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Minimization of an M-convex Function

Akiyoshi SHIOURA'

Abstract

We study the minimization of an M-convex function introduced by Murota. It is shown
that any vector in the domain can be easily separated from a minimizer of the function. Based

on this property, we develop a polynomial time algorithm.
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1 Introduction

M-convex function, recently introduced by Murota [8, 9, 10], is an extension of valuated matroid
due to Dress and Wenzel [1, 2] as well as a quantitative generalization of (the integral points of)
the base polyhedron of an integral submodular system [4]. M-convexity is quite a natural concept
appearing in many situations; linear and separable-convex functions are M-convex, and more
general M-convex functions arise from the minimum cost flow problems with separable-convex
cost functions. M-convex function enjoys several nice properties which persuade us to regard it
as “convexity” in combinatorial optimization. Let V be a finite set with cardinality n. A function

f:ZY — RU{+oo} is said to be M-convex if it satisfies

(M-EXC) Vz,y € dom f, Yu € supp™*(z — y), Jv € supp™(z — y) such that
f(m)+f(y) > f(w_Xu‘i‘Xv)"i_f(y_*'Xu_Xv)a

where dom f = {z € ZV | f(x) < +o0}, supp*(z —) = {w € V' | a(w) > y(w)}, supp™(z — ) =
{weV |z(w) <y(w)}, and xu € {0,1}V is the characteristic vector of w € V. For an M-convex
function f with dom f C {0,1}V, —f is a valuation on a matroid in the sense of [1, 2]. The
property (M-EXC) implies that dom f is a base polyhedron.

In this paper, we consider the problem of minimizing an M-convex function. While the

concept of M-convexity is quite new and no efficient algorithm is known yet, several polynomial
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time algorithms are proposed for special cases of M-convex functions. It is well-known that a
linear function can be easily minimized over a base polyhedron by a simple greedy algorithm
(see [4]). A strongly-polynomial time algorithm was proposed by Fujishige [3] for a separable-
convex quadratic function, and weakly-polynomial time algorithms were given by Groenevelt [6]
and Hochbaum [7] for a general separable-convex function. It was reported that there is no
strongly-polynomial time algorithm for a general separable-convex function [7].

The aim of this paper is to develop an efficient algorithm for minimizing an M-convex function.
Since the local optimality is equal to the global optimality, an optimal solution can be found by
a descent method, which does not necessarily terminate in polynomial time. Instead, we propose
a different approach based on the property that any vector in the domain can be efficiently
separated from a minimizer of the function, which is shown later. Each iteration finds a certain
vector in the current domain, and divides the domain so that the vector and an optimal solution
are separated. By a clever choice of the vector, the size of the domain reduces in a certain ratio

iteratively, which leads to a weakly-polynomial time algorithm.

2 Theorems

Throughout the paper we suppose f : Z¥ — R U {400} is an M-convex function with bounded

domain. The global minimality of an M-convex function is characterized by the local minimality.

Theorem 2.1 ([8, 10]) For any = € dom f, f(z) < f(y) (Vy € ZV) if and only if f(z) <
f(@ = xu +xo) (Yu,v €V). N

Any vector in dom f can be easily separated from some minimizer of f.

Theorem 2.2 (i) Forxz € dom f andv € V, letu € V satisfy f(z—Xu+Xv) = gréi‘rfl{f(w—xs—kxv)}.
Set ' = — xy + Xv- Then, there exists * € argmin f with z*(u) < z'(u).

(ii) For ¢ € dom f and u € V, let v € V satisfy f(z — xu + Xo) = {:Iél‘.‘f_l{f(w — Xu + Xxt)}- Set
' =& — Xy + Xo- Then, there exists z* € argmin f with z*(v) > z/(v).

Proof. = We prove the first claim only. Let z* € argmin f with the minimum value of z*(u),
and to the contrary suppose z*(u) > z'(u). By (M-EXC), there exists w € supp™ (z* — ') such
that f(z*) + f(z') > f(@* — Xu + Xw) + f( + Xo — Xw)- The assumptions for z* and z’ imply

T* — Xu + Xw € argmin f, a contradiction. [ |

Corollary 2.3 Let ¢ € dom f with * € argmin f, and u,v € V satisfy f(z — xu + Xo) =

ntnrxlf{f(:c — Xs + xt)}. Then, there exists * € argmin f with 2*(u) < z(u) — 1, 2*(v) > z(v) + 1.
s,te

Let B C ZV be a base polyhedron, i.e., B satisfies the next property:

(B-EXC) Vz,y € dom f, Yu € supp™(z — y), Jv € supp™ (z — y) such that z — x, +
Xvs Y+ Xu— Xo € B.



Assume B is bounded. We define the narrowed base polyhedron Ng(C B) of B as follows. For
each w € V, define

la(w) = mip{y(w)}, ua(w) = max{y(w)} (1)
lp(w) = L(1 = 1/m)la(w) + (1/nua(w)], () = [(1/n)a@w)+ (1 - 1/njuaw)]. (2)

Then, Np is defined as Np = {y € B | l5(w) < y(w) < uz(w) (Yw € V)}. We see from definition
that Np is a base polyhedron if it is not empty.

Theorem 2.4 Ny # 0.

Proof. Let p:2Y — Z be the submodular function with p(§) =0 and B = {y € ZV | y(X) <
p(X) (VX CV),y(V) = p(V)}. Note that Ig(w) = p(V) — p(V —w), up(w) = p(w) (Vw € V). It
suffices to show the following (see [4, Theorem 3.8]):

(i) p(X) < p(X) (WX CV), (i) wp(X) 2 p(V) = p(V—X) (VX C V).

Since (ii) can be shown similarly, we prove (i) only. Let X C V with cardinality k. We claim

kp(X) +k Y {p(V —v) = p(V)} 2 D {p(v) + p(V —v) = p(V)}. (3)

veEX veX

Indeed, we have

LHS = kp(X)+ Y > {p(V—-w)=p(V)}+ > {p(V—-2v)=p(V)}
veX weX—v veX
> kp(X)+ Y {p(V = (X =0)) = p(V)} + D _{p(V —v) —p(V)} > RHS,
veX veX

where the inequalities are by the submodularity of p. Since the LHS is nonnegative, k in (3) can

be replaced by n(> k). Thus,

p(X) 2 (1=1/n) Y {p(V) = p(V =0)} + (1/n) D p(v) 2 lp(X). i

veEX veEX

For z € B and u,v € V, define
ég(z,v,u) =max{a|a € Z,z + a(xy — xu) € B} (> 0),

which is called the exchange capacity associated with z, v and uw. For any o with 0 < o <
ép(z,v,u), we have z + a(xy — xu) € B. The next theorem shows that a vector in Np can be

computed efficiently by using the exchange capacity.

Theorem 2.5 (cf. [4, Theorem 3.27]) A vector in Ng can be obtained by evaluating the

exchange capacity associated with B at most n? times, provided a vector in B is given.



Proof. Suppose we are given a vector zg € B with either zg(u) < l5(u) or zg(u) > uz(u) for
some u € V. It suffices to show that the following algorithm finds € B such that

Uy (w) < 2(w) < wpw) if l(w) < zo(w) < up(w) (Vo €V —u), Ilu) < 2(u) < upw)

by evaluating the exchange capacity at most n times. Assume w.l.o.g. that zo(u) > ug(u), n > 2

and V = {u,v1,v9, " ,vp_1}-

Step 0: Set z := zqg, 7 := 1.
Step 1: If z(v;) < u/z(v;), set @ := min{ép(z,vi,u),z(u) — vz (u),u5(vi) — z(v:)},
z =z + o Xo; — Xu)-
Step 2: If i =n — 1 or z(u) = u'g(u) then stop; otherwise : := ¢+ 1 and go to Step 1.

To the contrary assume z(u) > u/g(u) for the vector z obtained by the algorithm. Let z, be
any vector in Ng. Since z(u) > u/z(u) > z«(u), (B-EXC) implies that the existence of v; € V —u
with @' = & — xy + Xv; € B holds for some 7 with z(v;) < z*(v;) (< ug(v;)). Let z; be the vector
z after Step 1 of the i-th iteration. Then, it holds z'(u) < z;(u), ' (w) > z;(w) (Vw € V — u)
and z'(v;) > z;(v;). Hence, ég(z;,v;,u) = 0. On the other hand, we have z; + o, — xu € B by
applying (B-EXC) to 2, z; and v;, a contradiction. [ |

The values Ig(w) and up(w) defined by (1) can be computed in the similar way.

Theorem 2.6 For any w € V, the values [g(w) and ug(w) can be computed by evaluating the

exchange capacity associated with B at most n times, provided a vector in B is given.

3 Algorithms

Theorem 2.1 immediately leads to the following algorithm.

Algorithm STEEPEST _DESCENT

Step 0: Let = be any vector in dom f.

Step 1: If f(z) = gl;lé%{f(a: — Xs + xt)} then stop. z is a minimizer.

Step 2: Find u,v € V with f(z — xu + Xv) = g?é%{f(w — Xs + Xt)}-

Step 3: Set & := = — xy + Xo- Go to Step 1. O

This algorithm always terminates since the function value of « decreases strictly in each iteration.
However, there is no guarantee for the polynomiality of the number of iterations.
The next algorithm maintains a set B (C dom f) which is a base polyhedron containing a

minimizer of f. It reduces B iteratively by exploiting Corollary 2.3 and finally finds a minimizer.

Algorithm DOMAIN_REDUCTION
Step 0: Set B := dom f.



Step 1: Find a vector z € Np.

Step 2: If f(z) = sI’];léI‘}{f(CB — Xs + xt)} then stop.

Step 3: Find u,v € V with f(z — xu + Xv) = s%lé%{f(x —xs+x¢)}

Step 4: Set B:= BN{y € Z" | y(u) < z(u) — 1, y(v) > z(v) + 1}. Go to Step 1. 0
We analyze the number of iterations of the algorithm. Denote by B; the set B in the ¢-th

iteration, and let [;(w) = Ip,(w), u;(w) = up, (w) for each w € V. It is clear that u;(w) — ;(w) is

monotonically nonincreasing w.r.t. ¢. Furthermore, we have the following:

Lemma 3.1 u;q1(w) — lit1(w) < (1 — 1/n){u;(w) — l;(w)} for w € {u,v}, where u,v € V are
the elements found in Step 3.

Proof. We show the case w = u. Let £ € Np, be the vector chosen in Step 1. Then,

uip1(u) = liyi(u) < @(u) =1 —1(u)
< [A/m)li(u) + (1 = 1/n)ui(w)] =1 = Li(w) < (1= 1/n){ui(u) = li(u)}.
The proof for the case w = v is similar and omitted. [ |

Let L = Iu{lgx)}{ul(w) —l1(w)}.

Lemma 3.2 The algorithm DOMAIN_REDUCTION terminates in O(n?log L) iterations.

Proof. Since the value u;(w) — l;(w) (w € V) is a nonnegative integer, the algorithm stops if
ui(w) —1;(w) < 1 for all w € V. Let k be the minimum integer with (1 —1/n)*{u;(w)—11(w)} < 1.
Suppose uq(w) # l1(w) and n > 2. Then,

E<—In{ui(w) —li(w)}/In(1 —1/n) +1 < nln{ui(w) — l1(w)} + 1.
by a well-known inequality Inz < z — 1 (Vz > 0). Thus the claim follows. |

In the following, we explain how to perform each step, especially how to find a vector in Np.
We assume that a vector z¢g € dom f and the value L are given in advance.

We maintain the set B by using two vectors a,b with —a(w),b(w) € ZU {400} (Vw € V) as
B=domfn{y € ZV |a(w) < y(w) < bw) (Vw € V)}. Maintenance of a,b is easy: initially
set a(w) = —o0,b(w) = +oo (Yw € V), and update only the values a(v) and b(u) to z(v) + 1,
z(u) — 1, respectively in Step 4 of each iteration.

When finding a vector in Npg, we first compute the values lg(w),up(w) (Yw € V) defined
by (1), which can be done by O(n?)-time evaluation of the exchange capacity associated with
B from Theorem 2.6. The exchange capacity can be computed in O(log L) time by the binary
search since 0 < ég(z,v,u) < L (Vo € B,Vu,v € V). Then, we compute l5(w), uz(w) (Vw € V)
defined by (2) by using floor and ceiling operations. Note that floor and ceiling operations can be

performed easily since n is the denominator of each value for which floor or ceiling is operated.



After computing the values I’z (w),u/z(w) we can find z € Ng by O(n?)-time evaluation of the
exchange capacity. Thus, Step 1 can be performed in O(n?log L) time.

The other steps require O(n?)-time evaluation of f.

Theorem 3.3 Ifa vectorindom f and the value L are given, the algorithm DOMAIN_REDUCTION

finds a minimizer of f in O(n*log? L) time.
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