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Abstract We discuss the relationship between matroid rank functions and a
concept of discrete concavity called M♮-concavity. It is known that a matroid
rank function and its weighted version called a weighted rank function are
M♮-concave functions, while the (weighted) sum of matroid rank functions is
not M♮-concave in general. We present a sufficient condition for a weighted
sum of matroid rank functions to be an M♮-concave function, and show that
every weighted rank function can be represented as a weighted sum of matroid
rank functions satisfying this condition.

1 Introduction

The concept of matroid is a combinatorial structure which enjoys various nice
properties, and it is deeply related with well-solvability of combinatorial opti-
mization problems. A matroid M = (E,F) is defined as a pair of a finite set
E and a set family F ⊆ 2E satisfying the following conditions:

(I0) ∅ ∈ F ,
(I1) I ⊆ J ∈ F implies I ∈ F ,
(I2) ∀I, J ∈ F , |I| < |J |, ∃u ∈ J \ I : I ∪ {u} ∈ F .

The set E is called a ground set and each I ∈ F is called an independent set.
In addition to this definition by independent sets, matroids can also be defined
in several different ways by using bases, circuits, rank functions, etc.
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Given a matroid M = (E,F), its rank function is a function ρ : 2E → Z+

defined by
ρ(X) = max{|Y | | Y ∈ F , Y ⊆ X} (X ⊆ E). (1.1)

Rank function ρ satisfies the following properties:

(R1) ∀X ⊆ E : 0 ≤ ρ(X) ≤ |X|,
(R2) ρ is monotone nondecreasing, i.e., X ⊆ Y implies ρ(X) ≤ ρ(Y ),
(R3) ρ is submodular, i.e., ∀X,Y ⊆ E : ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ).

Moreover, these conditions characterize rank functions of matroids (see, e.g.,
[16,18,21]). In this paper, we investigate matroid rank functions from the
viewpoint of discrete convex analysis.

Discrete convex analysis is a theoretical framework for well-solved combi-
natorial optimization problems introduced by Murota (see [12]; see also [13]),
where the concepts of discrete convexity/concavity called M♮-convexity/M♮-
concavity play central roles. The concepts of M♮-convexity/M♮-concavity are
variants of M-convexity/M-concavity, originally introduced for functions de-
fined over the integer lattice points by Murota and Shioura [15]. In this paper,
we mainly consider M♮-concavity for set functions.

A set function f : 2E → R is said to be M♮-concave if it satisfies the
following condition:

(M♮-EXC) for every X,Y ⊆ E and every u ∈ X \ Y , either (i) or (ii)
(or both) holds:

(i) f(X) + f(Y ) ≤ f(X − u) + f(Y + u),
(ii) ∃v ∈ Y \X : f(X) + f(Y ) ≤ f(X − u+ v) + f(Y + u− v),

where X−u+ v (resp., Y +u− v) is a short-hand notation for (X \{u})∪{v}
(resp., (Y ∪ {u}) \ {v}). It is shown that M♮-concavity for set functions is
equivalent to the gross substitutes property in mathematical economics [9],
and that M♮-concave functions constitute a proper subclass of submodular
functions (see [12]). M♮-concavity for set functions is closely related to the
concept of valuated matroid by Dress and Wenzel [3]; an M♮-concave function
is defined over subsets of a finite set, while a valuated matroid is a function
defined over bases of a matroid. It is noted that the sum of an M♮-concave
function and a linear function is again an M♮-concave function, while the sum
of two (or more) M♮-concave functions is not M♮-concave in general.

In this paper, we discuss the relationship between matroid rank functions
and M♮-concavity. It is known that every matroid rank function is M♮-concave
[8]. Moreover, a weighted version of matroid rank function called a weighted
rank function is also M♮-concave [19], where a weighted rank function means
a function ρw : 2E → R+ expressed as

ρw(X) = max{w(Y ) | Y ∈ F , Y ⊆ X} (X ⊆ E) (1.2)

with a matroid M = (E,F) and a nonnegative vector w ∈ RE
+. Here, we use

the notation w(Y ) =
∑

v∈Y w(v). Note that a rank function in (1.1) is the
weighted rank function with w = (1, 1, . . . , 1).
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We also consider the weighted sum of matroid rank functions, which is
called a matroid-rank-sum function in [2,5,6]. That is, a set function f : 2E →
R+ is a matroid-rank-sum function if f can be represented as

f(X) =
k∑

i=1

αiρi(X) (1.3)

by using positive integer k, matroid rank functions ρi : 2E → Z+ (i =
1, 2, . . . , k), and nonnegative real numbers αi ∈ R+ (i = 1, 2, . . . , k).

Although a matroid-rank-sum function (1.3) is not M♮-concave in general,
we derive a sufficient condition for a matroid-rank-sum function to be M♮-
concave. For two matroids Mi (i = 1, 2) with rank functions ρi : 2

E → Z+, we
say that matroid M1 is a strong quotient of M2 if the rank functions satisfy
the following condition:

ρ1(X)− ρ1(Y ) ≤ ρ2(X)− ρ2(Y ) (∀Y ⊆ ∀X ⊆ E); (1.4)

in this case, we also say that the rank function ρ1 is a strong quotient of ρ2. We
show that a matroid-rank-sum function in (1.3) is M♮-concave if the following
condition holds (see Theorem 3):

(SQ) ρi is a strong quotient of ρi+1 for each i = 1, 2, . . . , k − 1.

In addition, we show that every weighted rank function (1.2) can be repre-
sented as a weighted sum of matroid rank functions that satisfy the condition
(SQ) (see Theorem 4). Hence, the results obtained in this paper are summa-
rized as follows:

the set of weighted rank functions (1.2)

⊆ the set of matroid-rank-sum functions (1.3) with (SQ)

⊆ the set of M♮-concave functions.

This research is motivated by the submodular welfare maximization prob-
lem in combinatorial auctions, where matroid-rank-sum functions are regarded
as a class of submodular functions with some useful properties (see [1,2,5,6]);
indeed, they contain as special cases many concrete examples of submodu-
lar functions in this context. The submodular welfare maximization problem
is NP-hard in general, even if the objective function is a matroid-rank-sum
function. On the other hand, the problem can be solved exactly in polynomial
time if the objective function is M♮-concave (see, e.g., [11]). Hence, the results
in this paper shows that matroid-rank-sum functions with (SQ) constitute a
tractable class of objective functions in the submodular welfare maximization
problem.

2 Preliminaries

In this section we review some properties of matroids and M♮-concave func-
tions, which will be used in the proofs of Section 3.
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2.1 Matroids

A matroid M = (E,F) is given as a pair of a ground set E and a family
F ⊆ 2E of independent sets. A family of independent sets of a matroid can be
characterized by the following exchange property (see, e.g., [15, Remark 5.2]):

(G-EXC) ∀I, J ∈ F , ∀u ∈ I \ J , (i) or (ii) (or both) holds:

(i) I − u, J + u ∈ F , (ii) ∃v ∈ J \ I : I − u+ v, J + u− v ∈ F .

Proposition 1 A nonempty set family F ⊆ 2E is the family of independent
sets of a matroid if and only if ∅ ∈ F and F satisfies (G-EXC).

More generally, the property (G-EXC) defines the concept of generalized
matroid [20] (see also [7]); that is, a nonempty set family F ⊆ 2E is called
a generalized matroid if it satisfies (G-EXC) (see [15, Remark 5.2]). Proposi-
tion 1 shows that a family of independent sets of a matroid is equivalent to a
generalized matroid containing the empty set.

The rank function ρ : 2E → Z+ of a matroid M = (E,F) given by
(1.1) satisfies the conditions (R1), (R2), and (R3), as mentioned in Intro-
duction. We will also use the following property of rank functions (see, e.g.,
[16, Lemma 1.4.3]).

Proposition 2 Let ρ : 2E → Z+ be a rank function of a matroid. Then,
ρ(X + u)− ρ(X) ∈ {0, 1} holds for every X ⊆ E and u ∈ E \X.

In a linear optimization on a matroid, the optimal value can be expressed
by using a matroid rank function (see, e.g., [18, Theorem 40.2]).

Proposition 3 Let M = (E,F) be a matroid and w ∈ RE
+ be a nonnegative

vector. Suppose that E = {e1, e2, . . . , en} with n = |E| and w(e1) ≥ w(e2) ≥
· · · ≥ w(en) ≥ 0. Then, it holds that

max{w(X) | X ∈ F} =
n∑

i=1

(w(ei)− w(ei+1))ρ(Ei),

where Ei = {e1, . . . , ei} (i = 1, 2, . . . , n) and w(en+1) = 0.

For two matroids Mi (i = 1, 2) with rank functions ρi : 2E → Z+, we
say that M1 is a strong quotient of M2 if rank functions ρ1 and ρ2 satisfy
the condition (1.4); in this case, we also say that the rank function ρ1 is a
strong quotient of ρ2. A pair of matroids with strong-quotient relation can be
obtained from a single matroid by deletion and contraction. Let M̃ = (Ẽ, F̃)

be a matroid with E ⊆ Ẽ, and suppose that X = Ẽ \E is an independent set

of M̃ . We define set families F̃ \X, F̃/X ⊆ 2E by

F̃ \X = {Y \X | Y ∈ F̃}, F̃/X = {Y \X | Y ∈ F̃ , X ⊆ Y }.

Then, both of (E, F̃ \X) and (E, F̃/X) are matroids on the ground set E. We

say that (E, F̃ \X) and (E, F̃/X) are matroids obtained from M̃ by deleting
X and contracting X, respectively.
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Proposition 4 ([21,22]) (E, F̃/X) is a strong quotient of (E, F̃ \X), and
every strong-quotient pair of matroids can be obtained in this way.

2.2 M♮-concave functions

A set function f : 2E → R is said to be M♮-concave if it satisfies the condition
(M♮-EXC). The concept of M♮-concavity is originally introduced for functions
defined on integer lattice points (see, e.g., [12]), and the present definition
of M♮-concavity for set functions can be obtained by specializing the original
definition through the one-to-one correspondence between set functions and
functions defined on 0-1 vectors.

It is known that every M♮-concave function is a submodular function
(cf. [12]). Moreover, an M♮-concave function can be regarded a submodular
function with an additional combinatorial property.

Theorem 1 (cf. [9,17]) A function f : 2E → R is M♮-concave if and only if
it is a submodular function satisfying the following condition:

f(X ∪ {u, v}) + f(X ∪ {t})
≤ max{f(X ∪ {u, t}) + f(X ∪ {v}), f(X ∪ {v, t}) + f(X ∪ {u})}

for every X ⊆ E and every distinct u, v, t ∈ E \X. (2.1)

Proof It is shown [9] that M♮-concavity for a set function f is equivalent to
the gross-substitutes property (see, e.g., [9,17] for the definition of the gross-
substitutes property), while the gross-substitutes property for f can be charac-
terized by the combination of submodularity and the condition (2.1), as shown
in [17]. ⊓⊔

The condition (2.1) in Theorem 1 can be rewritten as follows.

Proposition 5 For a function f : 2E → R, the condition (2.1) holds if and
only if for every X ⊆ E and every distinct u, v, t ∈ E \ X, the maximum
among the three values f(X ∪{u, v})+f(X ∪{t}), f(X ∪{u, t})+f(X ∪{v}),
and f(X ∪ {v, t}) + f(X ∪ {u}) is attained by at least two of them.

3 Relationship among weighted rank functions, matroid-rank-sum
functions, and M♮-concave functions

We denote

M♮ = {f | f : 2E → R+ is M♮-concave},
Rwr = {f | f : 2E → R+ is a weighted rank function},

Rmrs-sq = {f | f : 2E → R+ is a matroid-rank-sum function

with the condition (SQ)}.

We will prove that the following relations hold:

Rwr ⊆ Rmrs-sq ⊆ M♮.
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3.1 M♮-concavity of weighted rank functions

We firstly review the known results that weighted rank functions as well as
matroid rank functions are M♮-concave. This shows that Rwr ⊆ M♮ holds.

Theorem 2 ([19, Theorem 1.2]) For a matroid M = (E,F) and a non-
negative vector w ∈ RE

+, the weighted rank function ρw : 2E → R+ given by
(1.2) is an M♮-concave function.

Proof For readers’ convenience, we here give an elementary proof by Murota
[14]. Take X,Y ⊆ E and u ∈ X \ Y . Let I, J ∈ F be independent subsets of
X and Y , respectively, such that ρw(X) = w(I) and ρw(Y ) = w(J).

If u ̸∈ I, then

ρw(X − u) ≥ w(I) = ρw(X), ρw(Y + u) ≥ w(J) = ρw(Y ),

which implies (i) in (M♮-EXC). So assume u ∈ I. If J + u ∈ F , then

ρw(X−u) ≥ w(I−u) = ρw(X)−w(u), ρw(Y +u) ≥ w(J+u) = ρw(Y )+w(u),

which implies (i) in (M♮-EXC). So assume J + u ̸∈ F . Then, by (G-EXC) for
F (see Proposition 1), there exists v ∈ J \ I such that I−u+v, J +u−v ∈ F .
If v ∈ X, then I − u+ v ⊆ X − u, J + u− v ⊆ Y + u, and hence

ρw(X − u) ≥ w(I − u+ v) = ρw(X)− w(u) + w(v),

ρw(Y + u) ≥ w(J + u− v) = ρw(Y ) + w(u)− w(v),

which implies (i) in (M♮-EXC). If v ̸∈ X, then v ∈ Y \X, and

ρw(X − u+ v) ≥ w(I − u+ v) = ρw(X)− w(u) + w(v),

ρw(Y + u− v) ≥ w(J + u− v) = ρw(Y ) + w(u)− w(v),

which implies (ii) in (M♮-EXC). ⊓⊔

By setting w = (1, 1, . . . , 1) in Theorem 2, we obtain the following property:

Corollary 1 ([8, p. 51]) For a matroid M = (E,F), its rank function ρ :
2E → Z+ given by (1.1) is an M♮-concave function.

3.2 Matroid-rank-sum functions and M♮-concave functions

We now prove the inclusion Rmrs-sq ⊆ M♮.

Theorem 3 Let k be a positive integer. For matroid rank functions ρi : 2
E →

Z+ (i = 1, 2, . . . , k) and nonnegative real numbers αi ∈ R+ (i = 1, 2, . . . , k),
the matroid-rank-sum function f : 2E → R+ given by (1.3) is a monotone-
nondecreasing M♮-concave function if the condition (SQ) holds.
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The following is the key property for the proof of Theorem 3. For submod-
ular functions f, g : 2E → R, we say, following [10], that f is a strong quotient
of g if

f(X)− f(Y ) ≤ g(X)− g(Y ) (∀Y ⊆ ∀X ⊆ E).

Lemma 1 Let ρ : 2E → Z+ be the rank function of a matroid, and g : 2E → R
be a monotone-nondecreasing M♮-concave function. If g is a strong quotient of
ρ, then the function f : 2E → R given by

f(X) = αg(X) + βρ(X) (X ⊆ E)

with nonnegative real numbers α, β ∈ R+ is a monotone-nondecreasing M♮-
concave function.

Proof By Theorem 1 and Proposition 5, it suffices to show that f is monotone
nondecreasing and submodular, and satisfies the condition that

(∗) the maximum in {f̂(u), f̂(v), f̂(t)} is attained by at least two of them

for every X ⊆ E and every distinct u, v, t ∈ E \X, where

f̂(u) = f(X ∪ {v, t}) + f(X ∪ {u}), f̂(v) = f(X ∪ {u, t}) + f(X ∪ {v}),
f̂(t) = f(X ∪ {u, v}) + f(X ∪ {t}).

Recall that the rank function ρ is monotone nondecreasing, submodular, and
M♮-concave by (R2), (R3), and Corollary 1. Since g is M♮-concave, it is sub-
modular by Theorem 1. Hence, monotonicity and submodularity of f follow
from those of g and ρ.

To prove the condition (∗), we fix X ⊆ E and distinct elements u, v, t ∈
E\X. We define ĝ(u), ĝ(v), ĝ(t) and ρ̂(u), ρ̂(v), ρ̂(t) in a similar way as f̂(u), f̂(v), f̂(t).

Note that f̂(s) = αĝ(s) + βρ̂(s) holds for s ∈ {u, v, t}.
Since g and ρ are M♮-concave functions, Theorem 1 and Proposition 5

imply that the maximum in {ĝ(u), ĝ(v), ĝ(t)} is attained by at least two of
them, and that the maximum in {ρ̂(u), ρ̂(v), ρ̂(t)} is attained by at least two
of them. Hence, (∗) holds immediately if the following condition holds:

∃s ∈ {u, v, t} : min{ĝ(u), ĝ(v), ĝ(t)} = ĝ(s), min{ρ̂(u), ρ̂(v), ρ̂(t)} = ρ̂(s).
(3.1)

In the following, we assume that the condition (3.1) does not hold and derive
a contradiction.

We may assume, without loss of generality, that

ĝ(u) = ĝ(t) > ĝ(v), ρ̂(t) = ρ̂(v) > ρ̂(u).

Since ĝ(u) > ĝ(v), we have

g(X ∪ {v, t})− g(X ∪ {v}) > g(X ∪ {u, t})− g(X ∪ {u}). (3.2)

Similarly, ρ̂(v) > ρ̂(u) implies that

1 = ρ(X ∪ {u, t})− ρ(X ∪ {u}) > ρ(X ∪ {v, t})− ρ(X ∪ {v}) = 0, (3.3)
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where the two equalities are by Proposition 2. Since g is a strong quotient of
ρ, it holds that

0 = ρ(X ∪ {v, t})− ρ(X ∪ {v})
≥ g(X ∪ {v, t})− g(X ∪ {v}) > g(X ∪ {u, t})− g(X ∪ {u}),

where the equality is by (3.3) and the second inequality is by (3.2). Hence, we
have g(X ∪ {u, t})− g(X ∪ {u}) < 0, which contradicts the assumption that g
is monotone nondecreasing. ⊓⊔

We give a proof of Theorem 3 by using Lemma 1.

Proof (of Theorem 3) We prove the claim by induction on the integer k. If
k = 1 or α1 = α2 = · · · = αk−1 = 0, then the claim follows from the property

(R2) and Corollary 1. Hence, we assume k ≥ 2 and α =
∑k−1

i=1 αi > 0. Define
g : 2E → R by

g(X) =
1

α

k−1∑
i=1

αiρi(X) (X ⊆ E).

Then, g is a monotone-nondecreasing M♮-concave function by the induction
hypothesis. The condition (SQ) implies that ρi is a strong quotient of ρk for
i = 1, 2, . . . , k − 1, i.e.,

ρi(X)− ρi(Y ) ≤ ρk(X)− ρk(Y ) (∀Y ⊆ ∀X ⊆ E).

Hence, we have

g(X)− g(Y ) =
1

α

k−1∑
i=1

αi(ρi(X)− ρi(Y ))

≤ ρk(X)− ρk(Y ) (∀Y ⊆ ∀X ⊆ E),

i.e., g is a strong quotient of ρk. Since f = αg + αkρk, the function f is
monotone nondecreasing and M♮-concave by Lemma 1. ⊓⊔

Remark 1 It is noted that a matroid-rank-sum function without the condition
(SQ) is not M♮-concave in general, which can be shown as follows by using a
well-known fact that the intersection of matroids is not a matroid.

For i = 1, 2, let Mi = (E,Fi) be a matroid with rank function ρi : 2
E → Z,

and assume that (E,F1 ∩ F2) is not a matroid. We show that a function
f : 2E → R given by f = ρ1 + ρ2 is not M♮-concave, on the basis of the
following fact (cf. [12]):

for an M♮-concave function f : 2E → R and a vector p ∈ RE , the set of
maximizers argmax{f(X)− p(X) | X ⊆ E} is a generalized matroid.
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For i = 1, 2, we have ρi(X)−|X| ≤ 0 for every X ⊆ E, and ρi(X)−|X| = 0
holds if and only if X is an independent set of Mi. Therefore, it holds that

argmax{ρi(X)− |X| | X ⊆ E} = Fi.

For p = (2, 2, . . . , 2), we have

argmax{f(X)− p(X) | X ⊆ E}
= argmax{ρ1(X) + ρ2(X)− 2|X| | X ⊆ E}
= argmax{(ρ1(X)− |X|) + (ρ2(X)− |X|) | X ⊆ E}. (3.4)

Putting

F = argmax{ρ1(X)− |X| | X ⊆ E} ∩ argmax{ρ2(X)− |X| | X ⊆ E},

we have

F = F1 ∩ F2, (3.5)

which implies, in particular, that F is nonempty. Hence, we have

argmax{(ρ1(X)− |X|) + (ρ2(X)− |X|) | X ⊆ E} = F . (3.6)

From (3.4), (3.5), and (3.6) follows that

argmax{f(X)− p(X) | X ⊆ E} = F1 ∩ F2,

which is not a family of independent sets of a matroid. Moreover, F1 ∩ F2 is
not a generalized matroid, which follows from Proposition 1 since ∅ ∈ F1∩F2.
Hence, the function f is not M♮-concave. ⊓⊔

3.3 Matroid-rank-sum functions and weighted rank functions

We finally show that Rwr is contained in Rmrs-sq. We denote n = |E|.

Theorem 4 Let ρw : 2E → R+ be a weighted rank function given by (1.2) with
a matroid M = (E,F) and a nonnegative vector w ∈ RE

+. Then, there exist
matroid rank functions ρi : 2

E → Z+ (i = 1, 2, . . . , n) satisfying the condition
(SQ) and nonnegative real numbers αi ∈ R+ (i = 1, 2, . . . , n) such that

ρw =
n∑

i=1

αiρi.

To prove Theorem 4, we use the following property. To the end of this sec-
tion, we assume, without loss of generality, that E = {e1, e2, . . . , en} and
w(e1) ≥ w(e2) ≥ · · · ≥ w(en) ≥ 0, and denote Ei = {e1, . . . , ei} (i =
1, 2, . . . , n).
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Lemma 2 For every X ⊆ E, we have

ρw(X) =
n∑

i=1

(w(ei)− w(ei+1))ρ(X ∩ Ei). (3.7)

Proof Let MX = (X,FX) be the matroid obtained from M by restriction to
X, i.e., FX is given by FX = {Y ∩ X | Y ∈ F}. Let ρX : 2X → Z+ be the
rank function of MX . Then, we have ρX(Y ) = ρ(Y ) for every Y ⊆ X.

Suppose that X = {ei1 , ei2 , . . . , eit} with t = |X|, where i1 < i2 < · · · < it.
Then, Proposition 3 implies

ρw(X) =

t∑
j=1

(w(eij )− w(eij+1))ρX({ei1 , ei2 , . . . , eij})

=

t∑
j=1

(w(eij )− w(eij+1))ρ(X ∩ Eij ), (3.8)

where w(eit+1) = 0. It is not difficult to see that the right-hand side in (3.8)
is equal to the right-hand side in (3.7). ⊓⊔

Proof (of Theorem 4) We firstly show that ρw can be represented as a weighted
sum of matroid rank functions. Note that this part of the proof is essentially
the same as the one in [4, Corollary 2.6].

For i = 1, 2, . . . , n, we define Fi = {X ∩ Ei | X ∈ F}. Then, Mi = (E,Fi)
is a matroid, and denote by ρi : 2

E → Z+ the rank function of Mi. We have
ρi(X) = ρ(X ∩ Ei) for every X ⊆ E and i = 1, 2, . . . , n. Hence, Lemma 2
implies that

ρw(X) =
n∑

i=1

(w(ei)− w(ei+1))ρ(X ∩ Ei)

=
n∑

i=1

(w(ei)− w(ei+1))ρi(X).

This shows that ρw is represented as a weighted sum of matroid rank functions
ρi.

To conclude the proof, we show that the condition (SQ) holds, i.e., Mi =
(E,Fi) is a strong quotient of Mi+1 = (E,Fi+1) for i = 1, 2, . . . , n − 1. Let

e0 be an element not contained in E, and let F̃i+1 be a family of subsets of
E ∪ {e0} given by

F̃i+1 = Fi+1 ∪ {(X ∪ {e0}) \ {ei+1} | X ∈ Fi+1, ei+1 ∈ X}.

Then, M̃i+1 = (E ∪ {e0}, F̃i+1) is a matroid. Note that in the matroid M̃i+1,
element e0 is parallel to ei+1. We see from the definition of Mi (resp., Mi+1)

that the matroid Mi (resp., Mi+1) can be obtained from M̃i+1 by contracting
e0 (resp., by deleting e0). Hence, Mi is a strong quotient of Mi+1 by Proposi-
tion 4. ⊓⊔
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Remark 2 To show thatRwr is properly contained inRmrs-sq, we present an ex-
ample of matroid-rank-sum function which satisfies (SQ) but is not a weighted
rank function.

Let E = {a, b, c} and consider two matroids Mi = (E,Fi) (i = 1, 2) on E,
where

F1 = {∅, {a}, {b}, {c}, {a, b}, {a, c}}, F2 = 2E .

It can be shown that M1 is a strong quotient of M2. For i = 1, 2, let ρi : 2
E →

Z+ be the rank function of matroid Mi, and define f : 2E → Z by f = ρ1+ρ2.
Then, f is a matroid-rank-sum function with (SQ). Note that

f(X) = 2 if |X| = 1, f({b, c}) = 3.

Suppose, to the contrary, that f is a weighted rank function. Then, there
exist a matroid M = (E,F) and a weight vector w ∈ RE

+ such that

f(X) = max{w(Y ) | Y ∈ F , Y ⊆ X}.

Since f({a}) = f({b}) = f({c}) = 2, we have w(a) = w(b) = w(c) = 2. This
implies that the value of f should be a multiple of 2, while f({b, c}) = 3, a
contradiction. Hence, f is not a weighted rank function. ⊓⊔
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