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1 Introduction

In recent years, combinatorial optimization problems with nonlinear objec-
tive functions have been dealt with, and extensive studies have been done
for revealing the “well-solved” structure in nonlinear combinatorial opti-
mization problems [2, 4, 9, 10, 11, 23, 15, 16]. The concepts of M-convexity
and L-convexity, introduced by Murota [12, 13, 15, 16] for functions on
the integer lattice, extract combinatorial structures in well-solved nonlinear
combinatorial optimization problems; subsequently, their variants called M\-
convexity and L\-convexity were introduced by Murota–Shioura [17] and by
Fujishige–Murota [8], respectively. Applications of M-/L-convexity can be
found in mathematical economics with indivisible commodities [3, 21, 22],
system analysis by mixed polynomial matrices [14], etc. These concepts
are extended to polyhedral convex functions and quadratic functions by
Murota–Shioura [18, 19], and to general convex functions [20]. It can be
easily imagined that the previous results of M-/L-convexity for polyhedral
convex functions and quadratic functions naturally extend to more general
M-/L-convex functions. However, the proofs cannot be extended so directly
to general M-/L-convex functions, but some technical difficulties such as
topological issues arise. The main aim of this paper is to provide rigor-
ous proofs of the fundamental properties of general M-convex and L-convex
functions in continuous variables. The conjugacy relationship between M-
convex and L-convex functions is shown in the companion paper [20] (see
Section 2.4).

The organization of this paper is as follows. Definitions and examples
are provided in Section 2, where we also consider the set version of M-/L-
convexity in addition to M-/L-convex functions. In Sections 3.1 and 4.1
we show that closed M-/L-convex sets and closed proper positively homo-
geneous M-/L-convex functions have polyhedral structures. Fundamental
properties of M-/L-convex functions are shown in Sections 3.2 and 4.2, along
with equivalent axioms for M-/L-convex functions and local combinatorial
structure of M-/L-convex functions such as directional derivatives, subdif-
ferentials, and minimizers.

2 Preliminaries

2.1 Notation and Definitions

Throughout this paper, we assume that n is a positive integer, and put
N = {1, 2, . . . , n}. The cardinality of a finite set X is denoted by |X|. The
characteristic vector of a subset X ⊆ N is denoted by χX (∈ {0, 1}n), i.e.,
χX(i) = 1 for i ∈ X and χX(i) = 0 for i ∈ N \ X. We denote χi = χ{i}

for i ∈ N , 0 = χ∅, and 1 = χN . The sets of reals and nonnegative reals are
denoted by R and by R+, respectively. For x = (x(i) | i = 1, . . . , n) ∈ Rn
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and p = (p(i) | i = 1, . . . , n) ∈ Rn, we define

‖x‖1 =
∑n

i=1 |x(i)|, x(X) =
∑

i∈X x(i) (X ⊆ N),
〈p, x〉 =

∑n
i=1 p(i)x(i).

For α ∈ R ∪ {−∞} and β ∈ R∪{+∞} with α ≤ β, we define the intervals
[α, β] = {γ ∈ R | α ≤ γ ≤ β} and (α, β) = {γ ∈ R | α < γ < β}.

A set S ⊆ Rn is said to be convex if (1 − α)x + αy ∈ S for all x, y ∈ S
and α ∈ [0, 1], and a polyhedron if there exist some {pi}

k
i=1 (⊆ Rn) and

{αi}
k
i=1 (⊆ R) (k ≥ 0) such that S = {x ∈ Rn | 〈pi, x〉 ≤ αi (∀i)}.

Let f : Rn → R ∪ {±∞} be a function. The effective domain and the
epigraph are given by

dom f = {x ∈ Rn | −∞ < f(x) < +∞},
epif = {(x, α) ∈ Rn ×R | α ≥ f(x)}.

We denote the set of minimizers of f by arg min f = {x ∈ Rn | f(x) ≤
f(y) (∀y ∈ Rn)}, which can be the empty set. A function f is said to be
convex if epif is a convex set. If f > −∞, then f is convex if and only if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) (2.1)

for all x, y ∈ dom f and α ∈ [0, 1]. The inequality (2.1) for α = 1/2 is called
mid-point convexity. For a continuous function, the mid-point convexity is
equivalent to the convexity.

Remark 2.1. Mid-point convexity does not imply convexity in general. It is
known that there exists a discontinuous and nonconvex function ϕ : R → R
satisfying Jensen’s equation (see, e.g., [1, pp. 43–48], [24, p. 217]):

ϕ(α) + ϕ(β) = 2ϕ((α + β)/2) (∀α, β ∈ R). (2.2)

Such ϕ is mid-point convex, and not convex.

A convex function f : Rn → R∪{+∞} is said to be proper if dom f 6= ∅,
and closed if epif is a closed set. For a closed proper convex function f :
Rn → R∪{+∞}, any level set {x ∈ Rn | f(x) ≤ η} (η ∈ R) is a closed
set, and arg min f 6= ∅ if dom f is bounded. A convex function is said to be
polyhedral if its epigraph is a polyhedron. A function f : Rn → R ∪ {±∞}
is said to be positively homogeneous if f(αx) = αf(x) for all x ∈ Rn and
α > 0.

Let f : Rn → R ∪ {±∞} be a convex function, and x ∈ dom f . For
d ∈ Rn, the directional derivative of f at x with respect to d is defined by

f ′(x; d) = lim
α↓0

{f(x+ αd) − f(x)}/α,

which is a positively homogeneous convex function in d with f ′(x;0) = 0.
The subdifferential of f at x is defined as

∂f(x) = {p ∈ Rn | f(y) ≥ f(x) + 〈p, y − x〉 (∀y ∈ Rn)}.
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2.2 Definition of M-convex Functions

We call a function f : Rn → R∪{+∞} M-convex if it is convex and satisfies
(M-EXC):

(M-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x−y), ∃j ∈ supp−(x−y), ∃α0 > 0
satisfying

f(x) + f(y) ≥ f(x−α(χi−χj)) + f(y+α(χi−χj)) (∀α∈[0, α0]), (2.3)

where supp+(x−y) = {i ∈ N | x(i) > y(i)} and supp−(x−y) = {i ∈ N |
x(i) < y(i)}. An M-convex function is said to be closed proper M-convex
if it is closed proper convex, in addition. The effective domain of a closed
proper M-convex function is contained in a hyperplane {x ∈ Rn | x(N) = r}
for some r ∈ R.

Proposition 2.2 ([20, Prop. 2.2]). For a closed proper M-convex function
f : Rn → R∪{+∞}, we have x(N) = y(N) (∀x, y ∈ dom f).

In view of this, we say that a function f : Rn → R∪{+∞} is M\-convex

if the function f̂ : RN̂ → R∪{+∞} defined by

f̂(x0, x) =

{
f(x) ((x0, x) ∈ RN̂ , x0 = −x(N)),
+∞ (otherwise)

(2.4)

is M-convex, where N̂ = {0} ∪N ; we say that f is closed proper M\-convex
if it is closed proper convex, in addition. M\-convexity of f is characterized
by the following exchange property (cf. [17, 18, 19]):

(M\-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y) ∪ {0},
∃α0 > 0 satisfying (2.3),

where χ0 = 0 by convention.

Theorem 2.3. A closed proper convex function f is M\-convex if and only
if it satisfies (M\-EXC).

Proof. The “only if” part is obvious from the definition. The “if” part is
proven later in Section 3.3.

By definition, closed proper M\-convex function is essentially equivalent
to closed proper M-convex function, whereas the class of closed proper M\-
convex functions contains that of closed proper M-convex functions as a
proper subclass. Every property of M-convex functions can be restated in
terms of M\-convex functions, and vice versa. In this paper, we primarily
work with M-convex functions, making explicit statements for M\-convex
functions when appropriate.
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We also define the set version of M-/M\-convexity. We call a set B ⊆ Rn

M-convex (resp. M\-convex) if its indicator function δB : Rn → {0,+∞}
defined by

δB(x) =

{
0 (if x ∈ B),
+∞ (otherwise)

is M-convex (resp. M\-convex). Equivalently, an M-convex set is defined as
a convex set satisfying the exchange property (B-EXC):

(B-EXC) ∀x, y ∈ B, ∀i ∈ supp+(x − y), ∃j ∈ supp−(x − y), ∃α0 > 0
satisfying x− α(χi − χj) ∈ B and y + α(χi − χj) ∈ B for all α ∈ [0, α0].

An M-convex (resp., M\-convex) set is said to be closed M-convex (resp.,
closed M\-convex) if it is closed, in addition. In fact, closed M-/M\-convex
sets are polyhedra as shown later in Section 3.2. Hence, these concepts co-
incide with those of M-/M\-convex polyhedra introduced in [18]. In other
words, closed M-convex and M\-convex sets are nothing but the base poly-
hedra of submodular systems [7] and generalized polymatroids [5, 6], respec-
tively.

Proposition 2.4 (cf. [20, Prop. 2.2]). For a closed M-convex set B, we
have x(N) = y(N) (∀x, y ∈ B).

Remark 2.5. The property (B-EXC) alone, without closedness, does not
imply convexity nor connectivity. An example is the set

{(x(1), x(2)) ∈ R2 | x(1) + x(2) = 0, x(1) < 0}
∪{(x(1), x(2)) ∈ R2 | x(1) + x(2) = 1, x(1) > 1},

which satisfies (B-EXC); however, it is neither convex nor connected. Even
if convexity assumption is added, (B-EXC) is still independent of combinato-
rial properties. A typical example is {x ∈ Rn |

∑n
i=1 x(i)

2 < γ, x(N) = 0}
(γ > 0), which is an open ball in a hyperplane.

Remark 2.6. The property (M-EXC) alone does not imply convexity nor
continuity. Consider a discontinuous and nonconvex function ϕ : R → R
satisfying Jensen’s equation (2.2), and define f : R2 → R ∪ {+∞} by
dom f = {x ∈ R2 | x(1) + x(2) = 0} and f(x) = ϕ(x(1)) for x ∈ dom f .
Then, f satisfies (M-EXC).

Remark 2.7. The effective domain of a closed M-convex function is not a
closed set in general. An example is the function f : R2 → R∪{+∞} given
by dom f = {x ∈ R2 | x(1) + x(2) = 0, x(1) > 0} and f(x) = 1/x(1) for
x ∈ dom f .
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2.3 Definition of L-convex Functions

We call a function g : Rn → R∪{+∞} L-convex if g is convex and satisfies
(LF1) and (LF2):

(LF1) g(p) + g(q) ≥ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g),
(LF2) ∃r ∈ R such that g(p+ λ1) = g(p) + λr (∀p ∈ dom g, ∀λ ∈ R),

where p∧q, p∨q ∈ Rn are given by (p∧q)(i) = min{p(i), q(i)} and (p∨q)(i) =
max{p(i), q(i)} (i ∈ N). An L-convex function is said to be closed proper
L-convex if it is closed proper convex, in addition. In view of (LF2), we call

g : Rn → R∪{+∞} L\-convex if the function ĝ : RN̂ → R∪{+∞} defined
by

ĝ(p0, p) = g(p− p01) ((p0, p) ∈ RN̂ )

is L-convex, where N̂ = {0} ∪N ; we say that g is closed proper L\-convex if
it is closed proper convex, in addition. L\-convexity of g is characterized by
the following property:

(L\F) g(p)+g(q) ≥ g(p∨(q−λ1))+g((p+λ1)∧q) (∀p, q ∈ dom g, ∀λ ≥ 0).

Theorem 2.8 (cf. [18, Th. 4.39]). A function g is L\-convex if and only
if it is a convex function with (L\F).

By definition, L\-convex function is essentially equivalent to L-convex
function, whereas the class of L\-convex functions contains that of L-convex
functions as a proper subclass. Every property of L-convex functions can
be restated in terms of L\-convex functions, and vice versa. In this paper,
we primarily work with L-convex functions, making explicit statements for
L\-convex functions when appropriate.

We also define the set version of L-/L\-convexity. We call a set D ⊆ Rn

L-convex (resp. L\-convex) if its indicator function δD : Rn → {0,+∞} is
L-convex (resp. L\-convex). Equivalently, an L-convex set is defined as a
convex set satisfying (LS1) and (LS2):

(LS1) p, q ∈ D =⇒ p ∧ q, p ∨ q ∈ D,
(LS2) p ∈ D =⇒ p+ λ1 ∈ D (∀λ ∈ R).

An L-convex (resp., L\-convex) set is said to be closed L-convex (resp., closed
L\-convex) if it is a closed set, in addition. In fact, L-/L\-convex sets are
polyhedra as shown later in Section 4.2. Hence, these concepts coincide with
those of L-/L\-convex polyhedra introduced in [18].

The properties (LS1) and (LS2), without closedness or convexity as-
sumption, imply convexity.

Theorem 2.9. If D ⊆ Rn satisfies (LS1) and (LS2), then D is a convex
set.
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Proof. For p, q ∈ D and α ∈ [0, 1], we show (1 − α)p + αq ∈ D. By (LS2),
we may assume p ≤ q. Then, q = p +

∑k
h=1 λhχNh

holds for some λh > 0
and Nh ⊆ N (h = 1, 2, . . . , k) such that ∅ 6= N1 ⊂ N2 ⊂ · · · ⊂ Nk. Putting
p′j = p+ α

∑j
h=1 λhχNh

(j = 0, 1, . . . , k), we have

p′j = p′j−1 + αλjχNj
= (p′j−1 + αλj1) ∧ (p+

j∑

h=1

λhχNh
)

= (p′j−1 + αλj1) ∧ (p ∨ (q −
k∑

h=j+1

λh1)).

Since p′0 = p ∈ D, the equation above and L-convexity of D imply p′k =
(1 − α)p+ αq ∈ D.

Remark 2.10. The properties (LF1) and (LF2) imply mid-point convexity
(see Theorem 4.3 below); however, they do not imply convexity nor continu-
ity. Consider a discontinuous and nonconvex function ψ : R → R satisfying
Jensen’s equation (2.2). Then, the function g : R2 → R∪ {+∞} defined by
g(p) = ψ(p(1) − p(2)) (p ∈ R2) satisfies the submodular inequality (LF1)
with equality and (LF2) with r = 0.

Remark 2.11. There exists no function which is both closed proper M-
convex and closed proper L-convex. (Proof: Proposition 2.2 implies x(N) =
y(N) for any M-convex f and x, y ∈ dom f , whereas (LF2) implies that
x + λ1 ∈ dom f for any λ ∈ R.) On the other hand, the classes of M\-
convex and L\-convex functions have nonempty intersection; see Example
2.14.

Remark 2.12. The effective domain of a closed proper L-convex function
is not a closed set in general. For example, the function g : R2 → R∪{+∞}
defined by

g(p) =

{
1/(p(1) − p(2)) (if p(1) − p(2) > 0),
+∞ (otherwise)

is L-convex, and dom g = {p ∈ R2 | p(1) − p(2) > 0} is not a closed set.

2.4 Conjugacy

For a function f : Rn → R∪{+∞} with dom f 6= ∅, its (convex) conjugate
f• : Rn → R∪{+∞} is defined by

f•(p) = sup{〈p, x〉 − f(x) | x ∈ Rn} (p ∈ Rn).

Quite recently, it is proven that closed proper M-convex and L-convex func-
tions are conjugate to each other, as in the cases of polyhedral and quadratic
M-/L-convex functions [18, Th. 5.1], [19, Th. 4.1].
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Theorem 2.13 ([20, Th. 1.1]).
(i) If f is a closed proper M-convex function, then f • is a closed proper
L-convex function with (f •)• = f .
(ii) If g is a closed proper L-convex function, then g• is a closed proper M-
convex function with (g•)• = g.
(iii) The mappings f 7→ f • and g 7→ g• (f : M-convex, g : L-convex) are the
inverses of each other, providing a one-to-one correspondence between the
classes of closed proper M-convex and L-convex functions.

2.5 Examples

We show some examples of M-/M\-convex and L-/L\-convex functions. See
[20] for other examples.

Example 2.14 (affine functions). For p0 ∈ Rn and β ∈ R, the function
f : Rn → R∪{+∞} given by f(x) = 〈p0, x〉 + β (x ∈ dom f) is M-convex
or M\-convex according as dom f = {x ∈ Rn | x(N) = 0} or dom f = Rn.
For x0 ∈ Rn and ν ∈ R, the function g : Rn → R∪{+∞} given by g(p) =
〈p, x0〉 + ν (p ∈ Rn) is L-convex as well as L\-convex.

Example 2.15 (quadratic functions). Let A = (a(i, j))n
i,j=1 ∈ Rn×n be

a symmetric matrix. Define a quadratic function f : Rn → R by f(x) =
(1/2)xTAx (x ∈ Rn). Then, f is M\-convex if and only if

xTai ≥ min[0,min{xTaj | j ∈ supp−(x)}]

for all x ∈ Rn and i ∈ supp+(x), where ai denotes the i-th column of A for
i ∈ N . The function f is L\-convex if and only if

∑n
i=1 a(i, j) ≥ 0 (j ∈ N)

and a(i, j) ≤ 0 (i, j ∈ N, i 6= j). See [19].

Example 2.16. M-convex and L-convex functions arise from the minimum
cost flow/tension problems with nonlinear cost functions.

Let G = (V,A) be a directed graph with a specified vertex subset T ⊆ V .
Suppose that we are given a family of univariate closed convex functions
fa : R → R∪{+∞} (a ∈ A), representing the cost of flow on the arc a. A
vector ξ ∈ RA is called a flow, and the boundary ∂ξ ∈ RV of a flow ξ is
given by

∂ξ(v) =
∑

{ξ(a) | arc a leaves v}
−

∑
{ξ(a) | arc a enters v} (v ∈ V ).

Then, the minimum cost of a flow that realizes a supply/demand vector
x ∈ RT is represented by a function f : RT → R ∪ {±∞} defined as

f(x) = inf
ξ

{ ∑

a∈A

fa(ξ(a))

∣∣∣∣
(∂ξ)(v) = −x(v) (v ∈ T )
(∂ξ)(v) = 0 (v ∈ V \ T )

}
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for x ∈ RT . On the other hand, suppose that we are given another family of
univariate closed convex functions ga : R → R∪{+∞} (a ∈ A), representing
the cost of tension on the arc a. Any vector p̃ ∈ RV is called a potential, and
the coboundary δp̃ ∈ RA of a potential p̃ is defined by δp̃(a) = p̃(u) − p̃(v)
for a = (u, v) ∈ A. Then, the minimum cost of a tension that realizes a
potential vector p ∈ RT is represented by a function g : RT → R ∪ {±∞}
defined as

g(p) = inf
η,p̃

{ ∑

a∈A

ga(η(a))

∣∣∣∣
η(a) = −δp̃(a) (a ∈ A)
p̃(v) = p(v) (v ∈ T )

}

for p ∈ RT . It can be shown that both f and g are closed proper convex
if f(x0) and g(p0) are finite for some x0 ∈ RT and p0 ∈ RT , which is a
direct extension of the results in Iri [9] and Rockafellar [23] for the case of
|T | = 2. These functions, however, are equipped with different combinatorial
structures; f is M-convex and g is L-convex. See [20, Th. 2.10].

3 M-convex Functions

3.1 Sets and Positively Homogeneous Functions

M-convex sets and positively homogeneous M-convex functions constitute
important subclasses of M-convex functions, which appear as local structure
of general M-convex functions such as minimizers and directional derivative
functions (see Theorem 3.10). These objects are polyhedral, as follows.

Theorem 3.1.
(i) A closed set with (B-EXC) is a polyhedron. In particular, a closed M-
convex set is a polyhedron.
(ii) A closed proper positively homogeneous M-convex function is polyhedral
convex.

We prove the claim (i) below. The proof of (ii) is given later in Section
3.2. For a nonempty set B ⊆ Rn, we define a set function ρB : 2N →
R∪{+∞} by ρB(X) = sup{x(X) | x ∈ B} (X ⊆ N).

Lemma 3.2. Let B ⊆ Rn be a nonempty bounded closed set with (B-EXC),
and {Xk}

h
k=1 be subsets of N with X1 ⊂ X2 ⊂ · · · ⊂ Xh. Then, there exists

x∗ ∈ B with x∗(Xk) = ρB(Xk) (∀k = 1, 2, . . . , h).

Proof. The claim is shown by induction on the value h. Let xh ∈ B be a
vector with xh(Xh) = ρB(Xh). By the induction hypothesis, there exists a
vector x ∈ B satisfying x(Xk) = ρB(Xk) (k = 1, 2, · · · , h − 1), and assume
that x minimizes the value ‖x − xh‖1 among all such vectors. Suppose
that x(Xh) < ρB(Xh). By (B-EXC) and Proposition 2.4, there exist i ∈
supp+(x−xh)\Xh and j ∈ supp−(x−xh) such that x′ = x−α(χi−χj) ∈ B

8



for a sufficiently small α > 0. Here j ∈ N\Xh−1 holds since i ∈ N\Xh−1 and
x′(Xh−1) ≤ ρB(Xh−1) = x(Xh−1). Therefore, x′ satisfies x′(Xk) = ρB(Xk)
(∀k = 1, 2, · · · , h − 1) and ‖x′ − xh‖1 = ‖x − xh‖1 − 2α, a contradiction.
Therefore, x(Xh) = ρB(Xh).

Let ρ : 2N → R∪{+∞} be a set function. We call ρ submodular if it
satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) (3.1)

for all X,Y ⊆ N with ρ(X), ρ(Y ) < +∞. We define a polyhedron B(ρ) ⊆
Rn by

B(ρ) = {x ∈ Rn | x(X) ≤ ρ(X) (X ⊆ N), x(N) = ρ(N)}. (3.2)

For any convex set S ⊆ Rn, a point x ∈ S is called an extreme point of S
if there exist no y1, y2 ∈ S \{x} and α ∈ (0, 1) such that x = αy1 +(1−α)y2.

Theorem 3.3 ([7, Th. 3.22]). Let ρ : 2N → R∪{+∞} be a submodular
function with ρ(∅) = 0 and ρ(N) < +∞. Then, x ∈ Rn is an extreme point
of B(ρ) if and only if there exists {Xk}

n
k=0 ⊆ 2N such that ∅ = X0 ⊂ X1 ⊂

· · · ⊂ Xn = N and x(Xk) = ρ(Xk) < +∞ for all k = 0, 1, . . . , n.

Proof of Theorem 3.1 (i). Let B ⊆ Rn be a nonempty closed set with (B-
EXC). It suffices to show B = B(ρB) since B(ρB) is a polyhedron. The
inclusion B ⊆ B(ρB) is easy to see; therefore we prove the reverse inclusion.

We first assume that B is bounded. Let X,Y ⊆ N . From Lemma 3.2,
there exists x∗ ∈ B with x∗(X∩Y ) = ρB(X∩Y ) and x∗(X∪Y ) = ρB(X∪Y ),
which implies

ρB(X) + ρB(Y ) ≥ x∗(X) + x∗(Y )

= x∗(X ∩ Y ) + x∗(X ∪ Y ) = ρB(X ∩ Y ) + ρB(X ∪ Y ).

Therefore, ρB is a submodular function. By Lemma 3.2 and Theorem 3.3,
any extreme point of B(ρB) is contained in B. Hence we have B(ρB) ⊆ B.

Next, assume that B is unbounded. For a fixed x0 ∈ B, define Bk = {x ∈
B | x(i)−x0(i) ≤ k (i ∈ N)} and put ρk = ρBk

for k = 0, 1, 2, . . .. Since each
Bk is a bounded M-convex set, we have Bk = B(ρk). To prove B(ρB) ⊆ B,
let y be any vector in B(ρB). Then, there exists a sequence of vectors
{xk}

∞
k=0 such that xk ∈ B(ρk) ⊆ B (k = 0, 1, 2, . . .) and limk→∞ xk = y.

Since B is a close set, we have y ∈ B, i.e., B(ρB) ⊆ B.

3.2 Fundamental Properties of M-convex Functions

We first present two equivalent definitions of M-convex functions. For a
convex function f : Rn → R∪{+∞} and x ∈ dom f , we denote f ′(x; j, i) =
f ′(x;χj − χi) (i, j ∈ N).
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(M-EXCs) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) satisfying
(2.3) with α0 = (x(i) − y(i))/2t, where t = |supp−(x− y)|.
(M-EXC ′) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) satisfying
f ′(x; j, i) < +∞, f ′(y; i, j) < +∞, and f ′(x; j, i) + f ′(y; i, j) ≤ 0.

Theorem 3.4 ([20, Th. 3.10, 3.11]). For a closed proper convex func-
tion f : Rn → R∪{+∞}, (M-EXC), (M-EXCs), and (M-EXC ′) are all
equivalent.

A closed proper M\-convex function is supermodular on Rn.

Theorem 3.5 ([20, Prop. 3.4]). Let f : Rn → R∪{+∞} be a closed
proper convex function satisfying the property:

∀x, y ∈ dom f with x ≥ y, ∀i ∈ supp+(x− y), ∃α0 > 0 :
f(x) + f(y) ≥ f(x− αχi) + f(y + αχi) (α ∈ [0, α0]).

Then, f satisfies the supermodular inequality:

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y) (x, y ∈ Rn). (3.3)

In particular, a closed proper M\-convex function satisfies the supermodular
inequality (3.3).

Corollary 3.6 ([20, Prop. 3.12]). Let f : Rn → R∪{+∞} be a closed
proper M-convex function. For any x, y ∈ Rn and i ∈ N we have f(x) +
f(y) ≤ f(x̂) + f(y̌), where x̂ and y̌ are given as

x̂(j) =

{
min{x(j), y(j)} (j ∈ N \ {i}),
x(N) −

∑
k∈N\{i} min{x(k), y(k)} (j = i),

y̌(j) =

{
max{x(j), y(j)} (j ∈ N \ {i}),
y(N) −

∑
k∈N\{i} max{x(k), y(k)} (j = i).

Global optimality of an M-convex function is characterized by local op-
timality in terms of a finite number of directional derivatives.

Theorem 3.7. For a closed proper M-convex function f : Rn → R∪{+∞}
and x ∈ dom f , we have f(x) ≤ f(y) (∀y ∈ Rn) if and only if f ′(x; j, i) ≥ 0
(∀i, j ∈ N).

Proof. We show the “if” part by contradiction. Assume, to the contrary,
that f(x0) < f(x) holds for some x0 ∈ dom f . Put S = {y ∈ Rn | f(y) ≤
f(x0)}, which is a closed set since f is closed convex. Let x∗ ∈ S be a vector
with ‖x∗ − x‖1 = inf{‖y − x‖1 | y ∈ S}. By (M-EXC) applied to x and x∗,
there exist some i ∈ supp+(x − x∗), j ∈ supp−(x − x∗), and a sufficiently
small α > 0 such that

f(x∗) − f(x∗ + α(χi − χj)) ≥ f(x− α(χi − χj)) − f(x) ≥ αf ′(x; j, i) ≥ 0.

Hence, we have f(x∗ + α(χi − χj)) ≤ f(x∗) ≤ f(x0), which contradicts the
choice of x∗ since ‖(x∗ + α(χi − χj)) − x‖1 < ‖x∗ − x‖1.
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The following property means that a given point can be easily separated
from some minimizer of a closed proper M-convex function.

Theorem 3.8. Let f : Rn → R∪{+∞} be a closed proper M-convex func-
tion with arg min f 6= ∅.
(i) For x ∈ dom f and j ∈ N , let i ∈ N be such that f ′(x; j, i) = mins∈N f ′(x; j, s).
Then, there exists x∗ ∈ arg min f with x∗(i) ≤ x(i).
(ii) For x ∈ dom f and i ∈ N , let j ∈ N be such that f ′(x; j, i) = mint∈N f ′(x; t, i).
Then, there exists x∗ ∈ arg min f with x∗(j) ≥ x(j).
(iii) For x ∈ dom f , let i, j ∈ N be such that f ′(x; j, i) = mins,t∈N f ′(x; t, s).
Then, there exists x∗ ∈ arg min f with x∗(i) ≤ x(i) and x∗(j) ≥ x(j).

Proof. (i) Assume, to the contrary, that there is no x∗ ∈ arg min f with
x∗(i) ≤ x(i). Let x∗ be an element of arg min f with x∗(i) being minimum.
Then, we have x∗(i) > x(i). By applying (M-EXC) to x∗, x, and i we obtain
some k ∈ supp−(x∗ − x) and α > 0 such that

f(x∗) + f(x) ≥ f(x∗−α(χi−χk)) + f(x+α(χi−χk)).

By the choice of x∗, we have f(x∗−α(χi−χk)) > f(x∗), and hence f(x +
α(χi−χk)) < f(x). This inequality and the convexity of f yield f ′(x; i, k) <
0. By Theorem 3.10 (i) (to be shown below), it holds that f ′(x; j, k) ≤
f ′(x; j, i) + f ′(x; i, k) < f ′(x; j, i), a contradiction to the choice of i.

(ii) The proof is similar to that for (i).
(iii) By (i) there exists x∗ ∈ arg min f with x∗(i) ≤ x(i); we assume that

x∗ maximizes x∗(j) among all such vectors. If x∗(j) ≥ x(j) is not satisfied,
(M-EXC) applies to x, x∗, and j, to yield some k ∈ supp−(x−x∗) and α > 0
such that

f(x) + f(x∗) ≥ f(x−α(χj−χk)) + f(x∗+α(χj−χk)).

By the choice of x∗, we have f(x∗ + α(χj − χk)) > f(x∗), and hence
f(x − α(χj − χk)) < f(x). This inequality and the convexity of f yield
f ′(x; k, j) < 0. From Theorem 3.10 (i) follows f ′(x; k, i) ≤ f ′(x; k, j) +
f ′(x; j, i) < f ′(x; j, i), a contradiction to the choice of i, j.

The directional derivative functions and subdifferentials of an M-convex
function have nice combinatorial structures such as polyhedral M-/L-convexity.
For p ∈ Rn, we define f [p] : Rn → R∪{+∞} by f [p](x) = f(x) + 〈p, x〉
(x ∈ Rn). For a function γ : N×N → R∪{+∞}, we define a set D(γ) ⊆ Rn

by
D(γ) = {p ∈ Rn | p(j) − p(i) ≤ γ(i, j) (i, j ∈ N)}, (3.4)

and a function fγ : Rn → R ∪ {±∞} by

fγ(x) = inf{
∑

(i,j)∈A

λijγ(i, j) |
∑

(i,j)∈A

λij(χj − χi) = x, λij ≥ 0 ((i, j) ∈ A)}

for x ∈ Rn, where A = {(i, j) | i, j ∈ N, γ(i, j)< + ∞}.
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Lemma 3.9. Let f : Rn → R∪{+∞} be a closed proper M-convex function,
x0, y0 ∈ dom f , i ∈ supp+(x0−y0), and supp−(x0−y0) = {j1, j2, · · · , jt},
where t = |supp−(x0−y0)|. Then, there exist yh ∈ dom f and αh ∈ R+

(h = 1, . . . , t) satisfying
∑t

h=1 αh = x0(i)−y0(i), yh = yh−1+αh(χi−χjh
),

and
f(yh) ≤ f(yh−1) − αhf

′(x; jh, i) (h = 1, . . . , t). (3.5)

Proof. For each h = 1, 2, · · · , t, we recursively define αh ∈ R and yh ∈ Rn

by

αh = sup{α | yh−1 + α(χi − χjh
) ∈ dom f,

α ≤ min(x(i) − yh−1(i), yh−1(jh) − x(jh)),

f(yh−1 + α(χi − χjh
)) ≤ f(yh−1) − αf ′(x; jh, i)}

and yh = yh−1 + αh(χi − χjh
). Then, (3.5) follows from the definition of

yh and closed convexity of f . Assume, to the contrary, that
∑t

h=1 αh <
x0(i) − y0(i). Since i ∈ supp+(x0 − yt), there exist jh ∈ supp−(x0 − yt) ⊆
supp−(x0 − y0) and a sufficiently small α > 0 such that

f(x0) + f(yt) ≥ f(x0 − α(χi − χjh
)) + f(yt + α(χi − χjh

)).

By Corollary 3.6, we obtain

f(yh + α(χi − χjh
)) + f(yt) ≤ f(yt + α(χi − χjh

)) + f(yh).

Combining the two inequalities, we have

f(yh + α(χi − χjh
)) − f(yh) ≤ f(x0) − f(x0 − α(χi − χjh

)) ≤ −αf ′(x0; jh, i).

However, this contradicts the definition of yh.

Theorem 3.10. Let f : Rn → R∪{+∞} be a closed proper M-convex func-
tion and x ∈ dom f . Define γx : N ×N→R∪{±∞} by γx(i, j) = f ′(x; j, i)
(i, j ∈ N).
(i) γx satisfies γx(i, i) = 0 (i ∈ N) and the triangle inequality γx(i, j) +
γx(j, k) ≥ γx(i, k) (i, j, k ∈ N).
(ii) ∂f(x) satisfies ∂f(x) = D(γx), and is a closed L-convex set if γx > −∞.
(iii) f ′(x; ·) satisfies f ′(x; ·) = fγx, and is closed proper positively homoge-
neous M-convex if f ′(x; ·) > −∞.

Proof. (i): For i, j, k ∈ N , Corollary 3.6 implies

γx(i, j) + γx(j, k) = lim
α↓0

[f(x+α(χj−χi)) + f(x+α(χk−χj)) − 2f(x)]/α

≥ lim
α↓0

[f(x+ α(χk − χi)) − f(x)]/α = γx(i, k).
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(ii): Since p ∈ ∂f(x) is equivalent to x ∈ arg min f [−p], the equation
∂f(x) = D(γx) follows from Theorem 3.7. L-convexity of the set ∂f(x)
follows from (i) (see [18, Th. 3.23]).

(iii): Due to the property (i), it suffices to prove f ′(x; d) = fγx(d) for
d ∈ Rn (see [18, Th. 4.19]). Since f ′(x; ·) is positively homogeneous convex,
we have

f ′(x; d) = f ′(x;
∑

i,j∈N

λij(χj − χi)) ≤
∑

i,j∈N

λijf
′(x; j, i)

for any {λij}i,j∈N (⊆ R+) satisfying
∑

i,j∈N λij(χj − χi) = d. Hence, we
have f ′(x; d) ≤ fγx(d). On the other hand, repeated application of Lemma
3.9 implies that for any α > 0 there exists {λij}i,j∈N (⊆ R+) satisfying∑

i,j∈N λij(χj − χi) = d and

f(x+ αd) − f(x) ≥ α
∑

i,j∈N

λijf
′(x; j, i) ≥ αfγx(d).

This implies f ′(x; d) ≥ fγx(d).

Proof of Theorem 3.1 (ii). Let f : Rn → R∪{+∞} be closed proper pos-
itively homogeneous M-convex, and define γ : N × N → R∪{+∞} by
γ(i, j) = f(χj − χi) (i, j ∈ N). Then, it suffices to show that f(x) = fγ(x)
holds for any x ∈ Rn. Since f(y) = f ′(0; y) for y ∈ Rn, this follows imme-
diately from Theorem 3.10 (iii).

The next theorem shows that each “face” of the epigraph of a closed
proper M-convex function is an M-convex polyhedron. The proof is easy.

Theorem 3.11. Let f : Rn → R∪{+∞} be an M-convex (resp. closed
proper M-convex) function. For p ∈ Rn, arg min f [p] is M-convex (resp. closed
M-convex) if it is nonempty.

3.3 Proof of Theorem 2.3

We give a proof of Theorem 2.3, a characterization of closed proper M\-
convex functions by (M\-EXC).

Let f : Rn → R∪{+∞} be a closed proper convex function satisfying

(M\-EXC). We shall derive the M-convexity of the function f̂ : RN̂ →
R∪{+∞} in (2.4), which is equivalent to the L-convexity of f̂• = (f̂)• by
Theorem 2.13. The property (LF2) for f̂• is immediate from the definition
(2.4) of f̂ . Hence, it remains to show the submodularity (LF1) for f̂•. We
here assume that dom f̂ is bounded, since the case of unbounded dom f̂ can
be easily reduced to the bounded case (see [20]). Since the boundedness of
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dom f̂ implies dom f̂• = RN̂ , the submodularity of f̂• is equivalent to the
local submodularity (see, e.g., [18, Th. 4.27]):

f̂•(p̂+ λχi) + f̂•(p̂+ µχj) ≥ f̂•(p̂) + f̂•(p̂+ λχi + µχj), (3.6)

where p̂ ∈ RN̂ , i, j ∈ N̂ are distinct indices, and λ, µ are nonnegative reals.

To show the local submodularity (3.6) for f̂•, we fix p̂ ∈ RN̂ and i, j ∈ N̂ ,
and define functions ĝ, f̂ : R2 → R∪{+∞} by

ĝij(λ, µ) = f̂•(p̂+ λχi + µχj) (λ, µ ∈ R), (3.7)

f̂ij(α, β) = inf{f̂(x̂) − 〈p̂, x̂〉 | x̂ ∈ dom f̂ , x̂(i) = α, x̂(j) = β}

(α, β ∈ R). (3.8)

Then, ĝij = (f̂ij)
• (see [20, Lemma 3.2]), and (M\-EXC) for f implies su-

permodularity of f̂ij, as shown below. Supermodularity of f̂ij is equivalent

to submodularity of (f̂ij)
• ([20, Prop. 3.6]), which in turn implies local sub-

modularity (3.6).
We now show that (M\-EXC) for f implies supermodularity of f̂ij. By

Theorem 3.5, it suffices to show that f̂ij has the following property:

∀(α, β), (α′, β′) ∈ dom f̂ij with α > α′, β ≥ β′, ∃δ0 > 0:

f̂ij(α, β) + f̂ij(α
′, β′) ≥ f̂ij(α− δ, β) + f̂ij(α

′ + δ, β′) (∀δ ∈ [0, δ0]).

To prove this, we may assume p̂ = 0 since f̂(x̂) − 〈p̂, x̂〉 also satisfies (M\-
EXC) as a function in x̂. We consider the case of i ∈ N, j = 0 only, since
the other cases can be dealt with similarly. In this case, f̂ij is rewritten as

f̂ij(α, β) = inf{f(x) | x ∈ dom f, x(i) = α, x(N) = −β}.

Since f is a closed proper convex function with bounded effective domain,
there exist x, x′ ∈ dom f satisfying x(i) = α, x(N) = −β, f̂ij(α, β) =

f(x), and x′(i) = α′, x′(N) = −β′, f̂ij(α
′, β′) = f(x′). We assume that x

minimizes the value ||x − x′||1 among all such vectors. It suffices to show
that

f(x) + f(x′) ≥ f(x− δ(χi−χk)) + f(x′ + δ(χi−χk)) (∀δ ∈ [0, δ0]) (3.9)

for some k ∈ supp−(x − x′) and δ0 > 0 since the RHS of (3.9) is larger
than or equal to f̂ij(α − δ, β) + f̂ij(α

′ + δ, β′). By (M\-EXC) for x, x′, and
i ∈ supp+(x− x′), there exist s ∈ supp−(x− x′) ∪ {0} and δ1 > 0 with

f(x) + f(x′) ≥ f(x−δ(χi−χs)) + f(x′+δ(χi−χs)) (∀δ ∈ [0, δ1]). (3.10)

Since x(i) > x′(i) and x(N) ≤ x′(N), there exists some r ∈ supp+(x′ − x).
By (M\-EXC), there exist t ∈ supp−(x′ − x) ∪ {0} and δ2 > 0 such that

f(x′) + f(x) ≥ f(x′ − δ(χr−χt)) + f(x+ δ(χr−χt)) (∀δ ∈ [0, δ2]). (3.11)
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We consider the following four cases.
[Case 1: s ∈ supp−(x− x′)] (3.10) gives the inequality (3.9) with k = s

and δ0 = δ1.
[Case 2: t = i ∈ supp−(x′ − x)] (3.11) gives the inequality (3.9) with

k = r and δ0 = δ2.
[Case 3: t ∈ supp−(x′ − x) \ {i}] Putting xδ = x + δ(χr − χt) with a

sufficiently small δ > 0, we have xδ(i) = α, xδ(N) = −β, and ||xδ − x′||1 <
||x−x′||1. By (3.11), the vector xδ satisfies f̂ij(α, β) = f(xδ), a contradiction
to the choice of x.

[Case 4: s = t = 0] Convexity of f as well as the inequalities (3.10) and
(3.11) implies

f(x) + f(x′) ≥ [f(x−δχi)+f(x+δχr)]/2 + [f(x′+δχi)+f(x′−δχr)]/2

≥ f(x− (δ/2)(χi − χr)) + f(x′ + (δ/2)(χi − χr))

for any δ ∈ [0,min{δ1, δ2}]. Hence, we have the inequality (3.9) with k = r
and δ0 = (1/2)min{δ1, δ2}.

4 L-convex Functions

4.1 Sets and Positively Homogeneous Functions

L-convex sets and positively homogeneous L-convex functions constitute im-
portant subclasses of L-convex functions, which appear as local structure of
general L-convex functions such as minimizers and directional derivative
functions (see Theorem 4.6). These objects are polyhedral, as follows.

Theorem 4.1.
(i) A closed set with (LS1) and (LS2) is a polyhedron. In particular, a closed
L-convex set is a polyhedron.
(ii) A positively homogeneous L-convex function is a polyhedral convex func-
tion.

We prove the claim (i) below. The proof of (ii) is given later in Section
4.2. Recall the definition of the set D(γ) ⊆ Rn in (3.4).

Proof of Theorem 4.1 (i). Let D ⊆ Rn be a nonempty closed set with (LS1)
and (LS2). We define a function γD : N × N → R∪{+∞} by γD(i, j) =
supp∈D{p(j) − p(i)} (i, j ∈ N). To prove (i), it suffices to show D = D(γD)
since D(γD) is a polyhedron. The inclusion D ⊆ D(γD) is easy to see; to
show the reverse inclusion, we prove that q ∈ D holds for any q ∈ D(γD).

For any ε > 0 and any i, j ∈ N , there exists pε
ij ∈ D with pε

ij(j) −
pε

ij(i) + ε > γD(i, j) ≥ q(j) − q(i), where we may assume that pε
ij(i) = q(i)

and pε
ij(j) + ε > q(j) by (LS2). For i ∈ N , we define pε

i =
∨

i∈N pε
ij. Then,

pε
i satisfies pε

i ∈ D by (LS1), pε
i (i) = q(i) and pε

i (j)+ ε > q(j) for j ∈ N . We
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then define pε ∈ D by pε =
∧

i∈N pε
i , which satisfies q(i) − ε < pε(i) ≤ q(i)

for i ∈ N , and hence limε→0 p
ε = q. Hence, the closedness of D implies

q ∈ D.

4.2 Fundamental Properties of L-convex Functions

We show various properties of L-convex functions. Note that some of the
properties below are implied by (LF1) and (LF2) only, and independent of
closed convexity.

Lemma 4.2 (cf. [18, Lemma 4.28]). A function g : Rn → R∪{+∞}
satisfies (LF1) and (LF2) if and only if

g(p) + g(q) ≥ g(p ∨ (q − λ1)) + g((p+ λ1) ∧ q)

for all p, q ∈ dom g and λ ∈ R. In particular, if g satisfies (LF1) and (LF2),
then we have

g(p) + g(q) ≥ g(p+ λχX) + g(q − λχX) (4.1)

for all p, q ∈ dom g and λ ∈ [0, λ1 − λ2], where

λ1 = max{q(i) − p(i) | i ∈ N},

X = {i ∈ N | q(i) − p(i) = λ1},

λ2 = max{q(i) − p(i) | i ∈ N \X}.

Theorem 4.3. If g : Rn → R∪{+∞} satisfies (LF1) and (LF2), then g is
mid-point convex.

Proof. We show the inequality (2.1) with α = 1/2 by induction on the
cardinality of supp(p− q) ≡ supp+(p− q) ∪ supp−(p− q). We may assume
p(i) < q(i) for some i ∈ N . Putting λ = (q(i) − p(i))/2, p′ = p ∨ (q − λ1)
and q′ = (p + λ1) ∧ q, we have g(p) + g(q) ≥ g(p′) + g(q′) by Lemma 4.2.
Since supp(p′ − q′) ⊆ supp(p − q) \ {i}, the induction hypothesis yields
g(p′) + g(q′) ≥ 2g([p′ + q′]/2) = 2g([p+ q]/2).

For a twice continuously differentiable function on Rn, L-convexity can
be characterized by its Hessian matrix (cf. Example 2.15).

Theorem 4.4. Let g : Rn → R be a twice continuously differentiable func-
tion defined on Rn. Then, g is L-convex if and only if the Hessian matrix
H(p) = (∂2g(p)/∂p(i)∂p(j))n

i,j=1 ∈ Rn×n satisfies the following conditions
for all p ∈ Rn:

(H(p))ij ≤ 0 (∀i, j ∈ N with i 6= j), (4.2)
n∑

i=1

(H(p))ij = 0 (∀j ∈ N). (4.3)
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Proof. It is well known that the conditions (4.2) and (4.3) for H(p) imply
the positive semidefiniteness of H(p), and hence the convexity of g. Hence,
it suffices to show the following claim:

Claim: Suppose that g is a convex function.
(i) g satisfies (LF1) if and only if H(p) satisfies (4.2) for all p ∈ Rn.
(ii) g satisfies (LF2) if and only if H(p) satisfies (4.3) for all p ∈ Rn.

We first prove (i). Suppose that g satisfies (LF1), and let p ∈ Rn and
i, j ∈ N be with i 6= j. Then,

(H(p))ij = lim
λ↓0

[
lim
µ↓0

[g(p+λχi+µχj) − g(p+λχi)]/µ

− lim
µ↓0

[g(p+µχj) − g(p)]/µ
]
/λ

= lim
λ↓0

lim
µ↓0

[g(p+λχi+µχj) − g(p+λχi) − g(p+µχj) + g(p)]/λµ

≤ 0,

i.e., (4.2) holds.
We then assume that H(p) satisfies (4.2) for all p ∈ Rn, and show the

submodularity of g, which is equivalent to the following local submodularity:

g(p+ λχi) + g(p+ µχj) ≥ g(p+ λχi + µχj) + g(p)

(p ∈ Rn, i, j ∈ N with i 6= j, λ, µ > 0). (4.4)

Assume, to the contrary, that

g(p+ λ0χi) + g(p+ µ0χj) < g(p+ λ0χi + µ0χj) + g(p) (4.5)

holds for some p ∈ Rn, i, j ∈ N with i 6= j, and λ0, µ0 > 0. We define a
function ϕ : R → R by

ϕ(µ) = g(p+ λ0χi + µχj) − g(p+ µχj) (µ ∈ R).

Since ϕ is continuous and differentiable on [0, µ0], it follows from the mean
value theorem that there exists some µ∗ ∈ (0, µ0) such that

∂g(p+ λ0χi + µ∗χj)/∂p(j) − ∂g(p+ µ∗χj)/∂p(j)

= ϕ′(µ∗) = [ϕ(µ0) − ϕ(0)]/µ0 > 0, (4.6)

where the inequality is by (4.5). We then define a function ψ : [0, λ0] → R
by

ψ(λ) = ∂g(p+ λχi + µ∗χj)/∂p(j) (λ ∈ [0, λ0]).

Since ψ is continuous and differentiable on [0, λ0], it follows from the mean
value theorem that there exists some λ∗ ∈ (0, λ0) satisfying

(H(p+ λ∗χi + µ∗χj))ij = ψ′(λ∗) = [ψ(λ0) − ψ(0)]/λ0 > 0,
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where the inequality is by (4.6). This, however, is a contradiction to the
assumption (4.2). Hence, (4.4) holds and therefore g is a submodular func-
tion.

We then prove the claim (ii). For a fixed p ∈ Rn, define a function
ω : R → R by ω(λ) = g(p+λ1) (λ ∈ R). Since ω is also a twice continuously
differentiable function, we have ω′′(λ) = 1TH(p)1 (λ ∈ R).

If g satisfies (LF2), then ω is an affine function. This implies that
ω′′(λ) = 0 for all λ ∈ R, from which follows 1TH(p)1 = 0. Since g is
convex, H(p) is positive semidefinite. Hence, we have (4.3).

On the other hand, suppose that the Hessian H(p) satisfies the condition
(4.3). Then, we have 1TH(p)1 = 0. This shows that ω is an affine function,
i.e., there exist some rp ∈ R such that g(p+ λ1) = g(p) + λrp (λ ∈ R). By
the convexity of g, we have

−∞ < g([p+ q]/2) ≤ inf
λ∈R

{g(p+ λ1) + g(q − λ1)}

= g(p) + g(q) + inf
λ∈R

λ(rp − rq)

for any p, q ∈ Rn, implying rp = rq. This concludes that (LF2) holds for
g.

Global optimality of an L-convex function is characterized by local op-
timality in terms of a finite number of directional derivatives.

Theorem 4.5 (cf. [18, Th. 4.29]). Let g : Rn → R∪{+∞} be an L-
convex function. For p ∈ dom g, we have g(p) ≤ g(q) (∀q ∈ Rn) if and only
if g′(p;χX) ≥ 0 (∀X ⊂ N) and g′(p;1) = 0.

The directional derivative functions and subdifferentials of an L-convex
function have nice combinatorial structures such as polyhedral L-/M-convexity.
For x ∈ Rn, we define g[x]: Rn→R∪{+∞} by g[x](p) = g(p) + 〈p, x〉 (p ∈
Rn). For a set function ρ : 2N → R∪{±∞}, we define gρ : Rn → R∪{±∞}
by

gρ(p) =
k∑

j=1

(λj − λj+1)ρ(Nj), (4.7)

where λ1>λ2> · · ·>λk are distinct values in {p(i)}i∈N , λk+1 = 0, and Nj =
{i ∈ N | p(i)≥λj} (j = 1, 2, . . . , k). The function gρ is called the Lovász
extension of ρ [7, 10]. Recall the definition of B(ρ) in (3.2).

Theorem 4.6. Let g : Rn → R∪{+∞} be a closed proper L-convex func-
tion and q ∈ dom g. Define ρq : 2N → R ∪ {±∞} by ρq(X) = g′(q;χX)
(X ⊆ N).
(i) ρq satisfies ρq(∅) = 0, −∞ < ρq(N) < +∞, and the submodular inequal-
ity (3.1).
(ii) ∂g(q) satisfies ∂g(q) = B(ρq), and is a closed M-convex set if ρq > −∞.
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(iii) g′(q; ·) satisfies (LF1), (LF2), and g′(q; ·) = gρq . In particular, g′(q; ·) is
a closed proper positively homogeneous L-convex function if g ′(q; ·) > −∞.

Proof. We first prove (iii) and then (ii); (i) is immediate from (iii).
(iii): For any p ∈ Rn and ε > 0, there exists some µ > 0 such that

g′(q; p) > (1/µ){g(q + µp) − g(q)} − ε. Hence, (LF1) and (LF2) for g ′(q; ·)
follow from (LF1) and (LF2) for g.

We then prove g′(q; p) = gρq (p) (p ∈ Rn). Since g′(q; ·) is positively
homogeneous convex, we have

gρq (p) =
k∑

j=1

(λj − λj+1)g
′(q;χNj

) ≥ g′(q;
k∑

j=1

(λj − λj+1)χNj
) = g′(q; p),

where λj and Nj (j = 1, 2, . . . , k) are defined as in the Lovász extension
(4.7) and λk+1 = 0. Put q0 = q + p and qj = qj−1 − (λj − λj+1)χNj

for
j = 1, 2, · · · , k, where qk = q. By Lemma 4.2, we obtain

g(qj−1) − g(qj) ≥ g(q + (λj − λj+1)χNj
) − g(q) ≥ (λj − λj+1)g

′(q;χNj
)

for j = 1, 2, . . . , k, from which follows

g(q + p) − g(q) ≥
k∑

j=1

(λj − λj+1)g
′(q;χNj

) = gρq (p).

Since the inequality above holds for any p ∈ Rn, we have g(q + µp) −
g(q) ≥ gρq (µp) = µgρq (p), implying g′(q; p) ≥ gρq (p). Thus, g′(q; p) = gρq (p)
follows.

(ii) Since x ∈ ∂g(q) is equivalent to q ∈ arg min g[−x], we have ∂g(q) =
B(ρq) by Theorem 4.5. Since ρq is a submodular function, ∂g(q) is an M-
convex set (see [18, Th. 3.3]).

Proof of Theorem 4.1 (ii). Let g : Rn → R∪{+∞} be positively homoge-
neous L-convex, and define ρ : 2N → R∪{+∞} by ρg(X) = g(χX ) (X ⊆ N).
It suffices to show that g(p) = gρ(p) holds for p ∈ Rn. Since g(p) = g′(0; p)
holds for p ∈ Rn, this follows immediately from Theorem 4.6 (iii).

The next theorem shows that each “face” of the epigraph of a closed
proper L-convex function is an L-convex polyhedron. The proof is easy.

Theorem 4.7. Let g : Rn → R∪{+∞} be an L-convex (resp. closed proper
L-convex) function. For x ∈ Rn, arg min g[x] is L-convex (resp. closed L-
convex) if it is nonempty.
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