation mechanism. As shown by Sun and Yang [16] in more
general cases, this type of mechanism is of considerable interest in the sense that it is Pareto
optimal, fair, and strategy proof. Svensson [18] has further studied this mechanism.

In the following we will show that the optimal fair allocation problem can be transformed
to the assignment problem plus the single-source shortest-path problem, and then indicate
that any algorithms for the latter two problems can be used to find an optimal fair allocation
and thus can be seen as a realization of the optimal fair allocation mechanism.

Given a model E = [C, V (i, j), i ∈ In, j ∈ N ], we can formulate the corresponding
maximum weight matching problem (P):

(P) Maximize
∑

i∈In

∑

j∈N

V (i, j)z(i, j)

subject to
∑

j∈N

z(i, j) = 1 (∀i ∈ In),

∑

i∈In

z(i, j) = 1 (∀j ∈ N),

z(i, j) ≥ 0 (∀i ∈ In, ∀j ∈ N).

An integer optimal solution of this problem is called an optimal assignment and can be
represented by a permutation π of the objects in N . That is, z(i, π(i)) = 1 for every i ∈ In

and z(i, j) = 0 otherwise. Such an optimal solution always exists and gives a maximum
weight matching between agents and objects. Let Π denote the set of all optimal assignments
of (P). The dual problem (D) of the above problem can be written as

(D) Minimize
∑

i∈In

u(i) +
∑

j∈N

v(j)

subject to u(i) + v(j) ≥ V (i, j) (∀i ∈ In, ∀j ∈ N).

The set of optimal solutions (u, v) to the above problem is denoted by OD(V ). By the
complementary slackness theorem in linear programming (see, e.g., Schrijver [13]), we have
the following characterization of optimal solutions of (P) and (D).



Theorem 2.1. Let π be a permutation representing a feasible assignment of (P), and (u, v)
be a feasible solution of (D). Then, π and (u, v) are both optimal if and only if they satisfy

the complementary slackness condition

u(i) + v(π(i)) = V (i, π(i)), ∀ i ∈ In. (2.1)

Based upon this result, one can easily show an intimate relationship between fair allo-
cations and the pairs of optimal solutions of (P) and (D) as follows.
Theorem 2.2.

(i) Assume that (π, x) is a fair allocation. Then, π is an optimal assignment of (P) and

the pair of vectors (u, v) ∈ R
n × R

n given by

v = −x, u(i) = V (i, π(i)) + x(π(i)) (i ∈ In)

is an optimal solution of (D).
(ii) Assume that π is an optimal assignment of (P) and (u, v) is an optimal solution of (D).
Then (π,−v) is a fair allocation.

Proof. (i) It is easy to see that π and (u, v) are feasible solutions of (P) and (D), respectively,
and satisfy the complementary slackness condition (2.1). Hence, π and (u, v) are optimal
solutions of (P) and (D), respectively.

(ii) From Theorem 2.1, the optimal assignment π of (P) and the optimal solution (u, v) ∈
R

n × R
n satisfy the following property:

u(i) + v(j) ≥ V (i, j), ∀i ∈ In, ∀j ∈ N,

u(i) + v(π(i)) = V (i, π(i)), ∀i ∈ In.

It follows immediately that

V (i, π(i)) − v(π(i)) ≥ V (i, j) − v(j)

for every i and every j. Hence, the allocation (π,−v) is a fair allocation.

Let

Ψ = {x ∈ R
n | (u,−x) is an optimal solution of (D) for some u ∈ R

n}
= {x ∈ R

n | (u,−x) ∈ OD(V ) for some u ∈ R
n}.

As an immediate consequence of Theorems 2.1 and 2.2, we have the following characteriza-
tion of compatible and optimal fair allocations.

Corollary 2.3.

(i) The set of all fair allocations is given as

Π × Ψ = {(π, x) | π ∈ Π, x ∈ Ψ}.

(ii) The set CF (V ) of all compatible fair allocations is given as

CF (V ) = Π × {x | x ∈ Ψ, x ≤ C}.

(iii) (π, x) is an optimal fair allocation if and only if π is an assignment in Π and x is a

maximal vector in the set {x | x ∈ Ψ, x ≤ C} with respect to the partial order ≤.



Observe that the set CM(V ) of compatible compensation schemes

CM(V ) = {x | x ∈ Ψ, x ≤ C}

is independent of the choice of an optimal assignment π and as shown below can be described
explicitly by a system of linear inequalities defined by agents’ reservation values and any
given optimal assignment. We see also that in order to find an optimal fair allocation, we
only need to find an optimal assignment of (P) and a maximal vector in the set CM(V ). In
the following we explain how to find such a maximal vector.

Let π be any given optimal assignment of (P), i.e., π ∈ Π. It follows from Theorem 2.1
that

Ψ = {x ∈ R
n | (u,−x) ∈ OD(V ) for some u ∈ R

n}

= {x ∈ R
n | ∃u ∈ R

n s.t. u(i) − x(j) ≥ V (i, j) (∀i, j ∈ In),

u(i) − x(π(i)) = V (i, π(i)) (∀i ∈ In)}

= {x ∈ R
n | x(π(i)) − x(j) ≥ −V (i, π(i)) + V (i, j) (∀i, j ∈ In)}.

Consequently, the set of compatible compensation schemes can be expressed as

CM(V ) = {x ∈ R
n | x(π(i)) − x(j) ≥ −V (i, π(i)) + V (i, j) (∀i, j ∈ In),

x(j) ≤ c(j) (∀j ∈ In)}. (2.2)

The set CM(V ) can be further seen as an instance of the following polyhedra

P = {x ∈ R
n | l(i, j) ≤ x(i) − x(j) ≤ u(i, j) (∀i, j ∈ In),

a(j) ≤ x(j) ≤ b(j) (∀j ∈ In)}, (2.3)

where l(i, j), u(i, j), a(j) and b(j) are values contained in R ∪ {+∞,−∞}. For the set
CM(V ) of the form (2.2), the parameters are given by l(i, j) = −V (π−1(i), i)+V (π−1(i), j),
and u(i, j) = +∞ for i, j ∈ In, and a(j) = −∞ and b(j) = c(j) for j ∈ In.

The polyhedra P of the form (2.3) can be found in the dual of the single-source shortest-
path problem and have been well studied in the literature (see, e.g., Murota [11] and Schrijver
[13]). In particular, the set P is a lattice. That is, for any x, y ∈ P , we have x∧y, x∨y ∈ P ,
where

x ∧ y = (min{x(1), y(1)}, · · · , min{x(n), y(n)}),

x ∨ y = (max{x(1), y(1)}, · · · , max{x(n), y(n)}).

Hence, the set P has the unique maximal vector with respect to the partial order ≤ if b(j) is
finite for all j ∈ In. It is known that the unique maximal vector can be found in polynomial
time by solving a single-source shortest-path problem (see, e.g., Murota [11] and Murota
and Tamura [12]).

The above discussion has shown that any algorithms for the assignment problem and the
single-source shortest-path problem can be used to find an optimal fair allocation. Hence,
for each profile V ∈ V, such an algorithm will give an optimal fair allocation and can be
therefore seen as a realization of the optimal fair allocation mechanism. In Theorem 3.1 of
Sun and Yang [16], it is shown that any mechanism that can find an optimal fair allocation
achieves simultaneously Pareto optimality, fairness, and strategy proofness. The rationale
behind strategy proofness is that the optimal fair allocation gives every agent the maximal
benefit he can possibly get under the compensation limits C and thus no one has incentive
to misrepresent.
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