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Abstract. The concept of neighbor system, introduced by Hartvigsen
(2009), is a set of integral vectors satisfying a certain combinatorial prop-
erty. In this paper, we reveal the relationship of neighbor systems with
jump systems and with bisubmodular polyhedra. We firstly prove that
for every neighbor system, there exists a jump system which has the same
neighborhood structure as the original neighbor system. This statement
shows that the concept of neighbor system is essentially equivalent to
that of jump system. We then show that the convex closure of a neigh-
bor system is an integral bisubmodular polyhedron. In addition, we give a
characterization of neighbor systems using bisubmodular polyhedra. Fi-
nally, we consider the problem of minimizing a separable convex function
on a neighbor system. By using the relationship between neighbor sys-
tems and jump systems shown in this paper, we prove that the problem
can be solved in weakly-polynomial time for a class of neighbor systems.

1 Introduction

The concept of neighbor system, introduced by Hartvigsen [14], is a set of integral
vectors satisfying a certain combinatorial property. The definition of neighbor
system is as follows. Throughout this paper, let E be a finite set with n elements.
Let F be a set of integral vectors in ZE . For x, y ∈ F , we say that y is a neighbor
of x if there exist some vector d ∈ {0, +1,−1}E with |{e ∈ E | d(e) 6= 0}| ≤ 2
and a positive integer α such that y = x + αd and x + α′d 6∈ F for all α′ ∈ Z
with 0 < α′ < α. The set F is called an (all-)neighbor system if it satisfies the
following axiom:

for every x, y ∈ F and i ∈ E with x(i) 6= y(i), there exists a neighbor z ∈ F of
x such that min{x(e), y(e)} ≤ z(e) ≤ max{x(e), y(e)} (∀e ∈ E) and z(i) 6= x(i).

See Fig. 1 for an example of a 2-dimensional neighbor system. Given a positive
integer k, a neighbor system F is said to be an Nk-neighbor system if we can
always choose a neighbor z in the axiom above such that ||z − x||1 ≤ k. For
example, the neighbor system in Fig. 1 is an Nk-neighbor system for every k ≥ 3,
but not for k = 1, 2 since if x = (0, 2) and y = (3, 5) then we do not have such a
neighbor z with ||z − x||1 ≤ 2.

Neighbor system is a common generalization of various concepts such as
matroid, integral polymatroid, delta-matroid, integral bisubmodular polyhedron,
and jump systems. Below we review these concepts; see [12] for more accounts.
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Fig. 1. An example of 2-dimensional neighbor system, where the black dots represents
integral vectors in the neighbor system

Matroids. The concept of matroid is introduced by Whitney [21]. One of the
important results on matroids, from the viewpoint of combinatorial optimization,
is the validity of a greedy algorithm for linear optimization (see, e.g., [11]).
Integral Polymatroids. The concept of polymatroid is introduced by Edmonds
[10] as a generalization of matroids. A polymatroid is a polyhedron defined by a
monotone submodular function, and a greedy algorithm for matroids can be nat-
urally extends to polymatroids. The minimization of separable-convex function
can be also done in a greedy way, and efficient algorithms have been proposed
(see, e.g., [13, 15]).
Delta-Matroids. The concept of delta-matroid (or pseudomatroid) is intro-
duced by Bouchet [5] and Chandrasekaran and Kabadi [7]. A delta-matroid can
be seen as a family of subsets of a ground set with a nice combinatorial structure,
and generalizes the concept of matroid. A more general greedy algorithm works
for the linear optimization on a delta-matroid.
Integral Bisubmodular Polyhedron. The concept of bisubmodular polyhe-
dron (or polypseudomatroid), introduced by Chandrasekaran and Kabadi [7]
(see also [6, 12]), is a common generalization of polymatroid and delta-matroid.
For the following discussion, we give a precise definition. We denote 3E =
{(X, Y ) | X, Y ⊆ E, X ∩ Y = ∅}. For any x ∈ RE and (X, Y ) ∈ 3E, we
define x(X,Y ) =

∑

i∈X x(i)−
∑

i∈Y x(i). A function ρ : 3E → R∪{+∞} is said
to be bisubmodular if it satisfies the bisubmodular inequality:

ρ(X1, Y1) + ρ(X2, Y2) ≥ ρ((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2))

+ρ(X1 ∩ X2, Y1 ∩ Y2) (∀(X1, Y1), (X2, Y2) ∈ 3E).

For a function ρ : 3E → R ∪ {+∞} with ρ(∅, ∅) = 0, we define a polyhedron
P∗(ρ) ⊆ RE by P∗(ρ) = {x ∈ RE | x(X,Y ) ≤ ρ(X, Y ) ((X,Y ) ∈ 3E)}, which is
called a bisubmodular polyhedron if ρ is bisubmodular. Bisubmodular polyhedra
constitute an important class of polyhedra on which a simple greedy algorithm
works for linear optimization. In addition, separable convex function minimiza-
tion can be done in a greedy manner [2].
Jump Systems. The concept of jump system is introduced by Bouchet and
Cunningham [6], which is a common generalization of delta-matroid and the set
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of integral vectors in an integral bisubmodular polyhedron. Interesting examples
of jump systems can be found in the set of degree sequences of the subgraphs
of undirected and directed graphs; for example, matchings and b-matchings in
undirected graphs [6, 8, 16] and even-factors in directed graphs [17]. Validity of
certain greedy algorithms is shown in [6] for the linear optimization and in [3] for
separable-convex function minimization. Moreover, a polynomial-time algorithm
for separable-convex function minimization is given in [20].

We give a precise definition of jump systems. For i ∈ E, the characteristic
vector χi ∈ {0, 1}E is the vector such that χi(i) = 1 and χi(e) = 0 for e ∈ E\{i}.
Denote by U the set of vectors +χe,−χe (e ∈ E). For vectors x, y ∈ ZE , define
inc(x, y) = {p ∈ U | x + p is between x and y}. A set J ⊆ ZE is a jump system
if it satisfies the following axiom:

(J) for every x, y ∈ J and every p ∈ inc(x, y), if x + p 6∈ J then there exists
q ∈ inc(x + p, y) such that x + p + q ∈ J .

Note that a jump system is equivalent to an N2-neighbor system [14].

We give two additional examples of neighbor systems which are not jump
systems. The neighbor system in Fig. 1 is also an example of a neighbor system
which is not a jump system.

Example 1.1 (Expansion of jump systems). For a jump system J ⊆ ZE and a
positive integer k, the set {kx ∈ ZE | x ∈ J } is an N2k-neighbor system [14].

Example 1.2 (Rectilinear grid). Let u ∈ ZE
+ be a nonnegative vector, and for

e ∈ E, let πe : [0, u(e)] → Z be a strictly increasing function. Then, the set of
(πe(x(e)) | e ∈ E) for vectors x ∈ ZE

+ with x ≤ u is an all-neighbor system.

These examples, in particular, show that a neighbor system may have a “hole,”
as in the case of jump system, and it can be arbitrarily large.

Neighbor systems provide a systematic and simple way to characterize ma-
troids and its generalizations for which greedy algorithms work for linear op-
timization. Indeed, it is shown that linear optimization on a neighbor system
can be solved by a greedy algorithm, and that the greedy algorithm runs in
polynomial time for Nk-neighbor systems for every fixed k [14].

The main aim of this paper is to reveal the relationship of neighbor systems
with jump systems and with bisubmodular polyhedra. We firstly prove that for
every neighbor system F ⊆ ZE , there exists a jump system J ⊆ ZE which has
the same neighborhood structure as the neighbor system F (see Th. 3.1). This
means that the concept of neighbor system is essentially equivalent to that of
jump system, although the class of neighbor systems properly contains that of
jump systems. Our result implies that every property of jump systems can be
restated in terms of neighbor systems by using the equivalence. Indeed, we show
in Section 5 that several useful properties of jump systems naturally extend to
neighbor systems.

We then discuss the relationship between neighbor systems and bisubmod-
ular polyhedra. It is known that the convex closure of a jump system, which
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is a special case of neighbor systems, is an integral bisubmodular polyhedron
[6]. We show that the convex closure of a neighbor system is also an integral
bisubmodular polyhedron (see Th. 4.1). In addition, we give a characterization
of neighbor systems using bisubmodular polyhedra, stating that a set of integral
vectors is a neighbor system if and only if the convex closure of its restriction
with an interval is always an integral bisubmodular polyhedron (see Th. 4.2).
This result implies, in particular, that a simple greedy algorithm for the linear
optimization on a bisubmodular polyhedron described below can be also used
for neighbor systems (see [9],[12, §3.5 (b)] for the greedy algorithm of this type).

Greedy algorithm for the minimization of a linear function
Step 0: Let x0 be any vector in F and put x := x0. Order the elements in
E = {e1, e2, . . . , en} and compute an integer k so that |w(e1)| ≥ · · · ≥ |w(ek)| >
|w(ek+1)| = · · · = |w(en)| = 0.
Step 1: For i = 1, 2, . . . , k, do the following: if w(ei) ≥ 0 (resp., w(ei) < 0), then
fix the components x(e1), x(e2), . . . , x(ei−1) and decrease (resp., increase) x(ei)
as much as possible under the condition x ∈ F .

As an application of the results shown in this paper, we consider the separable
convex optimization problem on neighbor systems and show that the problem can
be solved efficiently. Given a family of univariate convex functions fe : Z → R
(e ∈ E) and a finite neighbor system F ⊆ ZE , we consider the following problem:

(SC) Minimize f(x) ≡
∑

e∈E fe(x(e)) subject to x ∈ F .

For a special case where F is a jump system, it is shown that the problem (SC)
can be solved in pseudo-polynomial time by a greedy-type algorithm [3], and in
weakly-polynomial time by an algorithm called the domain reduction algorithm
[20]. We extend these algorithms for jump systems to neighbor systems.

To do this, we show that the problem (SC) on a neighbor system can be re-
duced to the problem (SC′) of minimizing a separable convex function on a jump
system by using the relationship between neighbor systems and jump systems
shown in this paper. Note that this reduction does not yield efficient algorithms
for neighbor systems since it requires exponential time. Instead, we extend the
properties used in the algorithms for jump systems to neighbor systems, which
enables us to develop efficient algorithms for neighbor systems.

The organization of this paper is as follows. Section 2 is devoted to preliminar-
ies on the fundamental concepts discussed in this paper. We discuss the relation-
ship of neighbor systems with jump systems and with bisubmodular polyhedra
in Sections 3 and 4, respectively. In Section 5, we propose efficient algorithms
for (SC). Due to the page limit, most of the proofs are given in Appendix.

2 Preliminaries

We denote by Z,Z+,Z++ the sets of integers, nonnegative integers, and positive
integers, respectively. We denote by R the set of real numbers. For vectors ℓ ∈
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(Z ∪ {−∞})E and u ∈ (Z ∪ {+∞})E with ℓ ≤ u, we define the integer interval
[ℓ, u] as the set of integral vectors x ∈ ZE with ℓ(e) ≤ x(e) ≤ u(e) (∀e ∈ E).

We review the original definition of neighbor systems in [14] using the concept
of neighbor function. A neighbor function, denoted by N , is a function that takes
as input any set F ⊆ ZE with any x ∈ F and outputs a subset of the neighbors
of x in F , denoted by N(F , x). In particular, Na(F , x) (resp., Nk(F , x)) denotes
the set of all neighbors of x in F (resp., the set of all neighbors y of x in F with
||y − x||1 ≤ k). For vectors x, y, z ∈ ZE , z is said to be between x and y if
min{x(e), y(e)} ≤ z(e) ≤ max{x(e), y(e)} (∀e ∈ E). Given a set F ⊆ ZE and
a neighbor function N , we say that F is an N -neighbor system if the following
condition holds:

(NNS) for every x, y ∈ F and every i ∈ E with x(i) 6= y(i), there exists
z ∈ N(F , x) such that z is between x and y and z(i) 6= x(i).

An N -neighbor system is an all-neighbor system if N = Na, and an Nk-neighbor
system if N = Nk.

In the following discussion, we use an equivalent axiom of neighbor systems
given below. Then, (NNS) can be rewritten as follows:

(NNS′) for every x, y ∈ F and every p ∈ inc(x, y), there exist q ∈
inc(x, y)∪{0} \ {p} and α ∈ Z++ such that x′ ≡ x+α(p+ q) ∈ N(F , x)
and x′ is between x and y.

We note that the axiom (NNS′) is similar to the axiom (J) for jump systems.
The class of neighbor systems is closed under the following operations.

Proposition 2.1 (cf. [14]). Let F ⊆ Zn be an N -neighbor system.
(i) For a positive integer m > 0, define a set F ′ = {mx | x ∈ F} and a neighbor
function N ′ by N ′(F ′, mx) = {my | y ∈ N(F , x)}. Then, F ′ is an N ′-neighbor
system.
(ii) For a vector s ∈ {+1,−1}E, we define a set Fs = {(s(e)x(e) | e ∈ E) |
x ∈ F} and a neighbor function Ns by Ns(Fs, y) = {(s(e)x′(e) | e ∈ E) | x′ ∈
N(F , x)} for y = (s(e)x(e) | e ∈ E) ∈ Fs. Then, Fs is an Ns-neighbor system.
(iii) For vectors ℓ, u ∈ ZE with ℓ ≤ u and F ∩ [ℓ, u] 6= ∅, the set F ∩ [ℓ, u] is an
N -neighbor system.
(iv) For a vector a ∈ ZE, the set {x + a | x ∈ F} is an N ′-neighbor system,
where N ′(F + a, x) = {y + a | y ∈ N(F , x)}.

We introduce a concept of proper neighbor for neighbor systems. For p ∈ U ,
we define e(p) to be the element e ∈ E satisfying p ∈ {+χe,−χe}. For a neighbor
system F and vectors x, y ∈ F , we say that y is a proper neighbor of x in F if
y is a neighbor of x satisfying either of the conditions (i) or (ii), where

(i) there exist some α ∈ Z++ and p ∈ U such that y − x = αp,
(ii) there exist some α ∈ Z++ and p, q ∈ U with e(p) 6= e(q) such that
y − x = α(p + q) and x + α′p 6∈ F for all α′ with 0 < α′ ≤ α.
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To illustrate the concept of proper neighbor, consider the neighbor system in
Fig. 1. The vector (6, 2) is a proper neighbor of (4, 0) since (5, 0) and (6, 0) are
not in F . The vector (6, 5) is a neighbor of (3, 2), but not a proper neighbor of
(3, 2) since (4, 2), (3, 5) ∈ F .

For jump system, which is a special case of neighbor system, the definition of
proper neighbor can be simplified as follows; for a jump system J and vectors
x, y ∈ J , the vector y is said to be a proper neighbor of x in J if it satisfies
either of the conditions (i) and (ii), where

(i) y − x = p or y − x = 2p for some p ∈ U ,
(ii) y − x = p + q for some p, q ∈ U such that q 6= −p and x + p 6∈ J .

3 Relationship between Neighbor Systems and Jump

Systems

We discuss the relationship between neighbor systems and jump systems. It is
shown that for every neighbor system, there exists a jump system which has the
same neighborhood structure as the original neighbor system.

Theorem 3.1. Let F ⊆ ZE be an all-neighbor system. Then, there exist a jump
system J ⊆ ZE and a bijective function π : J → F satisfying the following
property:

for every x, y ∈ F , the vector x is a proper neighbor of y in F if and only if
π−1(x) is a proper neighbor of π−1(y) in J , where π−1 : F → J is the inverse
function of π.

Proof. Let F ⊆ ZE be an all-neighbor system. By Proposition 2.1 (iv), we may
assume, without loss of generality, that F contains the zero vector 0. For e ∈ E,
we define a set Fe ⊆ Z by

Fe = {α | α ∈ Z, ∃x ∈ F s.t. x(e) = α}.

Define the numbers u(e) ∈ Z ∪ {+∞} and ℓ(e) ∈ Z ∪ {−∞} by

u(e) = the number of positive integers in Fe,

l(e) = −(the number of negative integers in Fe).

We also define a function πe : [ℓ(e), u(e)] → Z by πe(0) = 0 and

πe(k) = the k-th smallest positive integer in Fe (if 0 < k ≤ u(e)),
πe(−k) = the k-th largest negative integer in Fe (if ℓ(e) ≤ −k < 0).

Then, each πe is a strictly increasing function in the interval [ℓ(e), u(e)]. We
define a set J ⊆ ZE and a function π : J → F by

J = {z ∈ ZE | (πe(z(e)) | e ∈ E) ∈ F}, π(z) = (πe(z(e)) | e ∈ E) (z ∈ J ).

By the definitions of πe and J , the function π is bijective.
To complete the proof of Theorem 3.1, it suffices to show the following:
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Lemma 3.1.
(i) The set J is a jump system.
(ii) For every x, y ∈ F , the vector x is a proper neighbor of y in F if and only
if π−1(x) is a proper neighbor of π−1(y) in J .

The proof of (i) and (ii) are given in Sections A.1 and A.2, respectively. ⊓⊔

4 Polyhedral Structure of Neighbor Systems

We prove the following theorems concerning the polyhedral structure of the
convex closure of neighbor systems. For a set F ⊆ Zn, we denote by conv(F) (⊆
Rn) the convex closure (closed convex hull) of F .

Theorem 4.1. For every all-neighbor system F ⊆ ZE , its convex closure conv(F)
is an integral bisubmodular polyhedron.

It should be noted that Theorem 4.1 does not follow immediately from Theo-
rem 3.1 and the fact that the convex closure of a jump system is an integral
bisubmodular polyhedron [6].

We also provide a characterization of neighbor systems by the property that
the convex closure is a bisubmodular polyhedron.

Theorem 4.2. A nonempty set F ⊆ ZE is an all-neighbor system if and only
if for all vectors ℓ, u ∈ ZE satisfying ℓ ≤ u and F ∩ [ℓ, u] 6= ∅, the convex closure
conv(F ∩ [ℓ, u]) is an integral bisubmodular polyhedron.

Below we give proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Let F ⊆ ZE be a neighbor system, and ρ : 3E → R∪
{+∞} is a function defined by ρ(X, Y ) = sup{x(X) − x(Y ) | x ∈ F} ((X,Y ) ∈
3E). Note that ρ(∅, ∅) = 0 and the value ρ(X, Y ) is integer if ρ(X, Y ) < +∞.
To prove Theorem 4.1, it suffices to show that the function ρ is a bisubmodular
function satisfying conv(F) = P∗(ρ).

We here consider only the case where F is a finite set; the case where F is
not necessarily a finite set is given in Section A.6. Then, ρ(X, Y ) < +∞ holds
for all (X, Y ) ∈ 3E . We give a key property to show Theorem 4.1, where the
proof is given in Section A.3.

Lemma 4.1. For every (A,B) ∈ 3E with A∪B = E and all subsets V1, V2, . . . , Vk

(k ≥ 1) of E with V1 ⊂ V2 ⊂ · · · ⊂ Vk, there exists some x ∈ F such that
x(Vt ∩ A, Vt ∩ B) = ρ(Vt ∩ A, Vt ∩ B) for t = 1, 2, . . . , k.

To show the bisubmodularity of ρ, we use the following characterization.
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Lemma 4.2 ([4, Th. 2]). A function ρ : 3E → R is bisubmodular if and only
if ρ satisfies the following conditions:

ρ(X ∩ A,X ∩ B) + ρ(Y ∩ A, Y ∩ B)

≥ ρ((X ∪ Y ) ∩ A, (X ∪ Y ) ∩ B) + ρ((X ∩ Y ) ∩ A, (X ∩ Y ) ∩ B)

(∀(A,B) ∈ 3E with A ∪ B = E, ∀X, Y ∈ 2E), (1)

ρ(X ∪ {i}, Y ) + ρ(X, Y ∪ {i}) ≥ 2ρ(X, Y )

(∀(X,Y ) ∈ 3E , ∀i ∈ E \ (X ∪ Y )). (2)

Note that the condition (1) is equivalent to the submodularity of the function
ρA,B : 2N → R defined by ρA,B(X) = ρ(X ∩A,X ∩B) (X ∈ 2N). By using this
characterization, we prove that the function ρ is bisubmodular, where the proof
is given in Section A.4.

Lemma 4.3. The function ρ is bisubmodular.

To show the equation conv(F) = P∗(ρ), we use the following characterization
of extreme points in a bounded bisubmodular polyhedron.

Lemma 4.4 ([12, Cor. 3.59]). Let ρ : 3E → R be a bisubmodular function. A
vector x ∈ RE is an extreme point of P∗(ρ) if and only if there exist (A,B) ∈ 3E

with A∪B = E and subsets V0, V1, . . . , Vn of E with ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂
Vn = E such that x(Vt ∩ A, Vt ∩ B) = ρ(Vt ∩ A, Vt ∩ B) for t = 1, 2, . . . , n.

Lemma 4.5. It holds that conv(F) = P∗(ρ).

Proof. By the definition of P∗(ρ), it is easy to see that conv(F) ⊆ P∗(ρ). To
show the reverse inclusion, it suffices to show that every extreme point of P∗(ρ)
is contained in F , which follows from Lemmas 4.1 and 4.4. ⊓⊔

Proof of Theorem 4.2. The “only if” part is immediate from Theorem 4.1
and Proposition 2.1 (iii). In the following, we prove the “if” part. Let x, y ∈ F
and i ∈ E with x(i) 6= y(i). Assume, without loss of generality, that x(i) > y(i).

Lemma 4.6. There exists some z0 ∈ F such that z0 is between x and y and
z0(i) > x(i).

The proof of this lemma is given in Section A.5. Let α be the minimum positive
number such that αz0 + (1 − α)x ∈ F , and put z = αz0 + (1 − α)x. Then, z is
a neighbor of x between x and y and satisfies z(i) > x(i). This concludes the
proof of Theorem 4.2.

5 Separable Convex Optimization on Neighbor Systems

We consider the problem (SC) of minimizing a separable convex function on a
finite neighbor system. We propose a greedy algorithm for the problem (SC) and
show that it runs in pseudo-polynomial time. We then show that the problem
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(SC) can be solved in weakly polynomial time if F is an Nk-neighbor system
with a fixed k.

We put n = |E|, and define the size of F by Φ(F) = maxe∈E [maxx∈F x(e)−
minx∈F x(e)]. It is assumed that we are given a membership oracle for F , which
enables us to check whether a given vector is contained in F or not in constant
time. For simplicity, we mainly assume in this section that F is an Nk-neighbor
system for some k; note that a finite all-neighbor system can be seen as an
Nk-neighbor system with k = Φ(F).

5.1 Theorems

We show some useful properties in developing efficient algorithms for (SC). The
next theorem shows that the optimality of a vector can be characterized by a
local optimality.

Theorem 5.1. A vector x ∈ F is an optimal solution of (SC) if and only if
f(x) ≤ f(y) for every proper neighbor y of x.

The next property shows that a given nonoptimal vector in F can be easily
separated from an optimal solution.

Theorem 5.2. Let x ∈ F be a vector which is not an optimal solution of (SC).
Let x′ ≡ x + α∗(p∗ + q∗) be a proper neighbor of x in F such that p∗ ∈ U ,
q∗ ∈ U ∪ {0} \ {+p∗,−p∗}, α∗ ∈ Z++, and f(x′) < f(x). Suppose that x′

minimizes the value {f (x + α∗p∗) − f(x)}/α∗ among all such vectors. Then,
there exists an optimal solution x∗ of (SC) satisfying

{

x∗(i) ≤ x(i) − α− (if p∗ = −χi),
x∗(i) ≥ x(i) + α+ (if p∗ = +χi),

where α− = min{x(i) − y(i) | y ∈ F , y(i) < x(i)} and α+ = min{y(i) − x(i) |
y ∈ F , y(i) > x(i)}.

To prove Theorems 5.1 and 5.2, we show that the problem (SC) can be
reduced to the problem (SC′) of minimizing a separable convex function on
a jump system by using the relationship between neighbor systems and jump
systems shown in Section 3.

We define vectors ℓ, u ∈ ZE , a jump system J ⊆ ZE , and a family of strictly
increasing functions πe : [ℓ(e), u(e)] → Z (e ∈ E) as in Section 3. We define
functions ge : [ℓ(e), u(e)] → R (e ∈ E) by

ge(α) = fe(πe(α)) (α ∈ [ℓ(e), u(e)]).

Note that ge is a convex function since fe is a convex function. Then, the problem
(SC) for a neighbor system F can be reduced to the following problem:

(SC′) Minimize g(x) ≡
∑

e∈E ge(x(e)) subject to x ∈ J ,



10 A. Shioura

which is the minimization of a separable convex function g on a jump system J .
For the problem (SC′), the following properties are known.

Theorem 5.3 (cf. [3, Cor. 4.2]). A vector x ∈ J is an optimal solution of
(SC′) if and only if g(x) ≤ g(y) for all proper neighbors y of x in J .

Theorem 5.4 (cf. [20, Th. 4.2]). Let x ∈ J be a vector that is not an optimal
solution of (SC′). Let x′ ≡ x + p∗ + q∗ be a proper neighbor of x in J such that
p∗ ∈ U , q ∈ U ∪ {0}, and g(x′) < g(x), and suppose that x′ minimizes the value
g(x + p∗) among all such vectors. Then, there exists an optimal solution x∗ ∈ J
of (SC′) satisfying x∗(i) ≤ x(i)−1 if p∗ = −χi and x∗(i) ≥ x(i)+1 if p∗ = +χi.

Then, Theorems 5.1 and 5.2 are just the restatement of Theorems 5.3 and 5.4
by using Theorem 3.1 and the equivalence between (SC) and (SC′).

We then show that the check of local optimality in the sense of Theorem
5.1 and the computation of a proper neighbor x′ in Theorem 5.2 can be done
efficiently. The proof is given in Section A.7.

Theorem 5.5. Let F ⊆ ZE be an Nk-neighbor system. For x ∈ F , all proper
neighbors of x can be computed in O(n2k) time.

5.2 Pseudopolynomial-Time Algorithm

Based on Theorems 5.1 and 5.2, we propose a greedy algorithm for solving the
problem (SC). The greedy algorithm maintains an interval [a, b], where a, b ∈ ZE

containing an optimal solution of (SC). Note that F ∩ [a, b] is a neighbor system
by Proposition 2.1 (iii). The vectors a and b are updated by using Theorem
5.2 so that the value ||b − a||1 reduces in each iteration, and finally an optimal
solution is found. Recall that F is assumed to be a finite Nk-neighbor system.
We assume that an initial vector x0 ∈ F is given.

Algorithm Greedy

Step 0: Let x := x0 ∈ F . Set a(e) := aF (e) and b(e) := bF(e), where

aF(e) := min{x(e) | x ∈ F}, bF(e) := max{x(e) | x ∈ F} (e ∈ E). (3)

Step 1: If f(x) ≤ f(y) for all proper neighbors y of x in F ∩ [a, b], then stop (x
is optimal).
Step 2: Let x′ ≡ x+α∗(p∗+q∗) be a proper neighbor of x in F ∩ [a, b] such that
p∗ ∈ U , q∗ ∈ U ∪ {0} \ {+p∗,−p∗}, α∗ ∈ Z++, and f(x′) < f(x), and suppose
that x′ minimizes the value {f (x + α∗p∗) − f(x)}/α∗ among all such vectors.
Step 3: Modify a or b as follows:

{

b(i) := x(i) − α− (if p∗ = −χi),
a(i) := x(i) + α+ (if p∗ = +χi),

(4)

where α−, α+ are defined by

α− = min{x(i) − y(i) | y ∈ F ∩ [a, b], y(i) < x(i)},
α+ = min{y(i) − x(i) | y ∈ F ∩ [a, b], y(i) > x(i)}.

(5)
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Set x := x′. Go to Step 1. 2

We show the validity of the algorithm. By Theorem 5.1, the output x of the
algorithm is a minimizer of the function f in the set F ∩ [a, b]. We see from
Theorem 5.2 that the set F ∩ [a, b] always contains an optimal solution of (SC).
Hence, the output x of the algorithm is an optimal solution of (SC).

Time complexity analysis is given in Section A.8.

Theorem 5.6. The algorithm Greedy finds an optimal solution of the problem
(SC). The running time is O(n3 Φ(F)2) if F is an all-neighbor system, and
O(n3 k Φ(F))) if F is an Nk-neighbor system and the value k is given.

5.3 Polynomial-Time Algorithm

We propose a faster algorithm for (SC) based on the domain reduction approach.
The domain reduction approach is used in [19, 20] to develop polynomial-time
algorithms for various discrete convex function minimization problems. We show
that the proposed algorithm runs in weakly polynomial time if F is an Nk-
neighbor system with a fixed k and the value k is known a priori.

Given an Nk-neighbor system F ⊆ ZE , we define a set F• ⊆ ZE by F• =
F ∩ [a•

F , b•F ], where aF , bF ∈ ZE are defined by (3) and

a•
F(e) = aF (e) +

⌊

bF (e)−aF (e)
nk

⌋

, b•F(e) = bF(e) −
⌊

bF (e)−aF (e)
nk

⌋

(e ∈ E).

The following properties of the set F• are proved in Section A.9.

Theorem 5.7. Let F ⊆ ZE be an Nk-neighbor system.
(i) The set F• is nonempty and hence an Nk-neighbor system.
(ii) A vector in F• can be found in O(n3k log Φ(F)) time, provided a vector in
F is given.

The algorithm is as follows. Assume that an initial vector x0 ∈ F is given.

Algorithm Domain Reduction

Step 0: Set a := aF and b := bF .
Step 1: Find a vector x ∈ (F ∩ [a, b])•.
Step 2: If f(x) ≤ f(y) for all proper neighbors y of x in F ∩ [a, b], then stop.
Step 3: Let x′ ≡ x+α∗(p∗+q∗) be a proper neighbor of x in F ∩ [a, b] satisfying
the same condition as in Step 2 of Greedy.
Step 4: Modify a or b by (4). Go to Step 1. 2

The validity of this algorithm can be shown in a similar way as the algorithm
Greedy. The analysis of the time complexity is given in Section A.10, where
the following property is the key to obtain a polynomial bound.

Lemma 5.1. Let p∗ be the vector chosen in Step 3 of the m-th iteration, and
i = e(p∗) ∈ E. Then, we have bm+1(i) − am+1(i) < (1 − 1/nk)(bm(i) − am(i)).

Theorem 5.8. The algorithm Domain Reduction finds an optimal solution
of the problem (SC) in O(n5k2(log Φ(F))2) time if F is an Nk-neighbor system.
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A Appendix: Proofs

A.1 Proof of Lemma 3.1 (i)

To prove Lemma 3.1 (i), we use the following lemmas.

Lemma A.1. Let z ∈ F and suppose that z + αp + βq ∈ F holds for some
p, q ∈ U with e(p) 6= e(q) and α, β ∈ Z+. Then, there exists some α′ ∈ Z such
that 0 ≤ α′ ≤ α, α − α′ ≤ β, and z + α′p ∈ F .

Proof. Consider a vector z′ ∈ F of the form z′ = z + (α− ε)p + (β − δ)q, where
ε and δ are nonnegative integers satisfying ε ≤ α, δ ≤ β, and ε ≤ δ. Note that
such a vector exists when ε = δ = 0. Suppose that the vector z′ maximizes the
value δ among all such vectors.

Suppose, to the contrary, that δ < β. Since −q ∈ inc(z′, z), the property
(NNS′) implies that there exists some integers ε′, δ′ such that 0 ≤ ε′ ≤ α − ε,
0 < δ′ ≤ β − δ, ε′ ∈ {0, δ′}, and

z′ − ε′p − δ′q = z + (α − ε − ε′)p + (β − δ − δ′)q ∈ F ,

which is a contradiction to the choice of z′. Hence, we have δ = β. Then, it holds
that z′ = z + (α − ε)p ∈ F and 0 ≤ ε ≤ min{α, β}, i.e., the statement of the
lemma holds.

Lemma A.2. Let z ∈ F , and p1, p2, p3 ∈ U be vectors such that the elements
e(p1), e(p2), e(p3) are distinct. Suppose that z + α1p1 + α2p2 + α3p3 ∈ F holds
for some α1, α2, α3 ∈ Z+. Then, there exist some integers α′

1 and α′
2 such that

0 ≤ α′
1 ≤ α1, 0 ≤ α′

2 ≤ α2, (α1−α′
1)+(α2−α′

2) ≤ α3, and z+α′
1p1 +α′

2p2 ∈ F .

Proof. The proof is similar to that for Lemma A.1 and therefore omitted.

We now show that J is a jump system. Let x̃, ỹ ∈ J , and p ∈ inc(x̃, ỹ), and
suppose that x + p 6∈ J . By Proposition 2.1 (ii), we may assume that p = +χi

for some i ∈ E. We will show that

∃q ∈ inc(x̃ + χi, ỹ) such that x̃ + χi + q ∈ J . (6)

Define x, y ∈ F by x = π(x̃) and y = π(ỹ). Then, we have +χi ∈ inc(x, y)
since +χi ∈ inc(x̃, ỹ) and each πe is a strictly increasing function.

We firstly consider the case where there exists some α∗ ∈ Z++ such that
x + α∗χi ∈ F and 0 < α∗ ≤ y(i) − x(i). We note that x̃(i) < ỹ(i) ≤ u(i) since
+χi ∈ inc(x̃, ỹ).

Lemma A.3. Suppose that there exists some α∗ ∈ Z++ such that x + α∗p ∈ F
and 0 < α∗ ≤ y(i) − x(i). Then, we have either

(a) x + (πi(x̃(i) + 1) − πi(x̃(i)))χi ∈ F , or
(b) u(i) ≥ ỹ(i) ≥ x̃(i) + 2 and x + (πi(x̃(i) + 2) − πi(x̃(i)))χi ∈ F (or
both).
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Proof. Put α1 = πi(x̃(i) + 1) − πi(x̃(i)). Suppose firstly that y(i) − x(i) ≤ α1

holds. By the definition of the function πi, we have {x′ ∈ F | x(i) < x′(i) <
x(i) + α1} = ∅. Hence, we have y(i)− x(i) = α1 holds. Since x + α∗p is between
x and y, we have α∗ = α1, i.e., x + α1χi ∈ F holds.

We then suppose that y(i) − x(i) > α1 holds. Then, it holds that u(i) ≥
ỹ(i) ≥ x̃(i) + 2 and y(i) − x(i) ≥ α2, where α2 = πi(x̃(i) + 2) − πi(x̃(i)). In the
following, we assume

x + α1χi 6∈ F , x + α2χi 6∈ F , (7)

and derive a contradiction. We may assume that α∗ is the minimum positive
integer with x + α∗χi ∈ F , implying that

x + α′χi 6∈ F for all α′ with 0 < α′ < α∗. (8)

Claim 1: There exists some q ∈ U \ {+χi} such that x + α1(χi + q) ∈ F .
[Proof of Claim 1] Let z ∈ F be a vector with z(i) = πi(x̃(i) + 1) = x(i) + α1.
Since +χi ∈ inc(x, z), the property (NNS′) implies that there exist some q ∈
inc(x, z)∪{0}\{+χi} and γ ∈ Z++ such that x+γ(χi+q) ∈ F and x+γ(χi+q)
is between x and z. It follows that 0 < γ ≤ z(i) − x(i) = α1, implying γ = α1

since {x′ ∈ F | x(i) < x′(i) < x(i) + α1} = ∅. By (7), we have q 6= 0 [End of
Claim 1]

Claim 2: α2 < α∗ ≤ 2α1.
[Proof of Claim 2] By (7), we have α∗ > α2. Suppose, to the contrary, that
α∗ > 2α1. Consider the vectors x + α∗χi ∈ F and x + α1(χi + q) ∈ F . By
Lemma A.1, there exists some η ∈ Z such that α1 ≤ η ≤ α∗, η − α1 ≤ α1, and
x + ηχi ∈ F . This, however, is a contradiction to (8) since η ≤ 2α1 < α∗. [End
of Claim 2]

Let z ∈ F be a vector with z(i) = πi(x̃(i) + 2) = x(i) + α2. We have
−χi ∈ inc(x+α∗χi, z) by Claim 2. Hence, there exists some s ∈ inc(x+α∗χi, z)∪
{0}\{−χi} and µ ∈ Z++ such that x+(α∗−µ)χi+µs ∈ F and x+(α∗−µ)χi+µs
is between x+α∗χi and v. It follows that α2 ≤ α∗−µ < α∗, implying µ ≤ α∗−α2.
By Lemma A.1 applied to x and x + (α∗ − µ)χi + µs, we have some γ ∈ Z such
that max{0, α∗−2µ} ≤ γ ≤ α∗−µ and x+γχi ∈ F . Then, we have γ < α∗ and

γ ≥ α∗ − 2µ ≥ α∗ − 2(α∗ − α2) = −α∗ + 2α2 > −α∗ + 2α1 ≥ 0,

where the last inequality is by Claim 2. This, however, is a contradiction to (8)
since x + γχi ∈ F .

Lemma A.3 implies that we have either (a) x̃ + χi ∈ J or (b) u(i) ≥ ỹ(i) ≥
x̃(i) + 2 and x̃ + 2χi ∈ J (or both). Since x̃ + χi 6∈ J by assumption, we have
(6) with q = +χi.

We then assume that

x + αχi 6∈ F (0 < ∀α ≤ y(i) − x(i)). (9)
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Since +χi ∈ inc(x, y), the property (NNS′) implies that there exist q ∈ inc(x, y)∪
{0}\{+χi} and β ∈ Z++ such that x+β(χi+q) is a neighbor of x and between x
and y. By Proposition 2.1 (ii), we may assume that q = +χj for some j ∈ E\{i}.
Since x + β(χi + χj) is a neighbor of x, we have

x + α′(χi + χj) 6∈ F (0 < ∀α′ < β). (10)

Lemma A.4. For every β′, β′′ ∈ Z such that 0 ≤ β′ ≤ β and 0 ≤ β′′ ≤ β, if
x + β′χi + β′′χj ∈ F then we have (β′, β′′) ∈ {(0, 0), (0, β), (β, β)}.

Proof. Let β′, β′′ ∈ Z be such that 0 ≤ β′ ≤ β, 0 ≤ β′′ ≤ β, and x+β′χi+β′′χj ∈
F . It suffices to show that β′, β′′ ∈ {0, β} since x + βχi 6∈ F by (9).

Suppose, to the contrary, that 0 < β′ < β holds. Since +χi ∈ inc(x, x +
β′χi + β′′χj), the property (NNS′) implies that there exists some η ∈ Z with
0 < η ≤ β′ < β such that either x + η(χi + χj) ∈ F or x + ηχi ∈ F (or both).
This, however, contradicts (10) or (9).

We then suppose, to the contrary, that 0 < β′′ < β holds. Then, we have
−χj ∈ inc(x + β(χi + χj), x + β′χi + β′′χj). Therefore, the property (NNS′)
implies that there exists some η ∈ Z with 0 < η ≤ β − β′′ < β such that either
x + (β − η)(χi + χj) ∈ F or x + βχi + (β − η)χj ∈ F (or both). By (10), we
have x + βχi + (β − η)χj ∈ F . It follows from Lemma A.1 applied to x and
x + βχi + (β − η)χj that there exists γ ∈ Z such that 0 ≤ γ ≤ β, β − γ ≤ β − η,
and x + γχi ∈ F , a contradiction to (9).

Lemma A.5. Let z ∈ F .
(i) If 0 ≤ z(i) − x(i) ≤ β then z(i)− x(i) ∈ {0, β}.
(ii) If 0 ≤ z(j) − x(j) ≤ β then z(j) − x(j) ∈ {0, β}.

Proof. [Proof of (i)] Suppose, to the contrary, that there exists some z ∈ F
such that x(i) < z(i) < x(i) + β. Since −χi ∈ inc(x + β(χi + χj), z), there
exist some s ∈ inc(x + β(χi + χj), z) ∪ {0} \ {−χi} and γ ∈ Z++ such that
β − γ ≥ z(i) − x(i) > 0 and

x′ ≡ x + (β − γ)χi + βχj + γs ∈ F .

By (10), we have s 6= −χj.
Suppose that s = +χj. Then, we have x + (β − γ)χi + (β + γ)χj ∈ F . Since

β − γ > 0, it holds that +χi ∈ inc(x, x + (β − γ)χi + (β + γ)χj). Hence, (NNS′)
implies that there exists some η ∈ Z++ such that η ≤ β − γ < β and either
x + ηχi ∈ F or x + η(χi + χj) ∈ F (or both). This, however, is a contradiction
to (9) or (10). Hence, we have s 6∈ {+χj,−χj}.

Suppose that γ < β − γ. Then, Lemma A.2 applied to x and x′ implies
that there exists some α′

1, α
′
2 ∈ Z such that 0 ≤ α′

1 ≤ β − γ, 0 ≤ α′
2 ≤ β,

(β−γ−α′
1)+(β−α′

2) ≤ γ, and x+α′
1χi +α′

2χj ∈ F , a contradiction to Lemma
A.4 since

α′
1 ≥ (β − γ) + (β − α′

2) − γ ≥ β − 2γ > 0.
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Hence, we have γ ≥ β − γ.

Since +χi ∈ inc(x, x′), there exists some t ∈ inc(x, x′) ∪ {0} \ {+χi} =
{+χj, s,0} and η ∈ Z++ such that x + η(χi + t) is a neighbor of x and between
x and x′. We have η ≤ β − γ < β, and therefore it holds that t = s by Lemma
A.4, i.e. x + η(χi + s) ∈ F .

Lemma A.2 applied to x + β(χi + χj) and x + η(χi + s) implies that there
exists some µ1, µ2 ∈ Z such that η ≤ µ1 ≤ β, 0 ≤ µ2 ≤ β, (µ1 − η) + µ2 ≤ η,
and x + µ1χi + µ2χj ∈ F . Since µ1 + µ2 ≤ 2η < 2β and µ1 ≥ η > 0, we have
(µ1, µ2) 6∈ {(0, 0), (0, β), (β, β)}, a contradiction to Lemma A.4. This concludes
the proof of (i).

[Proof of (ii)] Suppose, to the contrary, that there exists some z ∈ F
such that x(j) < z(j) < x(j) + β. Since −χj ∈ inc(x + β(χi + χj), z), there
exist some s ∈ inc(x + β(χi + χj), z) ∪ {0} \ {−χj} and γ ∈ Z++ such that
β − γ ≥ z(j) − x(j) > 0 and

x′′ ≡ x + βχi + (β − γ)χj + γs ∈ F .

By (10), we have s 6= −χi.

Suppose that s = +χi. Then, we have x + (β + γ)χi + (β − γ)χj ∈ F . Since
β − γ > 0, it holds that +χj ∈ inc(x, x + (β + γ)χi + (β − γ)χj). Hence, (NNS′)
implies that there exists some η ∈ Z++ such that η ≤ β − γ < β and either
x + ηχj ∈ F or x + η(χi + χj) ∈ F (or both). This, however, is a contradiction
to Lemma A.4. Hence, we have s 6∈ {+χi,−χi}.

By Lemma A.2 applied to x and x′′, there exist some integers α′′
1 and α′′

2

such that 0 ≤ α′′
1 ≤ β, 0 ≤ α′′

2 ≤ γ < β, (β − α′′
1 ) + (γ − α′′

2 ) ≤ β − γ, and
x + α′′

1χi + α′′
2s ∈ F . Note that

β ≥ α′′
1 ≥ −(β − γ) + β + (γ − α′

2) ≥ γ > 0.

By the statement (i) shown above, we have α′′
1 = β, i.e., x + βχi + α′′

2s ∈ F . By
Lemma A.1 applied to x and x + βχi + α′′

2s, there exists some ε ∈ Z such that
0 ≤ ε ≤ β, β − ε ≤ α′′

2 < β, and x + εχi ∈ F . Since ε > 0, this is a contradiction
to (9).

By Lemma A.5, we have

β = πi(x̃(i) + 1) − πi(x̃(i)) = πj(x̃(j) + 1) − πj(x̃(j)). (11)

Since x + β(χi + χj) ∈ F , the equation (11) implies that x̃ + χi + χj ∈ J and
+χj ∈ inc(x̃, ỹ). That is, we have (6) with q = +χj . This concludes the proof of
Theorem 3.1.

A.2 Proof of Lemma 3.1 (ii)

Let x, y ∈ F , and put x̃ = π−1(x), ỹ = π−1(y). Note that x̃, ỹ ∈ J .
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Proof of “if” part We firstly show that if ỹ is a proper neighbor of x̃ in J , then
y is a proper neighbor of x in F .

[Case 1: |{e ∈ E | x̃(e) 6= ỹ(e)}| = 1] Let i ∈ E be the unique element in
{e ∈ E | x̃(e) 6= ỹ(e)}. We may assume that x̃(i) < ỹ(i). Then, we have either

(a) ỹ = x̃ + χi ∈ J , or (b) ỹ = x̃ + 2χi ∈ J and x̃ + χi 6∈ J .

If (a) holds, then we have y = x+α1χi ∈ F with α1 = πi(x̃(i)+1)−πi(x̃(i)),
which is a proper neighbor of x in F . If (b) holds, then we have y = x+α2χi ∈ F
with α2 = πi(x̃(i) + 2)− πi(x̃(i)) and x + α1χi 6∈ F , implying that y is a proper
neighbor of x in F .

[Case 2: |{e ∈ E | x̃(e) 6= ỹ(e)}| = 2] We may assume, without loss of
generality, that ỹ = x̃ + χi + χj for some distinct i, j ∈ E. Since ỹ is a proper
neighbor of x̃ in J , we may also assume that x̃ + χi 6∈ J . Then, we have
y = x + αχi + βχj ∈ F and x + αχi 6∈ F , where α = πi(x̃(i) + 1)− πi(x̃(i)), and
β = πj(x̃(j) + 1) − πj(x̃(j)). By the assumption and the definitions of α, β, we
have

if x + α′χi + β′χj ∈ F , 0 ≤ α′ ≤ α, 0 ≤ β′ ≤ β, then (α′, β′) ∈ {(0, 0), (0, β), (α, β)}.
(12)

Hence, y is a proper neighbor of x in F if α = β.
Suppose, to the contrary, that α 6= β. If α > β, then Lemma A.1 applied to

x and x+αχi +βχj implies that there exists some α′ ∈ Z such that 0 ≤ α′ ≤ α,
α − α′ ≤ β, and x + α′χi ∈ F . Since α > β, we have α ≥ α′ ≥ α − β > 0.
This, however, is a contradiction to (12). Hence, we have α < β. Since −χj ∈
inc(x+αχi+βχj , x), the property (NNS′) implies that there exists some δ ∈ Z++

such that either (a) δ ≤ β and x+αχi +(β−δ)χj ∈ F , or (b) δ ≤ min{α, β} and
x + (α− δ)χi + (β − δ)χj ∈ F (or both). In either case, we have a contradiction
to (12).

Proof of “only if” part We then show that if y is a proper neighbor of x in F ,
then ỹ is a proper neighbor of x̃ in J .

[Case 1: |{e ∈ E | x(e) 6= y(e)}| = 1] Let i ∈ E be the unique element in
{e ∈ E | x(e) 6= y(e)}. We may assume that x(i) < y(i). Then, there exists some
α∗ ∈ Z++ such that

y = x + α∗χi ∈ F , x + α′χi 6∈ F (0 < ∀α′ < α∗).

If α∗ = πi(x̃(i) + 1) − πi(x̃(i)), then ỹ = π−1(x + α∗χi) = x̃ + χi ∈ J , which
is a proper neighbor of x̃ in J since +χi ∈ inc(x̃, ỹ). Hence, suppose that α∗ >
πi(x̃(i)+1)−πi(x̃(i)). Then, Lemma A.3 implies that α∗ = πi(x̃(i)+2)−πi(x̃(i)).
Therefore, it holds that

ỹ = π−1(x + α∗χi) = x̃ + 2χi ∈ J , x̃ + χi 6∈ J ,

which shows that ỹ is a proper neighbor of x̃ in J .
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[Case 2: |{e ∈ E | x(e) 6= y(e)}| = 2] We may assume, without loss of
generality, that y = x+α(χi +χj) for some distinct i, j ∈ E and α ∈ Z++. Since
y is a proper neighbor of x in F , we may also assume that

x + α′χi 6∈ F (0 < ∀α′ < α).

Then, in the same way as in the proof of Theorem 3.1, we can show that

α = πi(x̃(i) + 1) − πi(x̃(i)) = πj(x̃(j) + 1) − πj(x̃(j))

(cf. (11)). This implies ỹ = π−1(x+α(χi+χj)) = x̃+χi+χj ∈ J and x̃+χi 6∈ J .
Therefore, ỹ is a proper neighbor of x̃ in J .

A.3 Proof of Lemma 4.1

We prove the claim by induction on k. Since the case where k = 1 is obvious, we
assume k > 1. By the induction hypothesis, there exists some x ∈ F such that

x(Vt ∩ A, Vt ∩ B) = ρ(Vt ∩ A, Vt ∩ B) (t = 1, 2, . . . , k − 1).

Let y ∈ F be a vector satisfying y(Vk ∩ A, Vk ∩ B) = ρ(Vk ∩ A, Vk ∩ B), and
assume that y minimizes the value ||y−x||1 among all such y. We will show that
y satisfies

y(Vt ∩ A, Vt ∩ B) = ρ(Vt ∩ A, Vt ∩ B) (t = 1, 2, . . . , k).

Assume, to the contrary, that there exists some t ∈ {1, 2, . . . , k−1} such that
y(Vt ∩A, Vt ∩B) < ρ(Vt ∩A, Vt ∩B). Since x(Vt ∩A, Vt ∩B) = ρ(Vt ∩A, Vt ∩B),
we have either (1) {e ∈ E | e ∈ Vt ∩ A, x(e) > y(e)} 6= ∅ or {e ∈ E | e ∈
Vt ∩ B, x(e) < y(e)} 6= ∅ (or both). We consider the former case only since the
latter case can be dealt with in a similar way.

Let i ∈ E be an element such that i ∈ Vt ∩ A and x(i) > y(i). Since +χi ∈
inc(y, x), the property (NNS′) implies that there exist q ∈ inc(y, x)∪{0}\{+χi}
and α ∈ Z++ such that y′ = y + α(χi + q) ∈ F and y′ is between y and x. If
q = 0, then we have

y′(Vk ∩ A, Vk ∩ B) > y(Vk ∩ A, Vk ∩ B) = ρ(Vk ∩ A, Vk ∩ B)

since i ∈ Vt ∩ A ⊆ Vk ∩ A, a contradiction. If q 6= 0, then we have

y′(Vk ∩ A, Vk ∩ B) ≥ y(Vk ∩ A, Vk ∩ B) = ρ(Vk ∩ A, Vk ∩ B),

and the inequality must hold with equality by the definition of ρ. In addition, it
holds that ||y′ − x||1 < ||y − x||1, a contradiction of the choice of y.



Neighbor Systems, Jump Systems, and Bisubmodular Polyhedra 19

A.4 Proof of Lemma 4.3

By Lemma 4.2 it suffices to show that ρ satisfies the conditions (1) and (2).
We firstly show the condition (1). By Lemma 4.1, there exists a vector x ∈ F

satisfying

x((X ∩ Y ) ∩ A, (X ∩ Y ) ∩ B) = ρ((X ∩ Y ) ∩ A, (X ∩ Y ) ∩ B),

x(X ∩ A,X ∩ B) = ρ(X ∩ A,X ∩ B),

x((X ∪ Y ) ∩ A, (X ∪ Y ) ∩ B) = ρ((X ∪ Y ) ∩ A, (X ∪ Y ) ∩ B),

which implies the desired inequality as follows:

ρ((X ∪ Y ) ∩ A, (X ∪ Y ) ∩ B) + ρ((X ∩ Y ) ∩ A, (X ∩ Y ) ∩ B)

= x((X ∪ Y ) ∩ A, (X ∪ Y ) ∩ B) + x((X ∩ Y ) ∩ A, (X ∩ Y ) ∩ B)

= x(X ∩ A,X ∩ B) + x(Y ∩ A, Y ∩ B)

≤ ρ(X ∩ A,X ∩ B) + ρ(Y ∩ A, Y ∩ B).

We then show the condition (2). By Lemma 4.1, there exists a vector x ∈ F
satisfying

x(X) − x(Y ) = ρ(X, Y ), x(X) − x(Y ) − x(i) = ρ(X, Y ∪ {i}),

which implies the desired inequality as follows:

ρ(X ∪ {i}, Y ) + ρ(X, Y ∪ {i}) ≥ {x(X) + x(i) − x(Y )} + {x(X) − x(Y ) − x(i)}

= 2{x(X) − x(Y )} = ρ(X, Y ).

A.5 Proof of Lemma 4.6

We define the vectors ℓ, u ∈ ZE by ℓ(e) = min{x(e), y(e)} and u(e) = max{x(e), y(e)}
for e ∈ E. Since x ∈ F ∩ [ℓ, u], the set F ∩ [ℓ, u] is nonempty, and therefore its
convex closure S = conv(F ∩ [ℓ, u]) is an integral bisubmodular polyhedron. By
the definitions of ℓ and u, the vector x is an extreme point of S. We consider the
tangent cone TC(x) of S at x, which is given by TC(x) = {αz | x ∈ RE, x+z ∈
S, α ∈ R, α ≥ 0}.

Lemma A.6. There exists an extreme ray d ∈ RE of TC(x) that is a positive
multiple of either +χi, +χi + χk, or +χi − χk for some k ∈ E \ {i}.

Proof. By the definition of the tangent cone, we have y − x ∈ TC(x). Since
x(i) > y(i), there exists some extreme ray d ∈ RE of TC(x) such that d(i) > 0.
Since S is a bisubmodular polyhedron, every extreme ray of the tangent cone
TC(x) is a positive multiple of a vector +χj,−χj, +χj+χk, +χj−χk, or −χj−χk

for some j, k ∈ E (see [1, Theorem 3.5]). Hence, the extreme ray d is a positive
multiple of either +χi, +χi + χk, or +χi − χk for some k ∈ E \ {i}.
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Proof (Proof of Lemma 4.6). By Lemma A.6, there exists an extreme ray d ∈ RE

of TC(x) that is a positive multiple of either +χi, +χi + χk, or +χi − χk for
some k ∈ E \ {i}. Since d is an extreme ray of TC(x), there exists some vector
z0 ∈ S such that z0 is an extreme point of S and z0 − x is a positive multiple of
d. Since d(i) > 0, we have z0(i) > x(i). The vector z0 is contained in F ∩ [ℓ, u]
since it is an extreme point of S = conv(F ∩ [ℓ, u]). This implies, in particular,
z0 ∈ F and z0 is between x and y.

A.6 Proof of Theorem 4.1 for Infinite Neighbor Systems

We prove Theorem 4.1 for the case where a neighbor system F is not necessarily
a finite set.

Let x0 ∈ ZE be any vector in F and define Fk for k = 1, 2, . . . by

Fk = {x ∈ F | |x(e) − x0(e)| ≤ k (∀e ∈ E)}.

We also define a function ρk : 3E → R ∪ {+∞} (k = 1, 2, . . . ) by

ρk(X, Y ) = max{x(X) − x(Y ) | x ∈ Fk} ((X,Y ) ∈ 3E).

By Proposition 2.1 (iii), each Fk is a neighbor system, and therefore ρk is a
bisubmodular function by Lemma 4.3. We note that Fk is a finite set and there-
fore ρk takes finite values. Moreover, it holds that limk→+∞ fk(X, Y ) = f(X, Y )
for every (X, Y ) ∈ 3E. Therefore, we have

ρ(X1, Y1) + ρ(X2, Y2) = lim
k→+∞

ρk(X1, Y1) + lim
k→+∞

ρk(X2, Y2)

≥ lim
k→+∞

ρk((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2))

+ lim
k→+∞

ρk(X1 ∩ X2, Y1 ∩ Y2)

= ρ((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2))

+ρ(X1 ∩ X2, Y1 ∩ Y2) (∀(X1, Y1), (X2, Y2) ∈ 3E),

i.e., ρ is also a bisubmodular function.
We then show that conv(F) = P∗(ρ) holds. Since F ⊆ P∗(ρ), we have

conv(F) ⊆ P∗(ρ). It holds that P∗(ρ) = limk→+∞ P∗(ρk), and that P∗(ρk) =
conv(Fk) for each k = 1, 2, . . . by Lemma 4.5. Since conv(Fk) ⊆ conv(F), we
have

P∗(ρ) = lim
k→+∞

P∗(ρk) = lim
k→+∞

conv(Fk) ⊆ conv(F).

Hence, conv(F) = P∗(ρ) holds.

A.7 Proof of Theorem 5.5

Computation of all proper neighbors of x can be done as follows. We firstly
compute proper neighbors of the form x + αχi (i ∈ E, 0 < α ≤ k). If the
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set {α | x + αχi ∈ F , 0 < α ≤ k} is nonempty, then we compute the value
α+

i = min{α | x+αχi ∈ F , 0 < α ≤ k}, and output x+α+
i χi, which is a proper

neighbor of x. Otherwise, we put α+
i = +∞. It is easy to see that this can be

done in O(nk) time. Similarly, we can compute all proper neighbors of the form
x − αχi and values α−

i = min{α | x − αχi ∈ F , 0 < α ≤ k} in O(nk) time.
We then compute proper neighbors of the form x+α(χi+χj) for some distinct

i, j ∈ E and α ∈ Z++ with α ≤ k. If the set {α | x+α(χi +χj) ∈ F , 0 < α ≤ k}
is nonempty, then we compute the value α+

ij defined by α+
ij = min{α | x+α(χi +

χj) ∈ F , 0 < α ≤ k}. If α+
ij < α+

i or α+
ij < α+

j , then the vector x + α+
ijχij is a

proper neighbor, and output it. It is easy to see that this can be done in O(n2k)
time. Similarly, we can compute all proper neighbors of the forms x+α(χi −χj)
and x+α(−χi−χj) in O(n2k) time. Hence, we can compute all proper neighbors
of x in O(n2k) time.

A.8 Time Complexity Analysis of Algorithm Greedy

We analyze the running time of the algorithm Greedy in Section 5.2. For each
e ∈ E, the values aF(e) and bF(e) can be computed in O(n2k log Φ(F)) time
by using the algorithm for linear optimization by Hartvigsen [14]. Hence, Step
0 can be done in O(n3k log Φ(F)) time. Steps 1 and 2 can be done in O(n2k)
time by Theorem 5.5. The values α−, α+ can be also computed in O(n2k) time
by using the following property and Theorem 5.5.

Proposition A.1. Let F ⊆ ZE be an all-neighbor system and x ∈ F .
(i) Suppose that {y ∈ F | y(i) < x(i)} 6= ∅. Then, there exists a proper neighbor
y∗ ∈ F of x such that x(i) − y∗(i) = min{x(i) − y(i) | y ∈ F , y(i) < x(i)}.
(ii) Suppose that {y ∈ F | y(i) > x(i)} 6= ∅. Then, there exists a proper neighbor
y∗ ∈ F of x such that y∗(i) − x(i) = min{y(i)− x(i) | y ∈ F , y(i) > x(i)}.

Proof. We prove (i) only. Let z ∈ F be a vector such that x(i)−z(i) = min{x(i)−
y(i) | y ∈ F , y(i) < x(i)}. Since −χi ∈ inc(x, z), the property (NNS′) implies
that there exists some q ∈ inc(x, z) ∪ {0} \ {−χi} and α ∈ Z++ such that
x′ ≡ x + α(−χi + q) is a neighbor of x and x′ is between x and y0.

If x′ is a proper neighbor of x, then the choice of z implies y∗(i) = z(i) since
x(i) > x′(i) ≥ z(i). Suppose that x′ is not a proper neighbor of x. Then, q = 0
and there exists some α′ ∈ Z++ with α′ ≤ α such that x′′ ≡ x−α′χi is a proper
neighbor of x. By the choice of z, we have x′′(i) = z(i) since x(i) > x′′(i) =
x(i) − α′ ≥ z(i).

This property implies that Step 3 can be done in O(n2k) time.
To bound the number of iterations of the algorithm, we consider the value

||b − a||1. Suppose that we have p∗ = −χi in Step 3, and denote by bold (resp.,
bnew) the vector b before update (resp., after update). Then, it holds that a(i) ≤
bnew(i) = x(i)−α− < x(i) ≤ bold(i), implying that ||bnew − a||1 < ||bold − a||1. If
p∗ = +χi holds in Step 3, then we can show in the same way that ||b−anew||1 <
||b − aold||1, where aold (resp., anew) the vector a before update (resp., after
update). Hence, the value ||b − a||1 reduces in each iteration, and therefore the
number of iterations is bounded by n Φ(F).
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A.9 Proof of Theorem 5.7

To prove Theorem 5.7, we use the following property of jump systems.

Theorem A.1 ([20, Theorem 4.3]). Let J ⊆ ZE be a jump system. Define
a set J ◦ ⊆ ZE by J ◦ = J ∩ [a◦

J , b◦J ], where for each e ∈ E,

aJ (e) = min{x(e) | x ∈ J }, bJ (e) = max{x(e) | x ∈ J },

a◦
J (e) = aJ (e) +

⌊

bJ (e)−aJ (e)
n

⌋

, b◦J (e) = bJ (e) −
⌊

bJ (e)−aJ (e)
n

⌋

.

Then, the set J ◦ is nonempty.

Proof of (i) Let F be a given Nk-neighbor system, and define vectors ℓ, u ∈ ZE ,
a jump system J ⊆ ZE , and a family of strictly increasing functions πe :
[ℓ(e), u(e)] → Z (e ∈ E) as in Section 3. For e ∈ E, let ℓ′(e) be the mini-
mum integer with πe(ℓ

′(e)) ≥ a•
F (e) and u′(e) be the maximum integer with

πe(u
′(e)) ≤ b•F (e). Then, we have

F• = {x ∈ F | πe(ℓ
′(e)) ≤ x(e) ≤ πe(u

′(e)) (∀e ∈ E)}.

Therefore, F• is nonempty if and only if the set J • ⊆ J given by

J • = {x ∈ J | ℓ′(e) ≤ x(e) ≤ u′(e) (∀e ∈ E)}

is nonempty. By Theorem A.1, the set J • is nonempty if it holds that

ℓ′(e) ≤ ℓ(e) +

⌊

u(e) − ℓ(e)

n

⌋

, u′(e) ≥ u(e) −

⌊

u(e) − ℓ(e)

n

⌋

(∀e ∈ E).

(13)

Therefore, it suffices to show that the inequalities (13) hold. In the following,
we prove the former inequality in (13) only since the latter can be proven in a
similar way.

For e ∈ E, it holds that

(ℓ′(e) − 1) − ℓ(e) ≤ πe(ℓ
′(e) − 1) − πe(ℓ(e)) ≤ (a•

F (e) − 1) − aF(e),

where the first inequality follows from the fact that πe is a strictly increasing
function, and the last inequality is by the definition of ℓ′(e). Hence, we have

ℓ′(e) − ℓ(e) ≤ a•
F(e) − aF(e) =

⌊

bF(e) − aF (e)

nk

⌋

. (14)

Lemma A.7. It holds that πe(α + 1) − πe(α) ≤ k (∀e ∈ E, ℓ(e) ≤ ∀α < u(e)).

Proof. Let x ∈ F (resp., y ∈ F) be a vector with x(e) = πe(α) (resp., y(e) =
πe(α + 1)). Since +χe ∈ inc(x, y), the property (NNS′) implies that there exist
q ∈ inc(x, y) ∪ {0} \ {+χe} and α ∈ Z++ such that x′ ≡ x + α(χe + q) is a
neighbor of x, ||x′ − x||1 ≤ k, and x′ is between x and y. In particular, we
have x(e) < x′(e) ≤ y(e). By the definition of the value πe(α + 1), we have
x′(e) = πe(α+1) = y(e). Hence, πe(α+1)−πe(α) = y(e)−x(e) ≤ ||x′−x||1 ≤ k.
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It follows from Lemma A.7 that

bF(e) − aF (e) ≤ k(u(e) − ℓ(e)) (e ∈ E).

From this inequality and (14) follows that

ℓ′(e) − ℓ(e) ≤

⌊

bF(e) − aF(e)

nk

⌋

≤

⌊

u(e) − ℓ(e)

n

⌋

,

i.e., the former inequality in (13) holds. This concludes the proof of (i).

Proof of (ii) We can compute a vector in F• by the following algorithm.
Let x0 be a given vector in F and assume for simplicity that E = {1, 2, . . . , n}.

For i = 1, 2, . . . , n, we iteratively define a vector xi ∈ F as follows:

• if a•
F (i) ≤ xi−1(i) ≤ b•F(i), then set xi = xi−1.

• if xi−1(i) < a•
F(i), then let xi be a vector in F which maximizes the

value xi(i) under the constraints xi(i) ≤ b•F(i) and a•
F(e) ≤ xi(e) ≤

b•F(e) (e = 1, 2, . . . , i− 1). • if xi−1(i) > b•F(i), then let xi be a vector in
F which minimizes the value xi(i) under the constraints xi(i) ≥ a•

F (i)
and a•

F(e) ≤ xi(e) ≤ b•F(e) (e = 1, 2, . . . , i − 1).

By the statement (i) of Theorem 5.7, we see that the set

Fi ≡ F ∩ {x | a•
F (e) ≤ xi(e) ≤ b•F(e) (e = 1, 2 . . . , i)}

is nonempty for all i = 1, 2, . . . , n. Therefore, the vector xi is contained in Fi;
in particular, we have xn ∈ Fn = F•.

Each iteration of the algorithm above can be done by using the algorithm
for linear optimization by Hartvigsen [14], which requires O(n2k log Φ(F)) time.
Hence, a vector in F• can be found in O(n3k log Φ(F)) time.

A.10 Time Complexity Analysis of Algorithm Domain Reduction

We analyze the number of iterations of the algorithm Domain Reduction in
Section 5.3. Denote by am, bm the vectors a, b at the beginning of the m-th
iteration. It is clear that the value bm(e) − am(e) is nonincreasing with respect
to m for each e ∈ E.

We have b0(e) − a0(e) ≤ Φ(F) for all e ∈ E at the beginning of the al-
gorithm, and if bm(e) − am(e) < 1 for all e ∈ E, then we obtain an optimal
solution immediately. Hence, it follows from Lemma 5.1 that the algorithm Do-

main Reduction terminates in O(n2k log Φ(F)) iterations.
By Theorem 5.7 (ii), Step 1 can be done in O(n3k log Φ(F)) time. As shown

in Section 5.2, Step 0 can be done in O(n3k log Φ(F)) time, and Steps 2, 3, and
4 can be done in O(n2k) time. Hence, we obtain the following theorem.

Finally, we give a proof of Lemma 5.1.
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Proof (Proof of Lemma 5.1). We show the inequality in the case p∗ = −χi only.
Let x ∈ (F ∩ [am, bm])• be the vector chosen in Step 1 of the m-th iteration.
Then,

bm+1(i) − am+1(i) = x(u) − α− − am(i) ≤
(

bm(i) −
⌊

bm(i)−am(i)
nk

⌋)

− 1 − am(i)

<
(

1 − 1
nk

)

(bm(i) − am(i)).
⊓⊔


