Matroid rank functions and discrete concavity

Akiyoshi Shioura

Received: date / Accepted: date

Abstract

We discuss the relationship between matroid rank functions and a concept of discrete concavity called M^{\natural}-concavity. It is known that a matroid rank function and its weighted version called a weighted rank function are M^{\natural}-concave functions, while the (weighted) sum of matroid rank functions is not M^{\natural}-concave in general. We present a sufficient condition for a weighted sum of matroid rank functions to be an M^{\natural}-concave function, and show that every weighted rank function can be represented as a weighted sum of matroid rank functions satisfying this condition.

1 Introduction

The concept of matroid is a combinatorial structure which enjoys various nice properties, and it is deeply related with well-solvability of combinatorial optimization problems. A matroid $M=(E, \mathcal{F})$ is defined as a pair of a finite set E and a set family $\mathcal{F} \subseteq 2^{E}$ satisfying the following conditions:
(IO) $\emptyset \in \mathcal{F}$,
(I1) $I \subseteq J \in \mathcal{F}$ implies $I \in \mathcal{F}$,
(I2) $\forall I, J \in \mathcal{F},|I|<|J|, \exists u \in J \backslash I: I \cup\{u\} \in \mathcal{F}$.
The set E is called a ground set and each $I \in \mathcal{F}$ is called an independent set. In addition to this definition by independent sets, matroids can also be defined in several different ways by using bases, circuits, rank functions, etc.

[^0]Akiyoshi Shioura
Graduate School of Information Sciences,
Tohoku University, Sendai 980-8579, Japan
E-mail: shioura@dais.is.tohoku.ac.jp

Given a matroid $M=(E, \mathcal{F})$, its rank function is a function $\rho: 2^{E} \rightarrow \mathbb{Z}_{+}$ defined by

$$
\begin{equation*}
\rho(X)=\max \{|Y| \mid Y \in \mathcal{F}, Y \subseteq X\} \quad(X \subseteq E) \tag{1.1}
\end{equation*}
$$

Rank function ρ satisfies the following properties:
(R1) $\forall X \subseteq E: 0 \leq \rho(X) \leq|X|$,
(R2) ρ is monotone nondecreasing, i.e., $X \subseteq Y$ implies $\rho(X) \leq \rho(Y)$,
(R3) ρ is submodular, i.e., $\forall X, Y \subseteq E: \rho(X)+\rho(Y) \geq \rho(X \cap Y)+\rho(X \cup Y)$.
Moreover, these conditions characterize rank functions of matroids (see, e.g., $[16,18,21])$. In this paper, we investigate matroid rank functions from the viewpoint of discrete convex analysis.

Discrete convex analysis is a theoretical framework for well-solved combinatorial optimization problems introduced by Murota (see [12]; see also [13]), where the concepts of discrete convexity/concavity called M^{\natural}-convexity $/ \mathrm{M}^{\natural}$ concavity play central roles. The concepts of M^{\natural}-convexity $/ \mathrm{M}^{\natural}$-concavity are variants of M-convexity/M-concavity, originally introduced for functions defined over the integer lattice points by Murota and Shioura [15]. In this paper, we mainly consider M^{\natural}-concavity for set functions.

A set function $f: 2^{E} \rightarrow \mathbb{R}$ is said to be M^{\natural}-concave if it satisfies the following condition:
(\mathbf{M}^{\natural}-EXC) for every $X, Y \subseteq E$ and every $u \in X \backslash Y$, either (i) or (ii) (or both) holds:
(i) $f(X)+f(Y) \leq f(X-u)+f(Y+u)$,
(ii) $\exists v \in Y \backslash X: f(X)+f(Y) \leq f(X-u+v)+f(Y+u-v)$,
where $X-u+v$ (resp., $Y+u-v$) is a short-hand notation for $(X \backslash\{u\}) \cup\{v\}$ (resp., $(Y \cup\{u\}) \backslash\{v\})$. It is shown that M^{\natural}-concavity for set functions is equivalent to the gross substitutes property in mathematical economics [9], and that M^{\natural}-concave functions constitute a proper subclass of submodular functions (see [12]). M^{\natural}-concavity for set functions is closely related to the concept of valuated matroid by Dress and Wenzel [3]; an M^{\natural}-concave function is defined over subsets of a finite set, while a valuated matroid is a function defined over bases of a matroid. It is noted that the sum of an M^{\natural}-concave function and a linear function is again an M^{\natural}-concave function, while the sum of two (or more) M^{\natural}-concave functions is not M^{\natural}-concave in general.

In this paper, we discuss the relationship between matroid rank functions and M^{\natural}-concavity. It is known that every matroid rank function is M^{\natural}-concave [8]. Moreover, a weighted version of matroid rank function called a weighted rank function is also M^{\natural}-concave [19], where a weighted rank function means a function $\rho_{w}: 2^{E} \rightarrow \mathbb{R}_{+}$expressed as

$$
\begin{equation*}
\rho_{w}(X)=\max \{w(Y) \mid Y \in \mathcal{F}, Y \subseteq X\} \quad(X \subseteq E) \tag{1.2}
\end{equation*}
$$

with a matroid $M=(E, \mathcal{F})$ and a nonnegative vector $w \in \mathbb{R}_{+}^{E}$. Here, we use the notation $w(Y)=\sum_{v \in Y} w(v)$. Note that a rank function in (1.1) is the weighted rank function with $w=(1,1, \ldots, 1)$.

We also consider the weighted sum of matroid rank functions, which is called a matroid-rank-sum function in $[2,5,6]$. That is, a set function $f: 2^{E} \rightarrow$ \mathbb{R}_{+}is a matroid-rank-sum function if f can be represented as

$$
\begin{equation*}
f(X)=\sum_{i=1}^{k} \alpha_{i} \rho_{i}(X) \tag{1.3}
\end{equation*}
$$

by using positive integer k, matroid rank functions $\rho_{i}: 2^{E} \rightarrow \mathbb{Z}_{+}(i=$ $1,2, \ldots, k)$, and nonnegative real numbers $\alpha_{i} \in \mathbb{R}_{+}(i=1,2, \ldots, k)$.

Although a matroid-rank-sum function (1.3) is not M^{\natural}-concave in general, we derive a sufficient condition for a matroid-rank-sum function to be M^{h} concave. For two matroids $M_{i}(i=1,2)$ with rank functions $\rho_{i}: 2^{E} \rightarrow \mathbb{Z}_{+}$, we say that matroid M_{1} is a strong quotient of M_{2} if the rank functions satisfy the following condition:

$$
\begin{equation*}
\rho_{1}(X)-\rho_{1}(Y) \leq \rho_{2}(X)-\rho_{2}(Y) \quad(\forall Y \subseteq \forall X \subseteq E) ; \tag{1.4}
\end{equation*}
$$

in this case, we also say that the rank function ρ_{1} is a strong quotient of ρ_{2}. We show that a matroid-rank-sum function in (1.3) is M^{\natural}-concave if the following condition holds (see Theorem 3):
(SQ) ρ_{i} is a strong quotient of ρ_{i+1} for each $i=1,2, \ldots, k-1$.
In addition, we show that every weighted rank function (1.2) can be represented as a weighted sum of matroid rank functions that satisfy the condition (SQ) (see Theorem 4). Hence, the results obtained in this paper are summarized as follows:
the set of weighted rank functions (1.2)
\subseteq the set of matroid-rank-sum functions (1.3) with (SQ)
\subseteq the set of M^{\natural}-concave functions.
This research is motivated by the submodular welfare maximization problem in combinatorial auctions, where matroid-rank-sum functions are regarded as a class of submodular functions with some useful properties (see $[1,2,5,6]$); indeed, they contain as special cases many concrete examples of submodular functions in this context. The submodular welfare maximization problem is NP-hard in general, even if the objective function is a matroid-rank-sum function. On the other hand, the problem can be solved exactly in polynomial time if the objective function is M^{\natural}-concave (see, e.g., [11]). Hence, the results in this paper shows that matroid-rank-sum functions with (SQ) constitute a tractable class of objective functions in the submodular welfare maximization problem.

2 Preliminaries

In this section we review some properties of matroids and M^{\natural}-concave functions, which will be used in the proofs of Section 3.
2.1 Matroids

A matroid $M=(E, \mathcal{F})$ is given as a pair of a ground set E and a family $\mathcal{F} \subseteq 2^{E}$ of independent sets. A family of independent sets of a matroid can be characterized by the following exchange property (see, e.g., [15, Remark 5.2]):
(G-EXC) $\forall I, J \in \mathcal{F}, \forall u \in I \backslash J$, (i) or (ii) (or both) holds:
(i) $I-u, J+u \in \mathcal{F}$,
(ii) $\exists v \in J \backslash I: I-u+v, J+u-v \in \mathcal{F}$.

Proposition 1 A nonempty set family $\mathcal{F} \subseteq 2^{E}$ is the family of independent sets of a matroid if and only if $\emptyset \in \mathcal{F}$ and \mathcal{F} satisfies (G-EXC).

More generally, the property (G-EXC) defines the concept of generalized matroid [20] (see also [7]); that is, a nonempty set family $\mathcal{F} \subseteq 2^{E}$ is called a generalized matroid if it satisfies (G-EXC) (see [15, Remark 5.2]). Proposition 1 shows that a family of independent sets of a matroid is equivalent to a generalized matroid containing the empty set.

The rank function $\rho: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid $M=(E, \mathcal{F})$ given by (1.1) satisfies the conditions (R1), (R2), and (R3), as mentioned in Introduction. We will also use the following property of rank functions (see, e.g., [16, Lemma 1.4.3]).
Proposition 2 Let $\rho: 2^{E} \rightarrow \mathbb{Z}_{+}$be a rank function of a matroid. Then, $\rho(X+u)-\rho(X) \in\{0,1\}$ holds for every $X \subseteq E$ and $u \in E \backslash X$.

In a linear optimization on a matroid, the optimal value can be expressed by using a matroid rank function (see, e.g., [18, Theorem 40.2]).

Proposition 3 Let $M=(E, \mathcal{F})$ be a matroid and $w \in \mathbb{R}_{+}^{E}$ be a nonnegative vector. Suppose that $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ with $n=|E|$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq$ $\cdots \geq w\left(e_{n}\right) \geq 0$. Then, it holds that

$$
\max \{w(X) \mid X \in \mathcal{F}\}=\sum_{i=1}^{n}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) \rho\left(E_{i}\right)
$$

where $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}(i=1,2, \ldots, n)$ and $w\left(e_{n+1}\right)=0$.
For two matroids $M_{i}(i=1,2)$ with rank functions $\rho_{i}: 2^{E} \rightarrow \mathbb{Z}_{+}$, we say that M_{1} is a strong quotient of M_{2} if rank functions ρ_{1} and ρ_{2} satisfy the condition (1.4); in this case, we also say that the rank function ρ_{1} is a strong quotient of ρ_{2}. A pair of matroids with strong-quotient relation can be obtained from a single matroid by deletion and contraction. Let $\widetilde{M}=(\widetilde{E}, \widetilde{\mathcal{F}})$ be a matroid with $E \subseteq \widetilde{E}$, and suppose that $X=\widetilde{E} \backslash E$ is an independent set of \widetilde{M}. We define set families $\widetilde{\mathcal{F}} \backslash X, \widetilde{\mathcal{F}} / X \subseteq 2^{E}$ by

$$
\tilde{\mathcal{F}} \backslash X=\{Y \backslash X \mid Y \in \widetilde{\mathcal{F}}\}, \quad \widetilde{\mathcal{F}} / X=\{Y \backslash X \mid Y \in \widetilde{\mathcal{F}}, X \subseteq Y\}
$$

Then, both of $(E, \widetilde{\mathcal{F}} \backslash X)$ and $(E, \widetilde{\mathcal{F}} / X)$ are matroids on the ground set E. We say that $(E, \widetilde{\mathcal{F}} \backslash X)$ and $(E, \widetilde{\mathcal{F}} / X)$ are matroids obtained from \widetilde{M} by deleting X and contracting X, respectively.

Proposition $4([\mathbf{2 1}, \mathbf{2 2}])(E, \widetilde{\mathcal{F}} / X)$ is a strong quotient of $(E, \widetilde{\mathcal{F}} \backslash X)$, and every strong-quotient pair of matroids can be obtained in this way.

$2.2 \mathrm{M}^{\natural}$-concave functions

A set function $f: 2^{E} \rightarrow \mathbb{R}$ is said to be M^{\natural}-concave if it satisfies the condition (M^{\natural}-EXC). The concept of M^{\natural}-concavity is originally introduced for functions defined on integer lattice points (see, e.g., [12]), and the present definition of M^{\natural}-concavity for set functions can be obtained by specializing the original definition through the one-to-one correspondence between set functions and functions defined on $0-1$ vectors.

It is known that every M^{\natural}-concave function is a submodular function (cf. [12]). Moreover, an M^{\natural}-concave function can be regarded a submodular function with an additional combinatorial property.

Theorem 1 (cf. $[\mathbf{9}, \mathbf{1 7}])$ A function $f: 2^{E} \rightarrow \mathbb{R}$ is M^{\natural}-concave if and only if it is a submodular function satisfying the following condition:

$$
\begin{aligned}
& f(X \cup\{u, v\})+f(X \cup\{t\}) \\
& \leq \max \{f(X \cup\{u, t\})+f(X \cup\{v\}), f(X \cup\{v, t\})+f(X \cup\{u\})\} \\
& \quad \text { for every } X \subseteq E \text { and every distinct } u, v, t \in E \backslash X .
\end{aligned}
$$

Proof It is shown [9] that M^{\natural}-concavity for a set function f is equivalent to the gross-substitutes property (see, e.g., $[9,17]$ for the definition of the grosssubstitutes property), while the gross-substitutes property for f can be characterized by the combination of submodularity and the condition (2.1), as shown in [17].

The condition (2.1) in Theorem 1 can be rewritten as follows.
Proposition 5 For a function $f: 2^{E} \rightarrow \mathbb{R}$, the condition (2.1) holds if and only if for every $X \subseteq E$ and every distinct $u, v, t \in E \backslash X$, the maximum among the three values $f(X \cup\{u, v\})+f(X \cup\{t\}), f(X \cup\{u, t\})+f(X \cup\{v\})$, and $f(X \cup\{v, t\})+f(X \cup\{u\})$ is attained by at least two of them.

3 Relationship among weighted rank functions, matroid-rank-sum functions, and M^{\natural}-concave functions

We denote

$$
\begin{aligned}
& \mathcal{M}^{\natural}=\left\{f \mid f: 2^{E} \rightarrow \mathbb{R}_{+} \text {is } \mathrm{M}^{\natural} \text {-concave }\right\}, \\
& \mathcal{R}_{\mathrm{wr}}=\left\{f \mid f: 2^{E} \rightarrow \mathbb{R}_{+} \text {is a weighted rank function }\right\}, \\
& \mathcal{R}_{\text {mrs-sq }}=\left\{f \mid f: 2^{E} \rightarrow \mathbb{R}_{+}\right. \text {is a matroid-rank-sum function } \\
&\text { with the condition (SQ) }\} .
\end{aligned}
$$

We will prove that the following relations hold:

$$
\mathcal{R}_{\mathrm{wr}} \subseteq \mathcal{R}_{\mathrm{mrs}-\mathrm{sq}} \subseteq \mathcal{M}^{\natural}
$$

$3.1 \mathrm{M}^{\natural}$-concavity of weighted rank functions
We firstly review the known results that weighted rank functions as well as matroid rank functions are M^{\natural}-concave. This shows that $\mathcal{R}_{\mathrm{wr}} \subseteq \mathcal{M}^{\natural}$ holds.

Theorem 2 ([19, Theorem 1.2]) For a matroid $M=(E, \mathcal{F})$ and a nonnegative vector $w \in \mathbb{R}_{+}^{E}$, the weighted rank function $\rho_{w}: 2^{E} \rightarrow \mathbb{R}_{+}$given by (1.2) is an M^{\natural}-concave function.

Proof For readers' convenience, we here give an elementary proof by Murota [14]. Take $X, Y \subseteq E$ and $u \in X \backslash Y$. Let $I, J \in \mathcal{F}$ be independent subsets of X and Y, respectively, such that $\rho_{w}(X)=w(I)$ and $\rho_{w}(Y)=w(J)$.

If $u \notin I$, then

$$
\rho_{w}(X-u) \geq w(I)=\rho_{w}(X), \quad \rho_{w}(Y+u) \geq w(J)=\rho_{w}(Y)
$$

which implies (i) in (M^{\natural}-EXC). So assume $u \in I$. If $J+u \in \mathcal{F}$, then
$\rho_{w}(X-u) \geq w(I-u)=\rho_{w}(X)-w(u), \quad \rho_{w}(Y+u) \geq w(J+u)=\rho_{w}(Y)+w(u)$,
which implies (i) in (M^{\natural}-EXC). So assume $J+u \notin \mathcal{F}$. Then, by (G-EXC) for \mathcal{F} (see Proposition 1), there exists $v \in J \backslash I$ such that $I-u+v, J+u-v \in \mathcal{F}$. If $v \in X$, then $I-u+v \subseteq X-u, J+u-v \subseteq Y+u$, and hence

$$
\begin{aligned}
& \rho_{w}(X-u) \geq w(I-u+v)=\rho_{w}(X)-w(u)+w(v), \\
& \rho_{w}(Y+u) \geq w(J+u-v)=\rho_{w}(Y)+w(u)-w(v),
\end{aligned}
$$

which implies (i) in (M^{\natural}-EXC). If $v \notin X$, then $v \in Y \backslash X$, and

$$
\begin{aligned}
\rho_{w}(X-u+v) & \geq w(I-u+v) \\
\rho_{w}(Y+u-v) & \geq w(J+u-v)
\end{aligned}=\rho_{w}(X)-w(u)+w(v), ~ 子(u)+w(u)-w(v), ~ \$
$$

which implies (ii) in (M^{\natural}-EXC)
By setting $w=(1,1, \ldots, 1)$ in Theorem 2, we obtain the following property:
Corollary 1 ([8, p. 51]) For a matroid $M=(E, \mathcal{F})$, its rank function ρ : $2^{E} \rightarrow \mathbb{Z}_{+}$given by (1.1) is an M^{\natural}-concave function.
3.2 Matroid-rank-sum functions and M^{\natural}-concave functions

We now prove the inclusion $\mathcal{R}_{\text {mrs-sq }} \subseteq \mathcal{M}^{\natural}$.
Theorem 3 Let k be a positive integer. For matroid rank functions $\rho_{i}: 2^{E} \rightarrow$ $\mathbb{Z}_{+}(i=1,2, \ldots, k)$ and nonnegative real numbers $\alpha_{i} \in \mathbb{R}_{+}(i=1,2, \ldots, k)$, the matroid-rank-sum function $f: 2^{E} \rightarrow \mathbb{R}_{+}$given by (1.3) is a monotonenondecreasing M^{\natural}-concave function if the condition (SQ) holds.

The following is the key property for the proof of Theorem 3. For submodular functions $f, g: 2^{E} \rightarrow \mathbb{R}$, we say, following [10], that f is a strong quotient of g if

$$
f(X)-f(Y) \leq g(X)-g(Y) \quad(\forall Y \subseteq \forall X \subseteq E)
$$

Lemma 1 Let $\rho: 2^{E} \rightarrow \mathbb{Z}_{+}$be the rank function of a matroid, and $g: 2^{E} \rightarrow \mathbb{R}$ be a monotone-nondecreasing M^{\natural}-concave function. If g is a strong quotient of ρ, then the function $f: 2^{E} \rightarrow \mathbb{R}$ given by

$$
f(X)=\alpha g(X)+\beta \rho(X) \quad(X \subseteq E)
$$

with nonnegative real numbers $\alpha, \beta \in \mathbb{R}_{+}$is a monotone-nondecreasing M^{\natural} concave function.

Proof By Theorem 1 and Proposition 5, it suffices to show that f is monotone nondecreasing and submodular, and satisfies the condition that
(*) the maximum in $\{\hat{f}(u), \hat{f}(v), \hat{f}(t)\}$ is attained by at least two of them
for every $X \subseteq E$ and every distinct $u, v, t \in E \backslash X$, where

$$
\begin{aligned}
& \hat{f}(u)=f(X \cup\{v, t\})+f(X \cup\{u\}), \hat{f}(v)=f(X \cup\{u, t\})+f(X \cup\{v\}), \\
& \hat{f}(t)=f(X \cup\{u, v\})+f(X \cup\{t\}) .
\end{aligned}
$$

Recall that the rank function ρ is monotone nondecreasing, submodular, and M^{\natural}-concave by (R2), (R3), and Corollary 1. Since g is M^{\natural}-concave, it is submodular by Theorem 1. Hence, monotonicity and submodularity of f follow from those of g and ρ.

To prove the condition (*), we fix $X \subseteq E$ and distinct elements $u, v, t \in$ $E \backslash X$. We define $\hat{g}(u), \hat{g}(v), \hat{g}(t)$ and $\hat{\rho}(u), \hat{\rho}(v), \hat{\rho}(t)$ in a similar way as $\hat{f}(u), \hat{f}(v), \hat{f}(t)$. Note that $\hat{f}(s)=\alpha \hat{g}(s)+\beta \hat{\rho}(s)$ holds for $s \in\{u, v, t\}$.

Since g and ρ are M^{\natural}-concave functions, Theorem 1 and Proposition 5 imply that the maximum in $\{\hat{g}(u), \hat{g}(v), \hat{g}(t)\}$ is attained by at least two of them, and that the maximum in $\{\hat{\rho}(u), \hat{\rho}(v), \hat{\rho}(t)\}$ is attained by at least two of them. Hence, $(*)$ holds immediately if the following condition holds:

$$
\begin{equation*}
\exists s \in\{u, v, t\}: \min \{\hat{g}(u), \hat{g}(v), \hat{g}(t)\}=\hat{g}(s), \min \{\hat{\rho}(u), \hat{\rho}(v), \hat{\rho}(t)\}=\hat{\rho}(s) \tag{3.1}
\end{equation*}
$$

In the following, we assume that the condition (3.1) does not hold and derive a contradiction.

We may assume, without loss of generality, that

$$
\hat{g}(u)=\hat{g}(t)>\hat{g}(v), \quad \hat{\rho}(t)=\hat{\rho}(v)>\hat{\rho}(u) .
$$

Since $\hat{g}(u)>\hat{g}(v)$, we have

$$
\begin{equation*}
g(X \cup\{v, t\})-g(X \cup\{v\})>g(X \cup\{u, t\})-g(X \cup\{u\}) \tag{3.2}
\end{equation*}
$$

Similarly, $\hat{\rho}(v)>\hat{\rho}(u)$ implies that

$$
\begin{equation*}
1=\rho(X \cup\{u, t\})-\rho(X \cup\{u\})>\rho(X \cup\{v, t\})-\rho(X \cup\{v\})=0, \tag{3.3}
\end{equation*}
$$

where the two equalities are by Proposition 2. Since g is a strong quotient of ρ, it holds that

$$
\begin{aligned}
0 & =\rho(X \cup\{v, t\})-\rho(X \cup\{v\}) \\
& \geq g(X \cup\{v, t\})-g(X \cup\{v\})>g(X \cup\{u, t\})-g(X \cup\{u\}),
\end{aligned}
$$

where the equality is by (3.3) and the second inequality is by (3.2). Hence, we have $g(X \cup\{u, t\})-g(X \cup\{u\})<0$, which contradicts the assumption that g is monotone nondecreasing.

We give a proof of Theorem 3 by using Lemma 1.
Proof (of Theorem 3) We prove the claim by induction on the integer k. If $k=1$ or $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k-1}=0$, then the claim follows from the property (R2) and Corollary 1. Hence, we assume $k \geq 2$ and $\alpha=\sum_{i=1}^{k-1} \alpha_{i}>0$. Define $g: 2^{E} \rightarrow \mathbb{R}$ by

$$
g(X)=\frac{1}{\alpha} \sum_{i=1}^{k-1} \alpha_{i} \rho_{i}(X)(X \subseteq E)
$$

Then, g is a monotone-nondecreasing M^{\natural}-concave function by the induction hypothesis. The condition (SQ) implies that ρ_{i} is a strong quotient of ρ_{k} for $i=1,2, \ldots, k-1$, i.e.,

$$
\rho_{i}(X)-\rho_{i}(Y) \leq \rho_{k}(X)-\rho_{k}(Y) \quad(\forall Y \subseteq \forall X \subseteq E)
$$

Hence, we have

$$
\begin{aligned}
g(X)-g(Y) & =\frac{1}{\alpha} \sum_{i=1}^{k-1} \alpha_{i}\left(\rho_{i}(X)-\rho_{i}(Y)\right) \\
& \leq \rho_{k}(X)-\rho_{k}(Y) \quad(\forall Y \subseteq \forall X \subseteq E),
\end{aligned}
$$

i.e., g is a strong quotient of ρ_{k}. Since $f=\alpha g+\alpha_{k} \rho_{k}$, the function f is monotone nondecreasing and M^{\natural}-concave by Lemma 1 .

Remark 1 It is noted that a matroid-rank-sum function without the condition (SQ) is not M^{\natural}-concave in general, which can be shown as follows by using a well-known fact that the intersection of matroids is not a matroid.

For $i=1,2$, let $M_{i}=\left(E, \mathcal{F}_{i}\right)$ be a matroid with rank function $\rho_{i}: 2^{E} \rightarrow \mathbb{Z}$, and assume that $\left(E, \mathcal{F}_{1} \cap \mathcal{F}_{2}\right)$ is not a matroid. We show that a function $f: 2^{E} \rightarrow \mathbb{R}$ given by $f=\rho_{1}+\rho_{2}$ is not M^{\natural}-concave, on the basis of the following fact (cf. [12]):
for an M^{\natural}-concave function $f: 2^{E} \rightarrow \mathbb{R}$ and a vector $p \in \mathbb{R}^{E}$, the set of maximizers $\arg \max \{f(X)-p(X) \mid X \subseteq E\}$ is a generalized matroid.

For $i=1,2$, we have $\rho_{i}(X)-|X| \leq 0$ for every $X \subseteq E$, and $\rho_{i}(X)-|X|=0$ holds if and only if X is an independent set of M_{i}. Therefore, it holds that

$$
\arg \max \left\{\rho_{i}(X)-|X| \mid X \subseteq E\right\}=\mathcal{F}_{i}
$$

For $p=(2,2, \ldots, 2)$, we have

$$
\begin{align*}
& \arg \max \{f(X)-p(X) \mid X \subseteq E\} \\
& =\arg \max \left\{\rho_{1}(X)+\rho_{2}(X)-2|X| \mid X \subseteq E\right\} \\
& =\arg \max \left\{\left(\rho_{1}(X)-|X|\right)+\left(\rho_{2}(X)-|X|\right) \mid X \subseteq E\right\} \tag{3.4}
\end{align*}
$$

Putting

$$
\mathcal{F}=\arg \max \left\{\rho_{1}(X)-|X| \mid X \subseteq E\right\} \cap \arg \max \left\{\rho_{2}(X)-|X| \mid X \subseteq E\right\}
$$

we have

$$
\begin{equation*}
\mathcal{F}=\mathcal{F}_{1} \cap \mathcal{F}_{2}, \tag{3.5}
\end{equation*}
$$

which implies, in particular, that \mathcal{F} is nonempty. Hence, we have

$$
\begin{equation*}
\arg \max \left\{\left(\rho_{1}(X)-|X|\right)+\left(\rho_{2}(X)-|X|\right) \mid X \subseteq E\right\}=\mathcal{F} . \tag{3.6}
\end{equation*}
$$

From (3.4), (3.5), and (3.6) follows that

$$
\arg \max \{f(X)-p(X) \mid X \subseteq E\}=\mathcal{F}_{1} \cap \mathcal{F}_{2}
$$

which is not a family of independent sets of a matroid. Moreover, $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is not a generalized matroid, which follows from Proposition 1 since $\emptyset \in \mathcal{F} \mathcal{F}_{1} \cap \mathcal{F}_{2}$. Hence, the function f is not M^{\natural}-concave.
3.3 Matroid-rank-sum functions and weighted rank functions

We finally show that $\mathcal{R}_{\mathrm{wr}}$ is contained in $\mathcal{R}_{\text {mrs-sq }}$. We denote $n=|E|$.
Theorem 4 Let $\rho_{w}: 2^{E} \rightarrow \mathbb{R}_{+}$be a weighted rank function given by (1.2) with a matroid $M=(E, \mathcal{F})$ and a nonnegative vector $w \in \mathbb{R}_{+}^{E}$. Then, there exist matroid rank functions $\rho_{i}: 2^{E} \rightarrow \mathbb{Z}_{+}(i=1,2, \ldots, n)$ satisfying the condition (SQ) and nonnegative real numbers $\alpha_{i} \in \mathbb{R}_{+}(i=1,2, \ldots, n)$ such that

$$
\rho_{w}=\sum_{i=1}^{n} \alpha_{i} \rho_{i} .
$$

To prove Theorem 4, we use the following property. To the end of this section, we assume, without loss of generality, that $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{n}\right) \geq 0$, and denote $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}(i=$ $1,2, \ldots, n)$.

Lemma 2 For every $X \subseteq E$, we have

$$
\begin{equation*}
\rho_{w}(X)=\sum_{i=1}^{n}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) \rho\left(X \cap E_{i}\right) . \tag{3.7}
\end{equation*}
$$

Proof Let $M_{X}=\left(X, \mathcal{F}_{X}\right)$ be the matroid obtained from M by restriction to X, i.e., \mathcal{F}_{X} is given by $\mathcal{F}_{X}=\{Y \cap X \mid Y \in \mathcal{F}\}$. Let $\rho_{X}: 2^{X} \rightarrow \mathbb{Z}_{+}$be the rank function of M_{X}. Then, we have $\rho_{X}(Y)=\rho(Y)$ for every $Y \subseteq X$.

Suppose that $X=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{t}}\right\}$ with $t=|X|$, where $i_{1}<i_{2}<\cdots<i_{t}$. Then, Proposition 3 implies

$$
\begin{align*}
\rho_{w}(X) & =\sum_{j=1}^{t}\left(w\left(e_{i_{j}}\right)-w\left(e_{i_{j+1}}\right)\right) \rho_{X}\left(\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{j}}\right\}\right) \\
& =\sum_{j=1}^{t}\left(w\left(e_{i_{j}}\right)-w\left(e_{i_{j+1}}\right)\right) \rho\left(X \cap E_{i_{j}}\right) \tag{3.8}
\end{align*}
$$

where $w\left(e_{i_{t+1}}\right)=0$. It is not difficult to see that the right-hand side in (3.8) is equal to the right-hand side in (3.7).

Proof (of Theorem 4) We firstly show that ρ_{w} can be represented as a weighted sum of matroid rank functions. Note that this part of the proof is essentially the same as the one in [4, Corollary 2.6].

For $i=1,2, \ldots, n$, we define $\mathcal{F}_{i}=\left\{X \cap E_{i} \mid X \in \mathcal{F}\right\}$. Then, $M_{i}=\left(E, \mathcal{F}_{i}\right)$ is a matroid, and denote by $\rho_{i}: 2^{E} \rightarrow \mathbb{Z}_{+}$the rank function of M_{i}. We have $\rho_{i}(X)=\rho\left(X \cap E_{i}\right)$ for every $X \subseteq E$ and $i=1,2, \ldots, n$. Hence, Lemma 2 implies that

$$
\begin{aligned}
\rho_{w}(X) & =\sum_{i=1}^{n}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) \rho\left(X \cap E_{i}\right) \\
& =\sum_{i=1}^{n}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) \rho_{i}(X) .
\end{aligned}
$$

This shows that ρ_{w} is represented as a weighted sum of matroid rank functions ρ_{i}.

To conclude the proof, we show that the condition (SQ) holds, i.e., $M_{i}=$ $\left(E, \mathcal{F}_{i}\right)$ is a strong quotient of $M_{i+1}=\left(E, \mathcal{F}_{i+1}\right)$ for $i=1,2, \ldots, n-1$. Let e_{0} be an element not contained in E, and let $\widetilde{\mathcal{F}}_{i+1}$ be a family of subsets of $E \cup\left\{e_{0}\right\}$ given by

$$
\widetilde{\mathcal{F}}_{i+1}=\mathcal{F}_{i+1} \cup\left\{\left(X \cup\left\{e_{0}\right\}\right) \backslash\left\{e_{i+1}\right\} \mid X \in \mathcal{F}_{i+1}, e_{i+1} \in X\right\}
$$

Then, $\widetilde{M}_{i+1}=\left(E \cup\left\{e_{0}\right\}, \widetilde{\mathcal{F}}_{i+1}\right)$ is a matroid. Note that in the matroid \widetilde{M}_{i+1}, element e_{0} is parallel to e_{i+1}. We see from the definition of M_{i} (resp., M_{i+1}) that the matroid M_{i} (resp., M_{i+1}) can be obtained from \widetilde{M}_{i+1} by contracting e_{0} (resp., by deleting e_{0}). Hence, M_{i} is a strong quotient of M_{i+1} by Proposition 4.

Remark 2 To show that $\mathcal{R}_{\text {wr }}$ is properly contained in $\mathcal{R}_{\mathrm{mrs} \text {-sq }}$, we present an example of matroid-rank-sum function which satisfies (SQ) but is not a weighted rank function.

Let $E=\{a, b, c\}$ and consider two matroids $M_{i}=\left(E, \mathcal{F}_{i}\right)(i=1,2)$ on E, where

$$
\mathcal{F}_{1}=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}\}, \quad \mathcal{F}_{2}=2^{E} .
$$

It can be shown that M_{1} is a strong quotient of M_{2}. For $i=1,2$, let $\rho_{i}: 2^{E} \rightarrow$ \mathbb{Z}_{+}be the rank function of matroid M_{i}, and define $f: 2^{E} \rightarrow \mathbb{Z}$ by $f=\rho_{1}+\rho_{2}$. Then, f is a matroid-rank-sum function with (SQ). Note that

$$
f(X)=2 \quad \text { if }|X|=1, \quad f(\{b, c\})=3 .
$$

Suppose, to the contrary, that f is a weighted rank function. Then, there exist a matroid $M=(E, \mathcal{F})$ and a weight vector $w \in \mathbb{R}_{+}^{E}$ such that

$$
f(X)=\max \{w(Y) \mid Y \in \mathcal{F}, Y \subseteq X\}
$$

Since $f(\{a\})=f(\{b\})=f(\{c\})=2$, we have $w(a)=w(b)=w(c)=2$. This implies that the value of f should be a multiple of 2 , while $f(\{b, c\})=3$, a contradiction. Hence, f is not a weighted rank function.

References

1. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. In: Integer Programming and Combinatorial Optimization, 12th International IPCO Conference, Lecture Notes in Computer Science, vol. 4513, pp. 182-196. Springer, Berlin (2007).
2. Dughmi, S.: A truthful randomized mechanism for combinatorial public projects via convex optimization. In: Proceedings of the 12th ACM Conference on Electronic Commerce (EC-2011), pp. 263-272. ACM, New York (2011).
3. Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214-250 (1992).
4. Dughmi, S., Roughgarden, T., Sundararajan, M.: Revenue submodularity. In: Proceedings of the 10th ACM Conference on Electronic Commerce (EC-2009), pp. 243-252. ACM, New York (2009).
5. Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mechanisms: toward optimal combinatorial auctions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, pp. 149-158. ACM, New York (2011).
6. Dughmi, S., Vondrák, J.: Limitations of randomized mechanisms for combinatorial auctions. In: Proceedings of IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 502-511. IEEE, Los Alamitos (2011).
7. Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Progr. 42, 489-563 (1988).
8. Fujishige, S.: Submodular Functions and Optimization. 2nd Edition. Elsevier, Amsterdam (2005).
9. Fujishige, S., Yang, S.: A note on Kelso and Crawford's gross substitutes condition. Math. Oper. Res. 28, 463-469 (2003).
10. Iwata, S., Murota, K., Shigeno, M.: A fast submodular intersection algorithm for strong map sequences. Math. Oper. Res. 22, 803-813 (1997).
11. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behavior 55, 270-296 (2006).
12. Murota, K.: Discrete convex analysis. Math. Progr. 83, 313-371 (1998).
13. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003).
14. Murota, K.: Submodular function minimization and maximization in discrete convex analysis. RIMS Kokyuroku Bessatsu. B23, 193-211 (2010).
15. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95-105 (1999).
16. Oxley, J.: Matroid Theory. Oxford University Press, New York (1992).
17. Reijnierse, H., van Gellekom, A., Potters, J.A.M.: Verifying gross substitutability. Econom. Theory 20, 767-776 (2002)
18. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003).
19. Shioura, A.: On the pipage rounding algorithm for submodular function maximization: a view from discrete convex analysis. Discrete Math. Algorithms Appl. 1, 1-23 (2009).
20. Tardos, É.: Generalized matroids and supermodular colourings. In: Recski, A.,Lovász, L (eds.) Matroid Theory, Colloquia Mathematica Societatis János Bolyai 40, pp. 359-382. North-Holland, Amsterdam (1985)
21. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976).
22. Welsh, D.J.A.: Matroids: fundamental concepts. In: Graham, R.L., Grötschel, M.,Lovász L. (eds.) Handbook of Combinatorics, pp. 481-526. Elsevier, Amsterdam (1995).

[^0]: This work is partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

