
Time Bounds for Iterative Auctions:
A Unified Approach by Discrete Convex Analysis

Kazuo Murota

School of Business Administration, Tokyo Metropolitan University, Tokyo 192-0397,

Japan

Akiyoshi Shioura

Department of Social Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Zaifu Yang

Department of Economics, University of York, York YO10 5DD, UK

Abstract

We investigate an auction model where there are many different goods, each
good has multiple units and bidders have gross substitutes valuations over
the goods. We analyze the number of iterations in iterative auction algo-
rithms for the model based on the theory of discrete convex analysis. By
making use of L♮-convexity of the Lyapunov function we derive exact bounds
on the number of iterations in terms of the ℓ∞-distance between the initial
price vector and the found equilibrium. Our results extend and unify the
price adjustment algorithms for the multi-unit auction model and for the
unit-demand auction model, offering computational complexity results for
these algorithms, and reinforcing the connection between auction theory and
discrete convex analysis.

Keywords: discrete optimization, submodular function, discrete convex
function, Walrasian equilibrium, iterative auction

Email addresses: murota@tmu.ac.jp (Kazuo Murota),
shioura.a.aa@m.titech.ac.jp (Akiyoshi Shioura), zaifu.yang@york.ac.uk (Zaifu
Yang)



1. Introduction

In recent years, there has been a growing use of iterative auctions for sell-
ing items such as spectrum licenses in telecommunication, electrical power,
landing slots at airports, etc. (see [8, 9] for surveys). In such auctions, given
a set of discrete (or indivisible) items the auctioneer aims at finding an effi-
cient allocation of items to bidders as well as market clearing prices of the
items.

In this paper, we consider a model where there are multiple indivisible
goods for sale and each good may have several units; this is more general
than the single-unit model treated extensively in the literature (see, e.g.,
[13, 14, 15, 17, 31]). We are particularly interested in precise time bounds
of iterative auctions. Theoretical bounds on the number of iterations are
interesting in their own right but also important in practice, providing mar-
ket participants with an a priori guarantee for the time required to execute
a planned auction. While computer simulations are often used to evaluate
the practical performance of iterative auctions (see, e.g., [6, 27]), there are
only a few scattered results on theoretical analysis of the time complexity
so far (see, e.g., [3, 28]).

The objective of this paper is to provide a unified method of analysis
for iterative auctions based on the theory of discrete convex analysis. Our
contribution consists of the following two aspects.

In the multi-unit auction model with (strong) gross substitutes valua-
tions, Ausubel [4] proposed several iterative auctions, all of which are based
on minimization of a function called the Lyapunov function. Our first contri-
bution is to reveal a nice combinatorial property of the Lyapunov function—
discrete convexity (L♮-convexity), and analyze the number of iterations re-
quired in iterative auctions by utilizing the theory of discrete convex analysis.
L♮-convexity of the Lyapunov function is shown by using the discrete con-
jugacy theorem in discrete convex analysis and the equivalence between the
(strong) gross substitutes condition and a certain discrete concavity (M♮-
concavity) due to Fujishige and Yang [12] and Murota and Tamura [26] (see
Section 4.1). We give the exact bounds for the ascending and descending
auctions in [4] and their variants in terms of the ℓ∞-distance between the
initial price vector and the equilibrium price vector (see Theorems 4.7, 4.8,
4.10, and 4.11). This implies, in particular, that the trajectory of the price
vector generated by the ascending or descending auction is the “shortest”
path between the initial vector and the equilibrium price vector. This result
also exhibits an appealing feature of the ascending and descending auctions.
Another iterative auction named the two-phase auction, consisting of a sin-
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gle ascending phase and a single descending phase, is also considered in this
paper (see Theorems 4.12 and 4.13 and Remark 4.14).

Our second contribution is concerned with the unit-demand auction
model in which each bidder is interested in getting at most one item. Itera-
tive auctions for this model are discussed extensively in the literature (see,
e.g., [2, 3, 10, 18, 19, 28]). Specifically, Vickrey–English auction by Demange
et al. [10], Vickrey–Dutch auction by Mishra and Parkes [18], and Vickrey–
English–Dutch auction by Andersson and Erlanson [3] are such iterative auc-
tions. These three algorithms are proposed independently of the iterative
auction algorithms for the multi-unit model. We offer a unified treatment
of these iterative auction algorithms by revealing their relationship to the
general iterative auction algorithms for the general model. In particular,
we show that the sequence of price vectors generated by Vickrey–English
auction (resp., Vickrey–Dutch auction) coincides with that generated by an
ascending auction algorithm (resp., a descending auction algorithm) when
applied to unit-demand auctions. This observation, combined with our first
contribution described above, yields immediately the known bounds for the
number of iterations in Vickrey–English auction and Vickrey–Dutch auc-
tion. A new bound for Vickrey–English–Dutch auction is obtained from our
result for the two-phase auction algorithm above.

The organization of this paper is as follows. In Section 2, we explain
auction models and fundamental concepts used in this paper. In Section 3
we review the concept of discrete convexity and some fundamental results in
discrete convex analysis. In Section 4, we analyze the number of iterations
required in iterative auctions in the multi-unit model with gross substitutes
valuations, while iterative auction algorithms for the unit-demand auctions
are discussed in Section 5.

This paper is the full version of our extended abstract [25] that appeared
in the conference proceedings of ISAAC 2013, with a substantial extension
described in Section 5.

2. Fundamental Concepts in Auctions

We explain auction models and fundamental concepts used in this paper.

2.1. Auction Models and Walrasian Equilibrium.

In the auction market, there are n types of items or goods, denoted by
N = {1, 2, . . . , n}, andm bidders, denoted byM = {1, 2, . . . ,m}, wherem ≥
2. We have u(i) units available for each item i ∈ N , where u(i) is a positive
integer. We denote the integer interval as [0, u]Z = {x ∈ Zn | 0 ≤ x ≤ u},
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Figure 1: Relationship among three auction models.

where u = (u(1), u(2), . . . , u(n))⊤. Each vector x ∈ [0, u]Z is called a bundle;
a bundle x = (x(1), x(2), . . . , x(n))⊤ corresponds to a (multi-)set of items,
where x(i) represents the multiplicity of item i ∈ N . Each bidder j ∈ M
has his valuation function fj : [0, u]Z → R; the number fj(x) represents
the value of the bundle x worth to bidder j. The case with u(i) = 1 for
all i ∈ N is referred to as single-unit auction in this paper, while the case
with general u as multi-unit auction. Note that [0,1]Z = {0, 1}n, where
1 = (1, 1, . . . , 1)⊤. A further special case where each bidder is interested in
getting at most one item is called unit-demand auction; see Section 5 for
more detailed description of this auction model. The relationship among
the three auction models is summarized in Figure 1.

In an auction, we want to find an efficient allocation and market clearing
prices. An allocation of items is defined as a set of bundles x1, x2, . . . , xm ∈
[0, u]Z satisfying

∑m
j=1 xj = u. Given a price vector p ∈ Rn

+, each bidder

j ∈ M wants to have a bundle x which maximizes the value fj(x) − p⊤x.
For j ∈ M and p ∈ Rn

+, define

Vj(p) = max{fj(x)− p⊤x | x ∈ [0, u]Z}, (2.1)

Dj(p) = argmax{fj(x)− p⊤x | x ∈ [0, u]Z}. (2.2)

We call the function Vj : Rn
+ → R and the set Dj(p) ⊆ [0, u]Z the indirect

utility function and the demand set, respectively. The auctioneer wants to
find a pair of a price vector p∗ and an allocation x∗1, x

∗
2, . . . , x

∗
m such that

x∗j ∈ Dj(p
∗) for j ∈ M . This pair is called a (Walrasian) equilibrium; p∗

is a (Walrasian) equilibrium price vector (see, e.g., [8, 9]). Thus, in an
equilibrium every bidder gets an optimal bundle for himself and all goods
are sold; i.e., all market participants are in harmony.
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Although the Walrasian equilibrium possesses a variety of desirable prop-
erties, it does not always exist. Hence, some assumption for bidders’ valua-
tion functions is required to guarantee the existence of a Walrasian equilib-
rium.

Remark 2.1. Two different definitions of Walrasian equilibrium can be
found in the literature. The definition in this paper follows the one in [4]. An
alternative definition, in which unsold items may exist, is as follows (cf. [13,
Section 3]): a pair of a price vector p∗ and a set of bundles x̃1, . . . , x̃

∗
m is

called a (Walrasian) equilibrium if it satisfies the following conditions:∑m
j=1 x̃j ≤ u,

x̃j ∈ Dj(p
∗) for all j ∈ M,

p∗(i) = 0 for all i ∈ N with
∑m

j=1 x̃j(i) < u(i).

 (2.3)

The two definitions of equilibrium are essentially equivalent in the sense
that the set of equilibrium price vectors remains the same under the two
definitions, provided that valuation functions fj (j ∈ M) are nondecreasing
(see, e.g., [13, Section 3]). Indeed, it is easy to see that if a pair of a price
vector p∗ and an allocation x∗1, x

∗
2, . . . , x

∗
m is an equilibrium in our sense,

then the pair also satisfies the conditions in (2.3). Conversely, if a pair of
a price vector p∗ and a set of bundles x̃1, . . . , x̃

∗
m satisfies the conditions in

(2.3), the allocation x∗1, x
∗
2, . . . , x

∗
m given by

x∗j = x̃j (j = 1, 2, . . . ,m− 1), x∗m = u−
m−1∑
j=1

x̃j

satisfies x∗j ∈ Dj(p
∗) for j = 1, 2, . . . ,m; note that x∗m ∈ Dm(p∗) follows from

the conditions in (2.3) and the fact that valuation function fm is nondecreas-
ing. Hence, the pair of the price vector p∗ and the allocation x∗1, x

∗
2, . . . , x

∗
m

is an equilibrium in our sense.

2.2. Gross Substitutes Condition and Discrete Concavity.

We say that function fj satisfies the gross substitutes (GS) condition if
it satisfies the following:

(GS) ∀p, q ∈ Rn
+ with p ≤ q, ∀x ∈ Dj(p), ∃y ∈ Dj(q) :

x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i)).

This condition means that when prices of some items increase, the only items
that may drop from the optimal bundle are those with increased prices.
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The GS condition is originally introduced by Kelso and Crawford [15] for
valuation functions defined on 0-1 vectors in the setting of a fairly general
two-sided job matching model. Since then, this condition has been widely
used in various models such as matching, housing, and labor markets (see,
e.g., [4, 5, 7, 8, 9, 13, 14, 16]).

Various characterizations of GS condition are given in the literature of
discrete convex analysis and auction theory [5, 12, 13, 14]. Among others,
Fujishige and Yang [12] revealed the relationship between GS condition and
discrete concavity called M♮-concavity (see Section 3.1 for the definition).
The concept of M♮-concave function is introduced by Murota and Shioura
[23], independently of GS condition, as a class of discrete concave functions
that extends the concept of M-concave function introduced by Murota [20].
The concepts of M♮-concavity/M-concavity play primary roles in the theory
of discrete convex analysis [21].

It is shown by Fujishige and Yang [12] that GS condition and M♮-
concavity are equivalent in the case of single-unit auctions.

Theorem 2.2 (Fujishige and Yang [12]). A valuation function f : {0, 1}n →
R defined on 0-1 vectors satisfies the GS condition if and only if it is an M♮-
concave function.

This result initiated a strong interaction between discrete convex analysis
and auction theory; the results obtained in discrete convex analysis are used
in auction theory ([7, 16], etc.), while auction theory provides discrete convex
analysis with interesting applications (see, e.g., [26]).

It is known that in single-unit auctions, a Walrasian equilibrium does
exist if bidder’s valuation functions satisfy the GS condition. The GS con-
dition, however, is not sufficient for the existence of an equilibrium in multi-
unit auctions. In the last decade, several papers independently tried to
identify conditions for valuation functions to guarantee the existence of an
equilibrium in a multi-unit auction. Murota and Tamura [26] proposed a
stronger version of GS condition by using the relationship with M♮-concavity,
and proved the existence of an equilibrium in a more general setting (see
also [21, Chapter 11]).

In this paper, we use the strong gross substitutes (SGS) condition given
by Milgrom and Strulovici [17] (see also [29, Section 4]). We say that a
valuation function satisfies the SGS condition if the function satisfies the
GS condition when each unit of items is regarded as being distinct. More
precisely, for a valuation function f : [0, u]Z → R, we associate a function
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f̃ : {0, 1}Ñ → R by considering

Ñ = {(i, β) | i ∈ N, 1 ≤ β ≤ u(i)}

and defining f̃(x̃) for x̃ ∈ {0, 1}Ñ by

f̃(x̃) = f(x), where x(i) =

u(i)∑
β=1

x̃(i, β) (i ∈ N). (2.4)

Then, by definition, f satisfies the SGS condition if and only if f̃ satisfies the
GS condition. The SGS condition turns out to be equivalent to M♮-concavity
(see Theorem 4.1 below) and also to the condition given by Murota and
Tamura [26].

Throughout this paper we assume the following conditions for all bidders’
valuation functions fj (j = 1, 2, . . . ,m) defined on [0, u]Z:

(A0) fj is monotone nondecreasing,
(A1) fj satisfies the SGS condition,
(A2) fj takes integer values.

The assumption (A2) can be removed if we only need an ε-approximate
equilibrium price vector, which is defined, for ε > 0, as a vector p such that
∥p− p∗∥∞ < ε for some equilibrium price vector p∗. For such a problem, all
results in this paper can be adapted easily with slight modifications.

2.3. Iterative Auctions.

An auction algorithm called the iterative auction (or Walrasian tâtonnement
process, price adjustment process, dynamic auction, etc.) is studied exten-
sively in the auction literature [8, 9]. An iterative auction finds an equi-
librium price vector by iteratively updating a current price vector p using
information on demand sets Dj(p).

The most natural and popular iterative auction is ascending auction, in
which the current price vector is increased monotonically. Ascending auc-
tion is a natural generalization of the classical English auction for a single
item; in addition, it is natural from the economic point of view, and easy
to understand and implement. For single-unit auctions with GS valuation
functions, an ascending auction of Gul and Stacchetti [14] can find an equi-
librium price vector.

Ausubel [4] featured the Lyapunov function, which is defined by

L(p) =
m∑
j=1

Vj(p) + u⊤p (p ∈ Rn), (2.5)
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where the vector u ∈ Zn
+ represents the numbers of available units for items

in N . Use of the Lyapunov function is motivated by the fact that the set
of excess supply vectors at a price vector p (i.e., the set {u −

∑m
j=1 xj |

xj ∈ Dj(p) (j = 1, 2, . . . ,m)}) coincides with the set of subgradients of the
Lyapunov function at p. The following important properties of the Lyapunov
function are known (see [4, 30]).

Theorem 2.3. Suppose that all bidders’ valuation functions fj (j = 1, 2, . . . ,m)
defined on [0, u]Z satisfy the conditions (A0) and (A1).
(i) A price vector p ∈ Rn is an equilibrium price vector if and only if it is a
minimizer of the Lyapunov function L.
(ii) The minimal equilibrium price vector p∗ and the maximal equilibrium
price vector p∗ are uniquely determined. Moreover, if the valuation func-
tions fj are integer-valued (i.e., satisfy (A2)), then p∗ and p∗ are integral,
i.e., p∗, p∗ ∈ Zn.

The ascending auction algorithm in Ausubel [4], which is a reformulation
of the ascending auction by Gul and Stacchetti [14], finds the minimal inte-
gral minimizer p∗ of the Lyapunov function in a finite number of iterations
by updating the price vector in a greedy manner (see Section 4.2 for details).
Ausubel [4] also proposed a descending auction algorithm, which finds the
maximal integral minimizer p∗ of the Lyapunov function by iteratively de-
creasing the price vector from an initial price vector. While the ascending
and descending auction algorithms have various nice properties (see, e.g.,
[8, 9]), they have a disadvantage that the initial price vector must be a
lower (or upper) bound of the equilibrium price vector p∗ (or p∗). Ausubel
[4] proposed a third iterative auction, named “global Walrasian tâtonnement
algorithm,” which can start with an arbitrary price vector.

3. Preliminaries from Discrete Convex Analysis

We review the concepts of M♮-concave and L♮-convex functions and
present some useful properties. See [21] for more account of these concepts.

3.1. Definitions and Conjugacy.

A valuation function fj : [0, u]Z → R is said to be M♮-concave (read
“M-natural-concave”) if it satisfies the following:

(M♮-EXC) ∀x, y ∈ [0, u]Z, ∀i ∈ supp+(x− y), ∃k ∈ supp−(x− y) ∪ {0} :

fj(x) + fj(y) ≤ fj(x− χi + χk) + fj(y + χi − χk).
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Here, we denote

supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0}

for a vector x ∈ Rn, χi ∈ {0, 1}n is the characteristic vector of i ∈ N (i.e.,
the i-th unit vector), and χ0 = 0 = (0, 0, . . . , 0)⊤.

Let g : Rn → R ∪ {+∞} be a polyhedral convex function, i.e., a convex
function such that the epigraph {(p, α) | p ∈ Rn, α ∈ R, g(p) ≤ α} is a
polyhedron. We denote

dom g = {p ∈ Rn | g(p) < +∞},
argmin g = {p ∈ Rn | g(p) ≤ g(q) (∀q ∈ Rn)}.

A polyhedral convex function g is said to be polyhedral L♮-convex if for every
p, q ∈ dom g and every nonnegative λ ∈ R+, it holds that

g(p) + g(q) ≥ g((p+ λ1) ∧ q) + g(p ∨ (q − λ1)), (3.1)

where 1 = (1, 1, . . . , 1)⊤, and for p, q ∈ Rn, p∧q and p∨q denote, respectively,
the vectors obtained by component-wise minimum and maximum of p and q.
The property (3.1) is called translation submodularity. By (3.1) with λ = 0,
an L♮-convex function g is a submodular function on Rn, i.e.,

g(p) + g(q) ≥ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g).

A polyhedral L♮-convex function g : Rn → R ∪ {+∞} is called domain-
integral [11, p. 317] if argmin{g(p) − p⊤x | p ∈ dom g} is an integral poly-
hedron for every x ∈ Rn with argmin{g(p) − p⊤x | p ∈ dom g} ̸= ∅. It is
known that domain-integral polyhedral L♮-convex functions are closed under
addition.

Proposition 3.1 ([21]). The sum of (two or more) domain-integral poly-
hedral L♮-convex functions is also a domain-integral polyhedral L♮-convex
function.

We note that the minimization of a domain-integral polyhedral L♮-convex
function g : Rn → R ∪ {+∞} can be reduced to the minimization of g on
the integer lattice points Zn. It is easy to see that the restriction of g on
the integer lattice points Zn satisfies the inequality (3.1) for every p, q ∈ Zn

and every λ ∈ Z+. In general, a function g : Zn → R ∪ {+∞} is called an
L♮-convex function if it satisfies the inequality (3.1) for every p, q ∈ Zn and
every λ ∈ Z+.

The following conjugacy relation holds between M♮-concavity and L♮-
convexity.
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Proposition 3.2 ([21]). Let f : [0, u]Z → R be a function.
(i) f is an M♮-concave function if and only if the function g : Rn → R
defined by

g(p) = max{f(x)− p⊤x | x ∈ [0, u]Z} (p ∈ Rn) (3.2)

is a polyhedral L♮-convex function.
(ii) f is an integer-valued M♮-concave function if and only if g is a domain-
integral polyhedral L♮-convex function such that g(p) is an integer for every
p ∈ Zn.

3.2. Minimization Algorithms.

We consider minimization of an L♮-convex function g : Zn → R ∪ {+∞}
defined on the integer lattice points. We denote

dom Zg = {p ∈ Zn | g(p) < +∞},
argminZg = {p ∈ Zn | g(p) ≤ g(q) (∀q ∈ Zn)}.

To the end of this section we assume that argminZ g is nonempty and
bounded. It is known that under such assumptions, argminZ g has the
uniquely determined minimal and maximal elements, which we denote by
q∗ and q∗, i.e.,

q∗ = the (uniquely determined) minimal minimizer of g,

q∗ = the (uniquely determined) maximal minimizer of g.

This minimization problem can be solved by certain greedy (or steepest
descent) algorithms [22]. We first consider a greedy algorithm such that
the vector p is always increased. For X ⊆ N , we denote by χX ∈ {0, 1}n
the characteristic vector of X, i.e., χX(i) = 1 if i ∈ X and χX(i) = 0 if
i ∈ N \X.

Algorithm GreedyUp
Step 0: Set p := p◦, where p◦ ∈ domZ g satisfies p◦ ≤ q for some

minimizer q of g.
Step 1: Find a minimizer X ⊆ N of g(p+ χX).
Step 2: If X = ∅, then output p and stop.
Step 3: Set p := p+ χX and go to Step 1.

A tight bound of the number of iterations of GreedyUp is known.
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Proposition 3.3 ([24, Theorem 1.3]). The algorithm GreedyUp termi-
nates by outputting a minimizer q∗ of g, and the number of updates of p is
exactly equal to ∥q∗ − p◦∥∞.

Proof. Theorem 1.3 in [24] implies that GreedyUp outputs a minimizer of
g exactly in ∥q∗−p◦∥∞+1 iterations. Since the last iteration in GreedyUp
is used to check the optimality of p and does not update p itself, the number
of updates of p is equal to ∥q∗ − p◦∥∞.

We note that the vector q∗ found by GreedyUp satisfies

∥q∗ − p◦∥∞ = min{∥p∗ − p◦∥∞ | p∗ ∈ argminZg, p∗ ≥ p◦}.

Hence, Proposition 3.3 shows that the trajectory of the vector p generated
by GreedyUp is the “shortest” path between the initial vector p◦ and the
found minimizer q∗ of g.

To find the minimal minimizer q∗ of g, a variant of GreedyUp called
GreedyUpMinimal is considered, where Step 0 and Step 1 in GreedyUp
are replaced with the following:

Step 0: Set p := p◦, where p◦ ∈ domZ g satisfies p◦ ≤ q∗.
Step 1: Find the minimal minimizer X ⊆ N of g(p+ χX).

That is, a minimal X is found in Step 1, which is uniquely determined by
the L♮-convexity of g. GreedyUpMinimal outputs the minimal minimizer
q∗ of g, as shown in the following proposition. In addition, a tight bound of
the number of iterations can be given. Proofs of Propositions 3.4, 3.5, 3.6,
and 3.7 are given at the end of this section.

Proposition 3.4. The algorithm GreedyUpMinimal terminates by out-
putting the minimal minimizer q∗ of g, and the number of updates of p is
exactly equal to ∥q∗ − p◦∥∞.

We consider another variant ofGreedyUp calledGreedyUpMaximal,
where Step 0 and Step 1 in GreedyUp are replaced with the following:

Step 0: Set p := p◦, where p◦ ∈ domZ g satisfies p◦ ≤ q∗.
Step 1: Find the maximal minimizer X ⊆ N of g(p+ χX).

That is, a maximal X is found in Step 1 instead of a minimal X, where a
maximal minimizer X ⊆ N of g(p+ χX) is uniquely determined by the L♮-
convexity of g. This modification makes it possible to output the maximal
minimizer of g instead of the minimal one.
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Proposition 3.5. The algorithm GreedyUpMaximal terminates by out-
putting the maximal minimizer q∗ of g, and the number of updates of p is
exactly equal to ∥q∗ − p◦∥∞.

Symmetrically, we can consider algorithmsGreedyDownMaximal and
GreedyDownMinimal, where the vector p is always decreased. Due to the
L♮-convexity of g, minimal and maximal minimizers X ⊆ N of g(p−χX) in
Step 1 are uniquely determined.

Algorithm GreedyDownMaximal
Step 0: Set p := p◦, where p◦ ∈ domZ g satisfies p◦ ≥ q∗.
Step 1: Find the minimal minimizer X ⊆ N of g(p− χX).
Step 2: If X = ∅, then output p and stop.
Step 3: Set p := p− χX and go to Step 1.

Proposition 3.6. The algorithm GreedyDownMaximal terminates by
outputting the maximal minimizer q∗ of g, and the number of updates of p
is exactly equal to ∥q∗ − p◦∥∞.

The algorithmGreedyDownMinimal is the one obtained fromGreedy-
DownMaximal by replacing Step 0 and Step 1 with the following:

Step 0: Set p := p◦, where p◦ ∈ domZ g satisfies p◦ ≥ q∗.
Step 1: Find the maximal minimizer X ⊆ N of g(p− χX).

Proposition 3.7. The algorithm GreedyDownMinimal terminates by
outputting the minimal minimizer q∗ of g, and the number of updates of p
is exactly equal to ∥q∗ − p◦∥∞.

Proof of Propositions 3.4, 3.5, 3.6, and 3.7. We first prove Proposition 3.4.
The behavior of GreedyUpMinimal applied to g is the same as that of
GreedyUp applied to the L♮-convex function gε(p) = g(p)+ε

∑n
i=1 p(i) with

a sufficiently small positive ε. Indeed, we have the following equivalences:

X ⊆ N is a minimizer of gε(p+ χX)
⇐⇒ X is the minimal minimizer of g(p+ χX),

p ∈ Zn
+ is a minimizer of gε
⇐⇒ p is the minimal minimizer of g.

This fact, together with Proposition 3.3, implies the claim of Proposition
3.4.

The proof Proposition 3.5 is quite similar to that for Proposition 3.4,
where the function gε(p) = g(p)− ε

∑n
i=1 p(i) is used instead of gε.

Finally, Propositions 3.6 and 3.7 follow immediately from Propositions
3.4 and 3.5, respectively, applied to the L♮-convex function ĝ(p) = g(−p).
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4. Analysis of Iterative Auctions

In this section, we analyze the number of iterations of several iterative
auction algorithms for finding an integral equilibrium price vector.

4.1. L♮-convexity of Lyapunov Function

We prove L♮-convexity of the indirect utility functions and the Lyapunov
function. This observation plays a key role in the analysis of iterative auc-
tions. We first note the equivalence between the SGS condition and M♮-
concavity.

Theorem 4.1. A function f : [0, u]Z → Z satisfies the SGS condition if and
only if it is M♮-concave.

This theorem can be shown as follows. By definition, the SGS condition
for a function f : [0, u]Z → Z is equivalent to the GS condition for f̃ :

{0, 1}Ñ → Z given by (2.4). We can also show the following.

Proposition 4.2. A function f : [0, u]Z → Z is M♮-concave if and only if

the function f̃ : {0, 1}Ñ → Z defined by (2.4) is M♮-concave.

The proof is rather straightforward and therefore omitted. By Theorem 2.2,
the function f̃ : {0, 1}Ñ → Z satisfies the GS condition if and only if it is an
M♮-concave function. A combination of this fact with Proposition 4.2 yields
Theorem 4.1.

We then prove that the SGS condition of the valuation function is equiv-
alent to L♮-convexity of the indirect utility function.

Theorem 4.3. Let Vj : Rn → R be the indirect utility function in (2.1)
associated with the valuation function fj.
(i) fj satisfies the condition (A1) (i.e., fj satisfies the SGS condition) if and
only if Vj is a polyhedral L♮-convex function.
(ii) fj satisfies the conditions (A1) and (A2) if and only if Vj is a domain-
integral polyhedral L♮-convex function such that Vj(p) is an integer for every
p ∈ Zn.

Proof. By Theorem 4.1, the SGS condition and M♮-concavity is equivalent
for fj . This fact, combined with Proposition 3.2, implies the claims of the
theorem.

Corollary 4.4. Suppose that all bidders’ valuation functions fj (j = 1, 2, . . . ,m)
satisfy the conditions (A1) and (A2). Then, the Lyapunov function L : Rn →
R in (2.5) is a domain-integral polyhedral L♮-convex function such that L(p)
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is an integer for every p ∈ Zn. In particular, the minimal and maximal
minimizers of the Lyapunov function L are integral vectors.

Proof. The claim follows from Theorem 4.3 and Proposition 3.1.

On the basis of Corollary 4.4, we regard the Lyapunov function L, orig-
inally defined on Rn, as a function on Zn. That is, the Lyapunov function
L : Zn → R is an L♮-convex function.

We denote by p∗ (resp., p∗) the (uniquely determined) minimal (resp.,
maximal) integral equilibrium price vector. In the following proposition we
give an interval in which p∗ and p∗ are guaranteed to exist. Define a ∈ Zn

+

by

a(i) = max
j∈M

{fj(χi)− fj(0)} (i ∈ N). (4.1)

Proposition 4.5. Suppose that all bidders’ valuation functions fj (j =
1, 2, . . . ,m) defined on [0, u]Z satisfy the conditions (A0) and (A1). Then,
every equilibrium price vector p ∈ Rn satisfies 0 ≤ p ≤ a.

The proof is outlined in Section 4.4.1.

4.2. Ascending and Descending Auction Algorithms

We first consider the ascending auction algorithm of Ausubel [4], which
can be described as follows:

Algorithm AscendMinimal
Step 0: Set p := p◦, where p◦ ∈ Zn satisfies p◦ ≤ p∗ (e.g., p◦ = 0).
Step 1: Find the minimal minimizer X ⊆ N of L(p+ χX).
Step 2: If X = ∅, then output p and stop.
Step 3: Set p := p+ χX and go to Step 1.

Note that the algorithm AscendMinimal can be interpreted in auction
terms as follows (see [4, Appendix B] for details about the implementation
of Steps 2 and 3):

Step 0: The auctioneer sets p := p◦, where p◦ ∈ Zn satisfies p◦ ≤ p∗.
Step 1: The auctioneer asks the bidders to report their demand sets Dj(p)

(j ∈ M), and finds the minimal minimizer X ⊆ N of L(p+ χX).
Step 2: The auctioneer checks if X = ∅; if X = ∅ holds, then the auctioneer

reports p as the final price vector and stop.
Step 3: The auctioneer sets p := p+ χX and returns to Step 1.
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Theorem 4.6 ([4]). Starting from an integral vector p◦ with p◦ ≤ p∗, the
algorithm AscendMinimal outputs the minimal integral equilibrium price
vector p∗ in a finite number of iterations.

The exact bound for the number of iterations in AscendMinimal is
given in terms of the ℓ∞-distance between the initial price vector and the
minimal equilibrium price vector p∗.

Theorem 4.7. Suppose that the algorithm AscendMinimal starts from an
integral vector p◦ with p◦ ≤ p∗. Then, the number of updates of the price
vector is exactly equal to ∥p∗ − p◦∥∞.

Proof. The Lyapunov function L is an L♮-convex function by Corollary 4.4,
and the algorithm AscendMinimal is nothing but the application of the
algorithm GreedyUpMinimal to L. Hence, Proposition 3.4 implies that
AscendMinimal outputs the minimal integral minimizer q∗of L, which is
the minimal integral equilibrium price vector p∗ by Theorem 2.3 (i). More-
over, the number of updates of the price vector in AscendMinimal is equal
to ∥q∗ − p◦∥∞ = ∥p∗ − p◦∥∞.

Note that any algorithm that increases the price vector by a 0-1 vector in
each iteration requires updates of the price vector at least ∥p∗−p◦∥∞ times.
Hence, the algorithm AscendMinimal is the fastest among all iterative
auction algorithms of this type, and the trajectory of the price vector is a
“shortest” path from the initial vector p◦ to the minimal equilibrium p∗.

In addition, since ∥p∗−p◦∥∞ ≤ maxi∈N{a(i)−p◦(i)} by Proposition 4.5,
we can guarantee that the number of updates of p is at most maxi∈N{a(i)−
p◦(i)}; note that this bound can be computed in advance before executing
the algorithm.

To find the maximal equilibrium price vector p∗ instead of the mini-
mal one, we consider another variant of the ascending auction algorithm
called AscendMaximal, where Step 0 and Step 1 in AscendMinimal are
replaced with the following:

Step 0: Set p := p◦, where p◦ ∈ Zn satisfies p◦ ≤ p∗ (e.g., p◦ = 0).
Step 1: Find the maximal minimizer X ⊆ N of L(p+ χX).

That is, a maximal X is found in Step 1 instead of a minimal X. This mod-
ification makes it possible to output the maximal equilibrium price vector
p∗.
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Theorem 4.8. If the initial vector p◦ in the algorithm AscendMaximal
satisfies p◦ ≤ p∗, the algorithm outputs p∗ and the number of updates of the
price vector is exactly equal to ∥p∗ − p◦∥∞.

Similarly to AscendMinimal and AscendMaximal, we can consider
two variants of the descending auction algorithm called DescendMaximal
and DescendMinimal, where the price vector is decreased by a 0-1 vector.
Note that the algorithm DescendMaximal is the same as the descending
auction algorithm in Ausubel [4].

Algorithm DescendMaximal
Step 0: Set p := p◦, where p◦ ∈ Zn satisfies p◦ ≥ p∗ (e.g., p◦ = a with a ∈ Zn

given by (4.1)).
Step 1: Find the minimal minimizer X ⊆ N of L(p− χX).
Step 2: If X = ∅, then output p and stop.
Step 3: Set p := p− χX and go to Step 1.

Theorem 4.9 ([4]). Starting from an integral vector p◦ with p◦ ≥ p∗, the
algorithm DescendMaximal outputs p∗ in a finite number of iterations.

The algorithm DescendMinimal is obtained from DescendMaximal
by replacing Step 0 and Step 1 with the following:

Step 0: Set p := p◦, where p◦ ∈ Zn satisfies p◦ ≥ p∗ (e.g., p◦ = a
with a ∈ Zn given by (4.1)).

Step 1: Find the maximal minimizer X ⊆ N of L(p− χX).

The algorithms DescendMaximal and DescendMinimal are noth-
ing but the application of the algorithms GreedyDownMaximal and
GreedyDownMinimal to the Lyapunov function. Hence, the next the-
orems follow from Propositions 3.6 and 3.7.

Theorem 4.10. If the initial vector p◦ in the algorithm DescendMaximal
satisfies p◦ ≥ p∗, the algorithm outputs p∗ and the number of updates of the
price vector is exactly equal to ∥p∗ − p◦∥∞.

Theorem 4.11. If the initial vector p◦ in the algorithm DescendMinimal
satisfies p◦ ≥ p∗, the algorithm outputs p∗ and the number of updates of the
price vector is exactly equal to ∥p∗ − p◦∥∞.

16



4.3. Two-Phase Auction Algorithms

An advantage of ascending and descending auction algorithms is that the
price vector is updated monotonically, which is an important property from
the viewpoint of auctions. They, however, have a drawback that the initial
price vector should be a lower or upper bound for the integral equilibrium
price vector p∗ (or p∗). In contrast, the following algorithms, which we call
the two-phase auction algorithms, can start with any initial price vector and
find an equilibrium. Therefore, the number of iterations can be small if we
can choose an initial vector that is close to an equilibrium.

As we see below, a two-phase auction algorithm is an application of an
ascending auction algorithm with an arbitrary initial vector, followed by a
descending auction algorithm. We first present a variant of the two-phase
auction algorithm obtained from the combination of AscendMinimal and
DescendMinimal, which always outputs the minimal equilibrium price
vector p∗

Algorithm TwoPhaseMinMin
Step 0: Set p := p◦, where p◦ ∈ Zn is any vector (to be chosen appropriately

in practice). Go to Ascending Phase.
Ascending Phase:

Step A1: Find the minimal minimizer X ⊆ N of L(p+ χX).
Step A2: If X = ∅, then go to Descending Phase.
Step A3: Set p := p+ χX and go to Step A1.

Descending Phase:
Step D1: Find the maximal minimizer X ⊆ N of L(p− χX).
Step D2: If X = ∅, then output p and stop.
Step D3: Set p := p− χX and go to Step D1.

To analyze the number of iterations required by TwoPhaseMinMin,
we define

η(p, q) = ∥p− q∥+∞ + ∥p− q∥−∞ (p, q ∈ Zn), (4.2)

where

∥p−q∥+∞ = max
i∈N

max(0, p(i)−q(i)), ∥p−q∥−∞ = max
i∈N

max(0,−p(i)+q(i)).

The proof of the next theorem is given in Section 4.4.2.

Theorem 4.12. Starting from any integral vector p◦, the algorithm TwoPhaseM-
inMin terminates by outputting the minimal integral equilibrium price vector
p∗, and the number of updates of the price vector in the ascending phase is
at most η(p◦, p∗) and that in the descending phase is at most 2η(p◦, p∗).
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We can consider another variant of the two-phase auction algorithm,
to be called TwoPhaseMinMax, which is the combination of Ascend-
Minimal and DescendMaximal. That is, TwoPhaseMinMax is the
algorithm obtained by replacing Step D1 in TwoPhaseMinMin with the
following:

Step D1: Find the minimal minimizer X ⊆ N of L(p− χX).

A version of the algorithm TwoPhaseMinMax specialized to valu-
ation functions on {0, 1}n coincides with the one in Sun and Yang [30].
TwoPhaseMinMax is also similar to the “global Walrasian tâtonnement
algorithm” in Ausubel [4], which repeats ascending and descending phases
until some equilibrium p∗ is found, where p∗ is not necessarily equal to p∗

or p∗. Our analysis shows that the global Walrasian tâtonnement algo-
rithm terminates after only one ascending phase and only one descending
phase; see also [30]. In other words, the behavior of the global Walrasian
tâtonnement algorithm coincides with that of TwoPhaseMinMax.

Theorem 4.13. Starting from any integral vector p◦, the algorithm TwoPhaseM-
inMax terminates by outputting some integral equilibrium price vector p∗,
and the number of updates of the price vector in the ascending phase is at
most η(p◦, p∗) and that in the descending phase is at most 2η(p◦, p∗).

The proof of this theorem is given in Section 4.4.3.

Remark 4.14. We may also consider other two-phase auction algorithms
TwoPhaseMaxMin and TwoPhaseMaxMax. The former consists of
AscendMaximal and DescendMinimal, and the latter consists of As-
cendMaximal and DescendMaximal. It can be shown that TwoPhase-
MaxMin (resp., TwoPhaseMaxMax) finds the minimal integral equilib-
rium price vector p∗ (resp., the maximal integral equilibrium price vector
p∗); the proof is similar to that for Theorem 4.12 and omitted. □
Remark 4.15. We point out that the iterative auction algorithms consid-
ered in this section use linear and anonymous pricing rule, meaning that the
price of any bundle x of goods is equal to p⊤x and is the same for all bidders.
On the other hand, so-called combinatorial auction algorithms use nonlinear
and discriminatory pricing rule, i.e., the price p(x, i) of a bundle x of goods
depends on x and bidder i and is nonlinear. It is shown that various iterative
auction algorithms using the latter pricing rule can be used to find (possibly
nonlinear and discriminatory) equilibrium prices even if valuation functions
are more general than those with SGS condition (see, e.g., [9, Chapter 2]).
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Such iterative auction algorithms, however, are difficult to use in practice
since we need to deal with exponential number of prices. □

4.4. Proofs

4.4.1. Proof of Proposition 4.5.

Since all bidders’ valuation functions fj (j = 1, 2, . . . ,m) satisfy the
condition (A1), they are M♮-concave functions by Theorem 4.1. For the proof
of Proposition 4.5, we use the following property of M♮-concave functions.

Lemma 4.16. Let f : [0, u]Z → R be an M♮-concave function. For x, y ∈
[0, u]Z with x ≤ y and i ∈ N with y(i) < u(i), it holds that

f(x+ χi)− f(x) ≥ f(y + χi)− f(y).

Proof. For y + χi, x, and i ∈ supp+((y + χi)− x), (M♮-EXC) implies that

f(y + χi) + f(x) ≤ f(y) + f(x+ χi)

since supp−((y + χi)− x) = ∅. Hence, the claim of the lemma follows.

Let p∗ ∈ Rn be an equilibrium price vector. Let x∗1, x
∗
2, . . . , x

∗
m be an

allocation such that x∗1 + x∗2 + · · ·+ x∗m = u and x∗j ∈ Dj(p
∗) for all j ∈ M .

We first show that p∗(i) ≥ 0 for every i ∈ N. Since x∗1(i) + x∗2(i) + · · ·+
x∗m(i) = u(i) and x∗j′(i) ≤ u(i) for all j′ ∈ M , there exists some j ∈ M such
that x∗j (i) < u(i), which, together with x∗j ∈ Dj(p

∗), implies that

fj(x
∗
j )− (p∗)⊤x∗j ≥ fj(x

∗
j + χi)− (p∗)⊤(x∗j + χi),

where x∗j + χi ∈ [0, u]Z. This inequality can be rewritten as

p∗(i) ≥ fj(x
∗
j + χi)− fj(x

∗
j ) ≥ 0,

where the last inequality is by the monotonicity assumption (A0) for fj .
We then show that p∗(i) ≤ a(i) for every i ∈ N . Since x∗1(i) + x∗2(i) +

· · ·+x∗m(i) = u(i) > 0 and x∗j′(i) ≥ 0 for all j′ ∈ M , there exists some j ∈ M
such that x∗j (i) > 0, which, together with x∗j ∈ Dj(p

∗), implies that

fj(x
∗
j )− (p∗)⊤x∗j ≥ fj(x

∗
j − χi)− (p∗)⊤(x∗j − χi),

where x∗j − χi ∈ [0, u]Z. This inequality can be rewritten as

p∗(i) ≤ fj(x
∗
j )− fj(x

∗
j − χi) ≤ fj(χi)− fj(0) ≤ a(i),

where the second inequality is by Lemma 4.16 and the third by the definition
(4.1) of a(i).
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4.4.2. Proof of Theorem 4.12 for Algorithm TwoPhaseMinMin.

The key of the proof is the following property of L♮-convex functions.
Recall that the Lyapunov function is regarded as a function defined on Zn.

Lemma 4.17 ([21, Theorem 7.7]). Let g : Zn → R be an L♮-convex function.
For every integral p, q ∈ Zn with supp+(p− q) ̸= ∅, it holds that

g(p) + g(q) ≥ g(p− χX) + g(q + χX),

where X = argmaxi∈N{p(i)− q(i)}.

We show several lemmas below, from which Theorem 4.12 follows. Let
p̂ be the price vector at the end of the ascending phase and p̌ be the out-
put of the algorithm. Recall that p∗ denotes the (unique) minimal integral
equilibrium price vector, which is also the (unique) minimal minimizer of
the Lyapunov function L by Theorem 2.3.

Lemma 4.18. The vector p̂ is the minimal vector in the set argmin{L(p) |
p ∈ Zn, p ≥ p◦} and satisfies p̂ ≥ p∗. In addition, the number of updates of
the price vector in the ascending phase is exactly equal to ∥p̂− p◦∥∞.

Proof. The behavior of the ascending phase is the same as that of the algo-
rithm AscendMinimal applied to the function L̂ : Zn → R∪{+∞} defined
as

L̂(p) =

{
L(p) (if p ≥ p◦),
+∞ (otherwise),

which is also an L♮-convex function. Theorem 4.7 implies that in the ascend-
ing phase the number of updates of the price vector p is equal to ∥p̂− p◦∥∞,
and p̂ is the minimal minimizer of the function L̂, i.e., p̂ is the minimal
vector in argmin{L(p) | p ∈ Zn, p ≥ p◦}.

We now prove p̂ ≥ p∗. Assume, to the contrary, that p̂ ̸≥ p∗. Then, we
have supp+(p∗ − p̂) ̸= ∅, and therefore Lemma 4.17 implies that

L(p∗) + L(p̂) ≥ L(p∗ − χX) + L(p̂+ χX), (4.3)

where X = argmaxi∈N{p∗(i) − p̂(i)}. Since p̂ + χX ≥ p̂ ≥ p◦ and p̂ ∈
argmin{L(p) | p ∈ Zn, p ≥ p◦}, we have L(p̂ + χX) ≥ L(p̂), which, to-
gether with (4.3), implies L(p∗ − χX) ≤ L(p∗), i.e., p∗ − χX ∈ argminZ L, a
contradiction to the fact that p∗ is a minimal minimizer of L.

Lemma 4.19. ∥p̂− p◦∥∞ ≤ η(p◦, p∗).
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Proof. If p∗ ≥ p◦, then p∗ = p̂ by Lemma 4.18. Since ∥p∗ − p◦∥∞ = ∥p∗ −
p◦∥+∞ and ∥p∗ − p◦∥−∞ = 0, it holds that

∥p̂− p◦∥∞ = ∥p∗ − p◦∥∞ = ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞ = η(p◦, p∗).

We then assume that supp+(p◦−p∗) ̸= ∅. This implies supp+(p̂−p∗) ̸= ∅.
Let X = argmaxi∈N{p̂(i)− p∗(i)}.

Claim: mini∈X{p̂(i)− p◦(i)} = 0.
[Proof of Claim] By Lemma 4.17, it holds that

L(p̂) + L(p∗) ≥ L(p̂− χX) + L(p∗ + χX). (4.4)

Since p∗ is a minimizer of L, we have L(p∗ +χX) ≥ L(p∗), which, combined
with (4.4), implies L(p̂ − χX) ≤ L(p̂). From this inequality follows that
p̂ − χX ̸≥ p◦ since p̂ is the minimal vector in the set argmin{L(p) | p ∈
Zn, p ≥ p◦} by Lemma 4.18. This concludes the proof since p̂ − χX ̸≥ p◦

holds if and only if mini∈X{p̂(i)− p◦(i)} = 0. [End of Proof of Claim]

Let t ∈ X be an element with p̂(t) = p◦(t). Then, it holds that

p◦(t)− p∗(t) = p̂(t)− p∗(t)

= max
i∈N

{p̂(i)− p∗(i)}

≥ max
i∈N

{p◦(i)− p∗(i)}

≥ p◦(t)− p∗(t).

Hence, all the inequalities in this formula hold with equality. In particular,
we have

max
i∈N

{p̂(i)− p∗(i)} = max
i∈N

{p◦(i)− p∗(i)} = ∥p∗ − p◦∥−∞,

where the last equality is by supp+(p◦−p∗) ̸= ∅. From this equation follows
that for every k ∈ N , we have

p̂(k)− p◦(k) = [p∗(k)− p◦(k)] + [p̂(k)− p∗(k)]

≤ ∥p∗ − p◦∥+∞ +max
i∈N

{p̂(i)− p∗(i)}

= ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞ = η(p◦, p∗).

Hence, ∥p̂− p◦∥∞ ≤ η(p◦, p∗) holds.
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Lemma 4.20. We have p̌ = p∗. In addition, the number of updates of the
price vector in the descending phase is at most 2η(p◦, p∗).

Proof. Since p̂ ≥ p∗ holds by Lemma 4.18, the behavior of the descending
phase is the same as that of the algorithm DescendMinimal applied to
function L with initial vector p̂. Hence, Theorem 4.11 implies that p̌ = p∗

and the number of updates of the price vector p in the descending phase is
equal to ∥p∗ − p̂∥∞. We have

∥p∗ − p̂∥∞ ≤ ∥p∗ − p◦∥∞ + ∥p◦ − p̂∥∞
≤ η(p◦, p∗) + η(p◦, p∗)

= 2η(p◦, p∗),

where the second inequality is by (4.2) and Lemma 4.19.

Theorem 4.12 follows from Lemmas 4.18, 4.19, and 4.20 shown above.

4.4.3. Proof of Theorem 4.13 for Algorithm TwoPhaseMinMax.

Theorem 4.13 follows from Lemma 4.18 and Lemmas 4.21 and 4.22 below.
Recall that p∗ here denotes the output of the algorithm TwoPhaseMin-
Max.

Lemma 4.21. The vector p∗ is a minimizer of L and an integral equilibrium
price vector. In addition, the number of updates of the price vector in the
descending phase is at most η(p◦, p∗) + ∥p◦ − p̂∥∞.

Proof. The behavior of the descending phase is the same as that of the
algorithm DescendMaximal applied to the function Ľ : Zn → R ∪ {+∞}
defined as

Ľ(p) =

{
L(p) (if p ≤ p̂),
+∞ (otherwise),

which is also an L♮-convex function. Theorem 4.10 implies that in the de-
scending phase the number of updates of the price vector p is equal to
∥p∗− p̂∥∞, and p∗ is the maximal minimizer of the function Ľ, i.e., p∗ is the
maximal vector in argmin{L(p) | p ∈ Zn, p ≤ p̂}. Since p∗ ≤ p̂ holds by
Lemma 4.18, we have

L(p∗) = min{L(p) | p ∈ Zn, p ≤ p̂} = L(p∗),

i.e., p∗ is a minimizer of L. By Theorem 2.3 (i), p∗ is an equilibrium price
vector.
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We have

∥p∗ − p̂∥∞ ≤ ∥p∗ − p◦∥∞ + ∥p◦ − p̂∥∞ ≤ η(p◦, p∗) + ∥p◦ − p̂∥∞,

where the second inequality is by (4.2).

Lemma 4.22. ∥p̂− p◦∥∞ ≤ η(p◦, p∗).

Proof. If p∗ = p̂, we have ∥p∗ − p◦∥∞ = ∥p∗ − p◦∥+∞ and ∥p∗ − p◦∥−∞ = 0,
and therefore,

∥p̂− p◦∥∞ = ∥p∗ − p◦∥∞ = ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞ = η(p◦, p∗).

If p∗ ̸= p̂, we have supp+(p̂− p∗) ̸= ∅ since p∗ ≤ p̂. The rest of the proof is
the same as that for Lemma 4.19, where p∗ should be replaced with p∗.

5. Connection to Unit-Demand Auction

The unit-demand auction model, where each bidder is interested in get-
ting at most one item, is discussed extensively in the literature (see, e.g.,
[2, 3, 10, 18, 19, 28]). The model is known to be a special case of the general
model with gross substitutes valuations considered in the previous sections
(see Figure 1). The objective of this section is to offer a unified treatment by
showing that the general algorithms AscendMinimal, DescendMinimal,
and TwoPhaseMinMin, when applied to the unit-demand auction model,
coincide with the existing fundamental iterative auction algorithms for the
unit-demand auction model.

5.1. Unit-Demand Auction Model and Relationship with General Model

We explain the unit-demand auction model considered in this section,
and show the relationship with the general auction model discussed in the
previous sections.

The unit-demand auction model is a special case of the single-unit auc-
tion model, where each bidder is interested in getting at most one item, i.e.,
each bidder is a unit-demand bidder. This means that even if a bidder can
get multiple items, the bidder is interested in only one item.

As in the previous sections, we denote by N = {1, 2, . . . , n} the set of
items and by M = {1, 2, . . . ,m} the set of bidders. We assume, without loss
of generality, that each type of item is available in only one unit. For each
item i and each bidder j, we denote by vj(i) ∈ Z+ the valuation of item i
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by bidder j. We define a valuation function fj : {0, 1}n → Z+ of bidder j
by

fj(x) =

{
max{vj(i) | i ∈ supp+(x)} (if supp+(x) ̸= ∅),
0 (if supp+(x) = ∅) (x ∈ {0, 1}n).

(5.1)
Through the one-to-one correspondence between 0-1 vectors and subsets of
N , we identify the valuation function fj in (5.1) defined on 0-1 vectors with
the following set function defined on subsets of N :

fj(X) =

{
max{vj(i) | i ∈ X} (if X ̸= ∅),
0 (if X = ∅). (5.2)

A valuation function of this form is often called a unit-demand valuation
(see, e.g., [9, Section 9.2.2] and [8, Definition 11.17]). It is easy to see that
the unit-demand valuation function fj in (5.1) satisfies the assumptions (A0)
(i.e., fj is monotone nondecreasing) and (A2) (i.e., fj takes integer values).
In addition, it is known that a unit-demand valuation is a typical example
of gross substitutes valuation, i.e., fj satisfies the assumption (A1).

Theorem 5.1 ([13]). Valuation function fj : {0, 1}n → R given by (5.1)
satisfies the GS condition (and also the SGS condition).

Hence, the unit-demand auction model is a special case of the general model
with gross substitutes valuations discussed in the previous sections, and all
of the results there can be applied to the unit-demand auction model. To be
consistent with (5.2), we rewrite the definition of the demand set Dj(p) in
(2.2) associated with a valuation function fj in terms of set functions, i.e.,

Dj(p) = {X ⊆ N | fj(X)− p(X) ≥ fj(Y )− p(Y ) (∀Y ⊆ N)},

where p(Y ) =
∑

i∈Y p(i) for Y ⊆ N .
Let N0 = N ∪{0}, where 0 denotes an artificial item which has no value

(i.e., vj(0) = 0 for j ∈ M) and is available in infinite number of units. For

each bidder j and a price vector p ∈ Rn
+, we define a set D̃j(p) by

D̃j(p) = argmax{vj(i)− p(i) | i ∈ N0}
= {i ∈ N0 | vj(i)− p(i) ≥ vj(i

′)− p(i′) (∀i′ ∈ N0)},

where we put p(0) = 0 for convenience. An assignment is a function π :
M → N0, and an assignment π is said to be feasible if each item in N
appears at most once in {π(j) | j ∈ M} (the artificial item 0 may appear
more than once).
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A price vector p∗ ∈ Rn is said to be a Walrasian equilibrium price vector
if there exists a feasible assignment π : M → N0 such that π(j) ∈ D̃j(p

∗)
for every j ∈ M and p∗(i) = 0 for every item i ∈ N \ {π(j) | j ∈ M}.
This definition of Walrasian equilibrium price vector is consistent with the
definition given in Introduction in the case of unit-demand auction model.
This fact, which seems to be well known among experts, is stated in the
following proposition, where a proof is given in Appendix for completeness.

Proposition 5.2. For a price vector p ∈ Rn
+, there exists a feasible assign-

ment π : M → N0 such that π(j) ∈ D̃j(p) for every j ∈ M and p(i) = 0
for every i ∈ N \ {π(j) | j ∈ M} if and only if there exists a partition
{X1, . . . , Xm} of N such that Xj ∈ Dj(p) (possibly Xj = ∅) for every j ∈ M .

5.2. Review of Unit-Demand Auction Algorithms

In this section we review three iterative auction algorithms for the unit-
demand auction model: Vickrey–English auction by Demange et al. [10],
Vickrey–Dutch auction by Mishra and Parkes [18], and Vickrey–English–
Dutch auction by Andersson and Erlanson [3]. The description of the algo-
rithms given below basically follows [2] and [3]. In the following, we assume
that valuation vj(i) for bidder j and item i is given by a nonnegative integer;
this implies, in particular, that the valuation function fj for j ∈ M is an
integer-valued function, and therefore there exists an integral equilibrium
price vector by Theorem 2.3 and Corollary 4.4.

For a price vector p ∈ Rn
+ and an item set Y ⊆ N , we define

O(Y, p) = {j ∈ M | D̃j(p) ⊆ Y },

U(Y, p) = {j ∈ M | D̃j(p) ∩ Y ̸= ∅}.

The set O(Y, p) consists of bidders who only demand items in Y at price p,
while U(Y, p) is the set of bidders who demand some item in Y at price p.
Obviously, O(Y, p) ⊆ U(Y, p).

A set Y ⊆ N is said to be overdemanded if |O(Y, p)| > |Y |. This condi-
tion means that there exists at least one bidder in O(Y, p) who can get no
item in D̃j(p) \ {0}. A set X ⊆ N is said to be in excess demand at price p
if it satisfies

|U(Y, p) ∩O(X, p)| > |Y | (∅ ̸= ∀Y ⊆ X).

This means that for every nonempty subset Y of X, there exists at least
one bidder in U(Y, p)∩O(X, p) who cannot get an item in Y . The following
property of sets in excess demand is shown in [19, Proposition 1] (see also
[3, Proposition 1] and [2, Theorem 1]).
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Proposition 5.3. Sets in excess demand at price p are closed under union
operation, i.e., if X,Y ⊆ N are in excess demand at price p, then X ∪ Y
is also in excess demand at price p. In particular, a maximal set in excess
demand at price p is uniquely determined.

The Vickrey-English auction algorithm due to Mo et al. [19] and Sankaran
[28], which is a variant of the one in Demange et al. [10], is described as fol-
lows:

Algorithm Vickrey English
Step 0: Set p := p◦, where p◦ ∈ Zn

+ satisfies p◦ ≤ p∗ for the minimal
equilibrium price vector p∗ (e.g., p◦ = 0).

Step 1: Find the maximal set X ⊆ N in excess demand at price p.
Step 2: If X = ∅, then output p and stop.
Step 3: Set p := p+ χX and go to Step 1. □

To describe the Vickrey-Dutch auction algorithm, we need variants of
the sets D̃j(p) and O(Y, p) by taking the positivity of prices (i.e., positive
or zero) into account as follows:

D̃+
j (p) = D̃j(p) ∩ supp+(p) (j ∈ M),

O+(Y, p) = {j ∈ M | D̃+
j (p) ⊆ Y }.

A set X ⊆ N is said to be in positive excess demand at price p if it satisfies
X ⊆ supp+(p) and

|U(Y, p) ∩O+(X, p)| > |Y | (∅ ̸= ∀Y ⊆ X).

The following proposition can be proved in a similar way.

Proposition 5.4 (cf. [3, Theorem 2]). Sets in positive excess demand at
price p are closed under union operation. In particular, a maximal set in
positive excess demand at price p is uniquely determined.

Vickrey–Dutch auction by Mishra and Parkes [18] is described as follows:

Algorithm Vickrey Dutch
Step 0: Set p := p◦, where p◦ ∈ Zn

+ satisfies p◦ ≥ p∗ for the minimal
equilibrium price vector p∗.

Step 1: Find the maximal set Z ⊆ N in positive excess demand at price p,
and put X = supp+(p) \ Z.

Step 2: If X = ∅, then output p and stop.
Step 3: Set p := p− χX and go to Step 1. □
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Vickrey–English–Dutch auction by Andersson and Erlanson [3], which
is a combination of Vickrey–English auction and Vickrey–Dutch auction, is
described as follows.

Algorithm Vickrey English Dutch
Step 0: Set p := p◦, where p◦ ∈ Zn is any vector (to be chosen appropriately

in practice). Go to Step E1.
Step E1: Find the maximal set X ⊆ N in excess demand at price p.
Step E2: If X = ∅, then go to Step D1.
Step E3: Set p := p+ χX and go to Step E1.
Step D1: Find the maximal set Z ⊆ N in positive excess demand

at price p, and put X = supp+(p) \ Z.
Step D2: If X = ∅, then output p and stop.
Step D3: Set p := p− χX and go to Step D1.

5.3. Analysis of Unit-Demand Auction Algorithms

We first show that the unit-demand auction algorithms explained above
coincide with the iterative auction algorithms in Section 4 applied to valu-
ation functions fj given by (5.1).

Theorem 5.5. Let fj : {0, 1}n → Z+ be valuation functions given by (5.1).
(i) The sequence of price vectors p generated by the algorithm Vickrey English
is the same as that of the algorithm AscendMinimal applied to valuation
functions fj.
(ii) The sequence of price vectors p generated by the algorithm Vickrey Dutch
is the same as that of the algorithm DescendMinimal applied to valuation
functions fj.
(iii) The sequence of price vectors p generated by the algorithm Vickrey English Dutch
is the same as that of the algorithm TwoPhaseMinMin applied to valuation
functions fj.

The crucial technical facts for the proof of Theorem 5.5 are the following
connections between sets in excess demand and the Lyapunov function L :
Zn
+ → R in (2.5) associated with valuation functions fj in (5.1).

Lemma 5.6. Let p ∈ Zn
+ be a price vector.

(i) A set X ⊆ N is the maximal set in excess demand at price p if and only
if X is the minimal minimizer of L(p+ χX)− L(p).
(ii) A set Z ⊆ supp+(p) is the maximal set in positive excess demand at
price p if and only if X = supp+(p) \ Z is the maximal minimizer of L(p−
χX)− L(p).
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The proof of Lemma 5.6 is given in Section 5.4.
A combination of Theorem 5.5 above and Theorems 4.7, 4.11, and 4.12

in Section 4 yields the following (exact or upper) bounds on the number of
iterations in the unit-demand auction algorithms. The claims (i) and (ii)
given below are already shown in [3, Corollary 2], while (iii) is a new result.
Recall the definition of η(p, q) in (4.2).

Corollary 5.7.
(i) The number of updates of the price vector in the algorithm Vickrey English
is exactly equal to ∥p∗ − p◦∥∞.
(ii) The number of updates of the price vector in the algorithm Vickrey Dutch
is exactly equal to ∥p∗ − p◦∥∞.
(iii) The number of updates of the price vector in the algorithm Vick-
rey English Dutch is at most 3η(p◦, p∗).

5.4. Proof of Lemma 5.6

5.4.1. Proof of Lemma 5.6 (i).

We first prove Lemma 5.6 (i).

Lemma 5.8. Let j ∈ M . For p ∈ Zn
+ and X ⊆ N , it holds that

L(p+ χX)− L(p) = |X| − |O(X, p)|. (5.3)

Proof. We first show the following equation:

Vj(p) = max
i∈N0

{vj(i)− p(i)}. (5.4)

To prove (5.4) we first note

Vj(p) = max{fj(X)− p(X) | X ⊆ N}
≥ max [fj(∅)− p(∅),max{fj({i})− p({i}) | i ∈ N}]
= max [vj(0)− p(0),max{vj(i)− p(i) | i ∈ N}] = max

i∈N0
{vj(i)− p(i)}.

On the other hand, for every nonempty X ⊆ N , we have vj(i
∗) − p(i∗) ≥

fj(X) − p(X), where i∗ ∈ X is an item with vj(i
∗) = fj(X). We also have

vj(0)− p(0) = fj(∅)− p(∅), from which follows that

Vj(p) = max{fj(X)− p(X) | X ⊆ N} ≤ max
i∈N0

{vj(i)− p(i)}.

Hence, (5.4) holds.
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From (5.4) follows that

Vj(p+ χX)− Vj(p) =

{
−1 (if j ∈ O(X, p)),
0 (otherwise).

Therefore, it holds that

L(p+ χX)− L(p) = |X|+
m∑
j=1

{Vj(p+ χX)− Vj(p)} = |X| − |O(X, p)|.

To establish a connection between the minimal minimizer of L(p+χX)−
L(p) and the maximal set in excess demand, it is convenient to use a directed
graph G defined as follows. For a price vector p ∈ Zn

+, we consider a directed
graph G = (V,E) with the vertex set V = {s, t} ∪M ∪N0 and the edge set

E = {(s, j) | j ∈ M} ∪ {(i, t) | i ∈ N0} ∪ {(j, i) | j ∈ M, i ∈ D̃j(p)}.

For each edge (u, v) ∈ E, we define its capacity c(u, v) as

c(u, v) =

{
1 (if u = s and v ∈ M, or u ∈ N and v = t),
+∞ (otherwise).

Note that edge set E is dependent on price vector p. A vertex partition
(S, V \ S) with s ∈ S and t ∈ V \ S is called an s-t cut, and its the capacity
c(S, V \ S) is defined as

c(S, V \ S) =
∑

(u,v)∈E(S,V \S)

c(u, v),

where E(S, V \S) = {(u, v) ∈ E | u ∈ S, v ∈ V \S}. An s-t cut of G is said
to be minimum if it has the minimum capacity among all s-t cuts.

For X ⊆ N , define a vertex set K(X) by

K(X) = {s} ∪O(X, p) ∪X.

Note that (K(X), V \K(X)) is an s-t cut. The next lemma shows that the
capacity of (K(X), V \K(X)) minus m (= |M |) is equal to the right-hand
side of (5.3), and that a minimum s-t cut is given by (K(X), V \K(X)) for
some X.
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Lemma 5.9. Let X ⊆ N .
(i) For every s-t cut (S, V \ S) with S ∩M ⊆ O(X, p) and S ∩N0 = X, we
have

c(S, V \ S) = |X| − |S ∩M |+m.

In particular, we have

c(K(X), V \K(X)) = |X| − |O(X, p)|+m.

(ii) For every s-t cut (S, V \ S) with S ̸= K(X) and S ∩N0 = X, it holds
that c(K(X), V \K(X)) < c(S, V \ S).

Proof. We first prove (i). By the definition of edge set E, there exists no
edge from O(X, p) = {j ∈ M | D̃j(p) \X = ∅} to N0 \X. Hence, it holds
that

c(S, V \ S) =
∑

(u,t)∈E, u∈X

c(u, t) +
∑

(s,v)∈E, v∈M\S

c(s, v)

= |X|+ |M \ S|
= |X| − |S ∩M |+m.

We then prove (ii). Suppose that there exists some j ∈ S ∩M such that
D̃j(p) \ X ̸= ∅. For i ∈ D̃j(p) \ X, we have (j, i) ∈ E and i ∈ V \ S, and
therefore

c(S, V \ S) ≥ c(j, i) = +∞.

If there exists no j ∈ S ∩M with D̃j(p) \X ̸= ∅, we have S ∩M ⊆ O(X, p).
Moreover, S ∩ M ̸= O(X, p), since S ̸= K(X). Using claim (i) above we
obtain that

c(S, V \ S) = |X| − |S ∩M |+m

> |X| − |O(X, p)|+m

= c(K(X), V \K(X)).

It follows from Lemmas 5.8 and 5.9 that a set X ⊆ N is a minimizer of
the value L(p+ χX)− L(p) if and only if (K(X), V \K(X)) is a minimum
s-t cut of the graph G.

Our next step is to relate minimal such X to the maximal set in excess
demand.
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Lemma 5.10. Let X ⊆ N be the (uniquely determined) minimal set such
that (K(X), V \K(X)) is a minimum s-t cut of the graph G. Then, X is
the maximal set in excess demand at price p.

Proof. We first show that X is in excess demand at price p, i.e., |U(Y, p) ∩
O(X, p)| > |Y | holds for every nonempty Y ⊆ X. Putting X ′ = X \ Y and
Z = U(Y, p) ∩O(X, p), we have

|O(X ′, p)| = |O(X, p)| − |Z|.

Hence, it follows that

c(K(X ′), V \K(X ′)) = |X ′| − |O(X ′, p)|+ |M |
= (|X| − |Y |)− (|O(X, p)− |Z|) + |M |
= c(K(X), V \K(X)) + (|Z| − |Y |),

where Lemma 5.9 (i) is used. Since (K(X), V \ K(X)) is an s-t cut with
the minimum capacity and X ′ ⊊ X, the minimality of X implies |Z| > |Y |.
Hence, X is in excess demand at price p.

To show that X is the unique maximal set among all sets in excess
demand, we assume, to the contrary, that there exists some set X̃ ⊋ X
in excess demand (cf. Proposition 5.3). Since X̃ is in excess demand and
X̃ \X ̸= ∅, it holds that

|U(X̃ \X, p) ∩O(X̃, p)| > |X̃ \X|.

Putting Z ′ = U(X̃ \X, p) ∩ O(X̃, p), we also have O(X, p) = O(X̃, p) \ Z ′.
Hence, it follows that

c(K(X̃), V \K(X̃)) = |X̃| − |O(X̃, p)|+ |M |
= (|X|+ |X̃ \X|)− (|O(X, p)|+ |Z ′|) + |M |
< |X| − |O(X, p)|+ |M | = c(K(X), V \K(X)),

a contradiction to the fact that (K(X), V \K(X)) is a minimum s-t cut of G.
Therefore, X is the unique maximal set among all sets in excess demand.

From the discussion above, we see that a set X ⊆ N is the minimal
minimizer of the value L(p+χX)−L(p) if and only if X is the maximal set
in excess demand at price p. Thus, Lemma 5.6 (i) holds.
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5.4.2. Proof of Lemma 5.6 (ii).

The proof of Lemma 5.6 (ii) given below is similar to that for Lemma 5.6 (i).

Lemma 5.11. Let j ∈ M . For p ∈ Zn
+, Z ⊆ supp+(p), and X = supp+(p)\

Z, it holds that

L(p− χX)− L(p) = −|X| − |O+(supp+(p) \X, p)|+ |M | (5.5)

= |Z| − |O+(Z, p)| − |supp+(p)|+ |M |. (5.6)

Proof. We have Vj(p) = maxi∈N0{vj(i)− p(i)} by (5.4). Therefore, it holds
that

Vj(p− χX)− Vj(p) =

{
+1 (if D̃+

j (p) ∩X ̸= ∅),
0 (otherwise),

from which follows that

L(p− χX)− L(p) = −|X|+
m∑
j=1

{Vj(p− χX)− Vj(p)}

= −|X|+ |{j ∈ M | D̃+
j (p) ∩X ̸= ∅}|

= −|X|+ |{j ∈ M | D̃+
j (p) ̸⊆ supp+(p) \X}|

= −|X|+ |M \O+(supp+(p) \X, p)|
= −|X| − |O+(supp+(p) \X, p)|+ |M |
= |Z| − |O+(Z, p)| − |supp+(p)|+ |M |.

This concludes the proof.

To relate the maximal minimizerX of L(p−χX)−L(p) with the maximal
set in positive excess demand, we use a directed graph G+ = (V +, E+) with
the vertex set V + = {s, t} ∪M ∪ supp+(p) and the edge set

E+ = {(s, j) | j ∈ M} ∪ {(i, t) | i ∈ supp+(p)} ∪ {(j, i) | j ∈ M, i ∈ D̃+
j (p)}.

That is, the graph G+ is a subgraph of the graph G defined in Section 5.4.1
obtained by removing vertices in N0 \ supp+(p). We define the capacity
c(u, v) for each edge (u, v) ∈ E+ as in Section 5.4.1, i.e.,

c(u, v) =

{
1 (if u = s and v ∈ M, or u ∈ supp+(p) and v = t),
+∞ (otherwise).

For Z ⊆ supp+(p), a vertex set K+(Z) is defined by

K+(Z) = {s} ∪O+(Z, p) ∪ Z.
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Note that (K+(Z), V + \K+(Z)) is an s-t cut. The next lemma shows that
the capacity of (K+(Z), V +\K+(Z)) minus |supp+(p)| is equal to the right-
hand sides of (5.5) and (5.6) with X = supp+(p) \ Z, and that a minimum
s-t cut is given by (K+(Z), V + \K+(Z)) for some Z.

Lemma 5.12. Let Z ⊆ supp+(p).
(i) For every s-t cut (S, V +\S) with S∩M ⊆ O+(Z, p) and S∩supp+(p) = Z,
we have

c(S, V + \ S) = |Z| − |S ∩M |+m.

In particular, we have

c(K+(Z), V + \K+(Z)) = |Z| − |O+(Z, p)|+m.

(ii) For every s-t cut (S, V + \ S) with S ̸= K+(Z) and S ∩ supp+(p) = Z,
it holds that c(K+(Z), V + \K+(Z)) < c(S, V + \ S).

Proof. The proof is essentially the same as that for Lemma 5.9 and therefore
omitted.

It follows from Lemmas 5.11 and 5.12 that a set X ⊆ supp+(p) is a
minimizer of the value L(p−χX)−L(p) if and only if (K+(Z), V + \K+(Z))
is a minimum s-t cut of the graph G+ for Z = supp+(p) \X.

Our next step is to relate minimal such Z to the maximal set in positive
excess demand.

Lemma 5.13. Let Z ⊆ supp+(p) be the (uniquely determined) minimal set
such that (K(Z), V + \K(Z)) is a minimum s-t cut of the graph G+. Then,
Z is the maximal set in positive excess demand at price p.

Proof. The proof is similar to that for Lemma 5.10 and therefore omitted.

From the discussion above, the following equivalence holds for X ⊆
supp+(p) and Z = supp+(p) \X:

X is the maximal minimizer of the value L(p− χX)− L(p)
⇐⇒ Z is the minimal set such that (K(Z), V + \K(Z)) is

a minimum s-t cut of the graph G+

⇐⇒ Z is the maximal set in positive excess demand at price p.

Thus, Lemma 5.6 (ii) holds.
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Appendix A. Proof of Proposition 5.2

We first prove the “if” part. Let p be a price vector, and suppose that
there exists a partition {X1, . . . , Xm} of N such that Xj ∈ Dj(p) (possibly
Xj = ∅) for all j ∈ M .

Claims: For each j ∈ M , the following properties hold:
(i) The set Xj in the partition contains at most one item in supp+(p).
(ii) If Xj ∩ supp+(p) ̸= ∅, then the unique item i∗ in Xj ∩ supp+(p) satisfies

i∗ ∈ Xj ∩ D̃j(p).

(iii) If Xj ̸= ∅, then Xj ∩ D̃j(p) ̸= ∅.
(iv) If Xj = ∅, then 0 ∈ D̃j(p).
[Proof of Claim (i)] For i ∈ Xj ∩ supp+(p), we have vj(i) = fj(Xj) since
otherwise (i.e., if vj(i) < fj(Xj)) we have

fj(Xj)− p(Xj) = fj(Xj \ {i})− p(Xj) < fj(Xj \ {i})− p(Xj \ {i}), (A.1)

a contradiction to the fact that Xj ∈ Dj(p). If |Xj ∩ supp+(p)| ≥ 2, then we
have fj(Xj \ {i}) = fj(Xj), and therefore the inequality (A.1) above holds
again, a contradiction.
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[Proof of Claim (ii)] For the unique item i∗ in Xj ∩ supp+(p) we have
vj(i

∗) = fj(Xj) and p(Xj) = p(i∗). Since Xj ∈ Dj(p), it holds that

vj(i
∗)− p(i∗) = fj(Xj)− p(Xj)

≥ max[fj(∅)− p(∅),max
i∈N

{fj({i})− p({i})}]

= max[vj(0)− p(0),max
i∈N

{vj(i)− p(i)}]. (A.2)

Hence i∗ ∈ D̃j(p).
[Proof of Claim (iii)] By Claim (ii), we may assume Xj ∩supp+(p) = ∅

with Xj ̸= ∅. Let i∗ be an item in Xj with the maximum value of vj(i
∗).

Then, we have vj(i
∗) = fj(Xj) and p(i∗) = p(Xj) = 0. Hence, the inequality

(A.2) above holds again, i.e., i∗ ∈ D̃j(p). This shows Xj ∩ D̃j(p) ̸= ∅.
[Proof of Claim (iv)] If Xj = ∅, then vj(0)−p(0) = 0 = fj(Xj)−p(Xj).

Hence, (iv) follows. [End of Claim]

Based on the claims above, we define an assignment π : M → N0 as
follows:

π(j) =


the unique item in Xj ∩ supp+(p) (if Xj ∩ supp+(p) ̸= ∅),
any item in Xj ∩ D̃j(p) (if Xj ∩ supp+(p) = ∅ and Xj ̸= ∅),
0 (otherwise, i.e., if Xj = ∅).

We show that this assignment satisfies the conditions in the statement of
Proposition 5.2.

Since {X1, . . . , Xm} is a partition of N and π(j) ∈ Xj holds whenever
π(j) ̸= 0, we have π(j) ̸= π(j′) for every j, j′ ∈ M with π(j) ̸= 0 and π(j′) ̸=
0. Hence, the assignment π is a feasible assignment. By Claims (ii), (iii),
and (iv), π(j) ∈ D̃j(p) holds for all j ∈ M . Since each Xj contains at most
one item with positive price, we have p(i) = 0 for i ∈ N \ {π(j) | j ∈ M}.
This concludes the proof of “if” part.

Next we prove the “only if” part of the statement. Assume that there
exists a feasible assignment π : M → N0 such that π(j) ∈ D̃j(p) for all
j ∈ M and p(i) = 0 for every item i ∈ N \ {π(j) | j ∈ M}. We may assume
that π(j) ̸= 0 for some j ∈ M ; if π(j) = 0 for all j ∈ M , then we may set
π(1) = 1 since v1(1) ≥ 0 = v1(0).

Let {X1, . . . , Xm} be any partition of N satisfying the condition that

if π(j) ̸= 0 then π(j) ∈ Xj , if π(j) = 0 then Xj = ∅.

Since π(j) ̸= 0 for some j ∈ M , such a partition exists. For j ∈ M and
i ∈ Xj \ {π(j)}, we have p(i) = 0.
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It remains to show that Xj ∈ Dj(p) holds for each j ∈ M . We first

consider the case with π(j) ̸= 0. Since π(j) ∈ D̃j(p) \ {0} and p(i) = 0 for
i ∈ Xj \ {π(j)}, we have

vj(π(j)) ≥ vj(π(j))− p(π(j)) ≥ vj(i)− p(i) = vj(i) (∀i ∈ Xj \ {π(j)}).

Hence, we have vj(π(j)) = fj(Xj) and p(π(j)) = p(Xj), which imply that

fj(Xj)− p(Xj) = vj(π(j))− p(π(j)).

For any nonempty Y ⊆ N , let i′ be an item in Y with vj(i
′) = fj(Y ). Then,

it holds that

fj(Y )− p(Y ) = vj(i
′)− p(Y ) ≤ vj(i

′)− p(i′).

Therefore,

fj(Xj)− p(Xj) = vj(π(j))− p(π(j)) ≥ vj(i
′)− p(i′) ≥ fj(Y )− p(Y ).

We also have

fj(Xj)− p(Xj) = vj(π(j))− p(π(j)) ≥ vj(0)− p(0) = fj(∅)− p(∅).

Thus, Xj ∈ Dj(p) holds.

We then consider the case with π(j) = 0. We have 0 ∈ D̃j(p) and
fj(∅)− p(∅) = 0 = vj(0)− p(0). Using this fact, we can prove fj(∅)− p(∅) ≥
fj(Y ) − p(Y ) for all Y ⊆ N in a similar way as in the previous case. That
is, Xj = ∅ ∈ Dj(p) holds.
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