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Abstract

The concept of neighbor system, introduced by Hartvigsen (2010), is a set of integral

vectors satisfying a certain combinatorial property. In this paper, we reveal the relationship

of neighbor systems with jump systems and with bisubmodular polyhedra. We firstly

prove that for every neighbor system, there exists a jump system which has the same

neighborhood structure as the original neighbor system. This shows that the concept of

neighbor system is essentially equivalent to that of jump system. We next show that the

convex closure of a neighbor system is an integral bisubmodular polyhedron. In addition,

we give a characterization of neighbor systems using bisubmodular polyhedra. Finally, we

consider the problem of minimizing a separable convex function on a neighbor system. It

is shown that the problem can be solved in weakly-polynomial time for a class of neighbor

systems.
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Figure 1: An example of 2-dimensional neighbor system F , where the black dots represents

integral vectors in the neighbor system

1 Introduction

The concept of neighbor system, introduced by Hartvigsen [14], is a set of integral vectors

satisfying a certain combinatorial property. The definition of neighbor system is as follows.

Throughout this paper, let E be a finite set with n elements. Let F be a set of integral vectors

in ZE . For x, y ∈ F , we say that y is a neighbor of x if there exist some vector d ∈ {0,+1,−1}E

with exactly one or two nonzero components and a positive integer α such that

y = x+ αd and x+ α0d 6∈ F for all α0 ∈ Z with 0 < α0 < α.

For vectors x, y, z ∈ ZE , z is said to be between x and y if the following inequality holds:

min{x(e), y(e)} ≤ z(e) ≤ max{x(e), y(e)} (∀e ∈ E).

The set F is called an (all-)neighbor system if it satisfies the following axiom:

for every x, y ∈ F and e ∈ E with x(e) 6= y(e), there exists a neighbor z ∈ F of x

such that z(e) 6= x(e) and z is between x and y.

See Figure 1 for an example of 2-dimensional neighbor system. Given a positive integer k, a

neighbor system F is said to be an Nk-neighbor system if we can always choose a neighbor z in

the axiom above such that ||z − x||1 ≤ k. For example, the neighbor system in Figure 1 is an

Nk-neighbor system for every k ≥ 3, but not for k = 1, 2 since if x = (0, 2) and y = (3, 5) then

we do not have a neighbor z of x such that z is between x and y and satisfies ||z − x||1 ≤ 2.

Neighbor system is a common generalization of various concepts such as matroid, integral

polymatroid, delta-matroid, integral bisubmodular polyhedron, and jump systems. Below we

review these concepts.

Matroids. The concept of matroid is introduced by Whitney [24]. One of the important

results on matroids, from the viewpoint of combinatorial optimization, is the validity of a

greedy algorithm for linear optimization (see, e.g., [11]).
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Integral Polymatroids. The concept of polymatroid is introduced by Edmonds [10] as a

generalization of matroids. A polymatroid is a polyhedron defined by a monotone submodular

function, and a greedy algorithm for matroids can be naturally extended to polymatroids.

The minimization of separable convex function can be also done in a greedy way, and efficient

algorithms have been proposed (see, e.g., [13, 15]). An integral polymatroid is a polymatroid

which is an integral polyhedron, i.e., all extreme points are given by integer vectors.

Delta-Matroids. The concept of delta-matroid (or pseudomatroid) is introduced by Bouchet

[5] and Chandrasekaran and Kabadi [7]. A delta-matroid can be seen as a family of subsets of

a ground set with a nice combinatorial structure, and generalizes the concept of matroid. A

more general greedy algorithm works for the linear optimization on a delta-matroid.

Integral Bisubmodular Polyhedron. The concept of bisubmodular polyhedron (or polypseu-

domatroid), introduced by Dunstan and Welsh [9] (see also [6, 7, 12]), is a common general-

ization of polymatroid and delta-matroid. The concept of bisubmodular polyhedron is defined

by using bisubmodular functions. A function ρ : 3E → R∪ {+∞} is said to be bisubmodular if
it satisfies the bisubmodular inequality, where 3E = {(X,Y ) | X,Y ⊆ E, X ∩ Y = ∅}:

ρ(X1, Y1) + ρ(X2, Y2)

≥ ρ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)) + ρ(X1 ∩X2, Y1 ∩ Y2)

(∀(X1, Y1), (X2, Y2) ∈ 3
E).

For a function ρ : 3E → R ∪ {+∞} with ρ(∅, ∅) = 0, we define a polyhedron P∗(ρ) ⊆ RE by

P∗(ρ) = {x ∈ RE |
X
i∈X

x(i)−
X
i∈Y

x(i) ≤ ρ(X,Y ) ((X,Y ) ∈ 3E)},

which is called a bisubmodular polyhedron if ρ is bisubmodular. Bisubmodular polyhedra con-

stitute a class of polyhedra on which a simple greedy algorithm works for linear optimization.

In addition, separable convex function minimization can be done in a greedy manner [2]. In

this paper, we are mainly interested in integral bisubmodular polyhedra; a polyhedron P ⊆ RE

is said to be integral if the convex closure of P ∩ ZE is equal to P .

Jump Systems. The concept of jump system is introduced by Bouchet and Cunningham

[6], which is a common generalization of delta-matroid and the set of integral vectors in an

integral bisubmodular polyhedron. We give a precise definition of jump systems. For e ∈ E,

the characteristic vector χe ∈ {0, 1}E is the vector such that χe(i) = 1 and χe(i) = 0 for

i ∈ E \ {e}. Denote by U the set of vectors +χe,−χe (e ∈ E). For vectors x, y ∈ ZE , define

inc(x, y) = {p ∈ U | x+ p is between x and y}.

A set J ⊆ ZE is a jump system if it satisfies the following axiom:

(J) for every x, y ∈ J and every p ∈ inc(x, y), if x + p 6∈ J then there exists

q ∈ inc(x+ p, y) such that x+ p+ q ∈ J .
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Interesting examples of jump systems can be found in the set of degree sequences of the sub-

graphs of undirected and directed graphs; for example, matchings and b-matchings in undi-

rected graphs [6, 8, 17] and even-factors in directed graphs [18]. Validity of certain greedy

algorithms is shown in [6] for the linear optimization and in [3] for separable convex function

minimization. Moreover, a polynomial-time algorithm for separable convex function minimiza-

tion is given in [23]. It is shown that a jump system is equivalent to an N2-neighbor system

[14].

We give two examples of neighbor systems which are not jump systems; such an example

is also given in Figure 1.

Example 1.1 (Expansion of jump systems). For a jump system J ⊆ ZE and a positive integer
k, the set {kx ∈ ZE | x ∈ J } is an N2k-neighbor system [14].

Example 1.2 (Rectilinear grid). Let u ∈ ZE+ be a nonnegative vector, and for e ∈ E, let

πe : [0, u(e)] → Z be a strictly increasing function. Then, the set of (πe(x(e)) | e ∈ E) for
vectors x ∈ ZE+ with x ≤ u is an all-neighbor system.

These examples, in particular, show that a neighbor system may have a “hole,” as in the case

of jump system, and it can be arbitrarily large.

Neighbor systems provide a systematic and simple way to characterize matroids and its

generalizations for which greedy algorithms work for linear optimization. Indeed, it is shown

that linear optimization on a neighbor system can be solved by a greedy algorithm, and that

the greedy algorithm runs in polynomial time for finite Nk-neighbor systems [14].

Our Results. The main aim of this paper is to reveal the relationship of neighbor systems

with jump systems and with bisubmodular polyhedra.

We firstly prove in Section 3 that for every neighbor system F ⊆ ZE , there exists a jump
system J ⊆ ZE which has the same neighborhood structure as F (see Theorem 3.1). This

means that the concept of neighbor system is essentially equivalent to that of jump system,

although the class of neighbor systems properly contains that of jump systems. Our result

implies that every property of jump systems can be restated in terms of neighbor systems by

using the equivalence.

We then discuss the relationship between neighbor systems and bisubmodular polyhedra

in Section 4. It is known that the convex closure of a jump system, which is a special case

of neighbor systems, is an integral bisubmodular polyhedron [6]. We show that the convex

closure of a neighbor system is also an integral bisubmodular polyhedron (see Theorem 4.2).

In addition, we give a characterization of neighbor systems using bisubmodular polyhedra,

stating that a set of integral vectors is a neighbor system if and only if the convex closure of its

restriction with an interval is always an integral bisubmodular polyhedron (see Theorem 4.3).

In Section 5, we consider a linear optimization on a neighbor system. We show that the

results in Section 4 implies that a simple greedy algorithm for the linear optimization on a

bisubmodular polyhedron can be also used for neighbor systems. We also discuss the relation-

ship between this greedy algorithm and an algorithm proposed by Hartvigsen [14].

We consider the separable convex optimization problem on neighbor systems in Section 6.

Given a family of univariate convex functions fe : Z→ R (e ∈ E) and a finite neighbor system
F ⊆ ZE , we consider the following problem:
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(SC) Minimize
X
e∈E

fe(x(e)) subject to x ∈ F .

For a special case where F is a jump system, it is shown that the problem (SC) can be solved

in pseudo-polynomial time by a greedy-type algorithm [3], and in weakly-polynomial time by

an algorithm called the domain reduction algorithm [23]. We extend these algorithms for jump

systems to neighbor systems.

Organization of This Paper. Section 2 is devoted to preliminaries on the fundamental

concepts discussed in this paper. We discuss the relationship of neighbor systems with jump

systems and with bisubmodular polyhedra in Sections 3 and 4, respectively. In Sections 5 and

6, we consider linear and separable convex optimization problems, respectively, and present

efficient algorithms.

2 Preliminaries

Throughout this paper, let E be a finite set with n elements. We denote by Z,Z+,Z++ the
sets of integers, nonnegative integers, and positive integers, respectively. We denote by R the
set of real numbers. For vectors ` ∈ (Z∪ {−∞})E and u ∈ (Z∪ {+∞})E with ` ≤ u, we define
the integer interval [`, u] as the set of integral vectors x ∈ ZE with `(e) ≤ x(e) ≤ u(e) (∀e ∈ E).
For a vector x ∈ RE , we define supp(x) = {e ∈ E | x(e) 6= 0}. For e ∈ E, the characteristic

vector χe ∈ {0, 1}
E is the vector such that χe(i) = 1 and χe(i) = 0 for i ∈ E \ {e}. We denote

by 0 the zero vector in ZE .
We review the original definition of neighbor systems in [14] using the concept of neighbor

function. We define U ⊆ ZE to be the set of unit vectors, i.e.,

U = {x ∈ ZE | ||x||1 = 1} = {+χe | e ∈ E} ∪ {−χe | e ∈ E}. (2.1)

A direction is a {0,+1,−1}-vector with exactly one or two nonzero components, and denote

by D (⊆ {0,+1,−1}E) the set of all directions. That is, D is given as

D = U ∪ {+χe + χe0 | e, e
0 ∈ E, e 6= e0} ∪ {−χe − χe0 | e, e

0 ∈ E, e 6= e0}

∪{+χe − χe0 | e, e
0 ∈ E, e 6= e0}.

Let F be a set of integral vectors in ZE . For x, y ∈ F , we say that y is a neighbor of x if there
exist some direction d ∈ D and a positive integer α such that

y = x+ αd and x+ α0d 6∈ F for all α0 ∈ Z with 0 < α0 < α.

A neighbor function, denoted by N , is a function that takes as input any set F ⊆ ZE with any
x ∈ F and outputs a subset of the neighbors of x in F , denoted by N(F , x). In particular,

Na(F , x) (resp., Nk(F , x)) denotes the set of all neighbors of x in F (resp., the set of all

neighbors y of x in F with ||y − x||1 ≤ k). For vectors x, y, z ∈ ZE , z is said to be between x
and y if the following inequality holds:

min{x(e), y(e)} ≤ z(e) ≤ max{x(e), y(e)} (∀e ∈ E).

Given a set F ⊆ ZE and a neighbor function N , we say that F is an N -neighbor system if the

following condition holds:
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(NS) for every x, y ∈ F and every e ∈ supp(x− y), there exists z ∈ N(F , x) such

that z is between x and y and z(e) 6= x(e).

An N -neighbor system is an all-neighbor system if N = Na, and an Nk-neighbor system if

N = Nk.

In the following discussion, we use an equivalent axiom of neighbor systems given below.

Recall that U is the set of unit vectors; see (2.1). For x, y ∈ ZE the set inc(x, y) is defined as

inc(x, y) = {p ∈ U | x+ p is between x and y}.

Then, (NS) can be rewritten as follows.

(NS0) for every x, y ∈ F and every p ∈ inc(x, y), there exist q ∈ inc(x, y) ∪ {0} \

{+p,−p} and α ∈ Z++ such that x0 ≡ x+ α(p+ q) ∈ N(F , x) and x0 is between x
and y.

We note that the axiom (NS0) is similar to the axiom of jump systems; a nonempty set J ⊆ ZE

is a jump system if it satisfies the following axiom:

(J) for every x, y ∈ J and every p ∈ inc(x, y), if x + p 6∈ J then there exists

q ∈ inc(x+ p, y) such that x+ p+ q ∈ J .

The class of neighbor systems is closed under the following operations.

Proposition 2.1 (cf. [14]). Let F ⊆ Zn be an N -neighbor system.
(i) For a positive integer m > 0, define a set F 0 and a neighbor function N 0 by

F 0 = {mx | x ∈ F}, N 0(F 0,mx) = {my | y ∈ N(F , x)}.

Then, F 0 is an N 0-neighbor system.
(ii) For a vector s ∈ {+1,−1}E, we define a set Fs and a neighbor function Ns by

Fs = {(s(e)x(e) | e ∈ E) | x ∈ F},

Ns(Fs, y) = {(s(e)x0(e) | e ∈ E) | x0 ∈ N(F , x)} for y = (s(e)x(e) | e ∈ E) ∈ Fs.

Then, Fs is an Ns-neighbor system.

(iii) For vectors `, u ∈ ZE with ` ≤ u and F ∩ [`, u] 6= ∅, the set F ∩ [`, u] is an N -neighbor

system.

(iv) For a vector a ∈ ZE, the set F + a ≡ {x + a | x ∈ F} is an N 0-neighbor system, where
N 0(F + a, x) = {y + a | y ∈ N(F , x)}.

We introduce a concept of proper neighbor, which is a neighbor satisfying an additional

condition. For a neighbor system F and vectors x, y ∈ F , we say that y is a proper neighbor of

x in F if y is a neighbor of x satisfying either of the conditions (i) or (ii), where

(i) there exist some α ∈ Z++ and p ∈ U such that y − x = αp,

(ii) there exist some α ∈ Z++ and p, q ∈ U with p 6∈ {q,−q} such that y−x = α(p+q)

and x+ α0p 6∈ F for all α0 ∈ Z with 0 < α0 ≤ α.
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Note that if (i) holds, then we have x + α0p 6∈ F for all α0 ∈ Z with 0 < α0 ≤ α since y is a

neighbor of x.

To illustrate the concept of proper neighbor, consider the neighbor system in Figure 1. The

vector y = (6, 2) is a proper neighbor of x = (4, 0) since (5, 0) and (6, 0) are not in F and

therefore the condition (ii) holds with p = (1, 0), q = (0, 1), and α = 2. The vector (6, 5) is a

neighbor of (3, 2), but not a proper neighbor of (3, 2) since (4, 2), (3, 5) ∈ F .

The next property shows that the concept of proper neighbor is essential in the definition

of neighbor systems.

Theorem 2.2. Let F ⊆ ZE.
(i) F is an all-neighbor system if and only if for every x, y ∈ F and every e ∈ supp(x − y),

there exists a proper neighbor z ∈ F of x such that z is between x and y and z(e) 6= x(e).

(ii) F is an Nk-neighbor system for some k ∈ Z++ if and only if for every x, y ∈ F and every

e ∈ supp(x − y), there exists a proper neighbor z ∈ Nk(F , x) such that z is between x and y

and z(e) 6= x(e).

Proof. Since the “if” part of (i) and (ii) is obvious from the definition of neighbor systems, we

show the “only if” part of (i) and (ii).

[Proof of the “only if” part for (i)] Let x, y ∈ F and e ∈ supp(x − y). By the property

(NS), there exists a neighbor z ∈ F of x such that z is between x and y and z(e) 6= x(e).

Suppose that z is not a proper neighbor of x. Then, we have |supp(z−x)| = 2 by the definition

of proper neighbor. We may assume, without loss of generality, that z = x + α(χe + χi) for

some i ∈ E \ {e} and α ∈ Z++. Since z is not a proper neighbor of x, there exist some α0 ∈ Z
such that 0 < α0 ≤ α and x+ α0χe ∈ F , which is a proper neighbor of x.

[Proof of the “only if” part for (ii)] Let x, y ∈ F and e ∈ supp(x−y). From the statement

(i) we see that there exists a proper neighbor z ∈ F of x such that z is between x and y and

z(e) 6= x(e). Hence, it suffices to proven that kz−xk1 ≤ k holds, which is shown in Proposition

2.3 below.

Proposition 2.3. Let F ⊆ ZE be an Nk-neighbor system with some k ≥ 1, and x ∈ F . Then,

every proper neighbor y of x is contained in Nk(F , x).

Proof. Let y be a proper neighbor of x, and assume, to the contrary, that ky − xk1 > k.

Suppose that |supp(y − x)| = 1. By Proposition 2.1 (ii), we may assume, without loss of

generality, that y = x+αχe for some e ∈ E and α ∈ Z with α > k. Since F is an Nk-neighbor

system, the property (NS) applied to x and y implies that x + βχe ∈ F for some β ∈ Z with
0 < β ≤ k, a contradiction to the fact that y is a neighbor of x.

We then suppose that |supp(y − x)| = 2. We may assume, without loss of generality, that

y = x+ α(χi + χj) for some distinct i, j ∈ E and α ∈ Z with α > k. By applying (NS) to x, y,

and i ∈ supp(x − y), we obtain some z ∈ Nk(F , x) such that z(i) > x(i) and z is between x

and y. Since kz−xk1 ≤ k, we have z 6= y, a contradiction to the assumption that y is a proper

neighbor of x.

Remark 2.4. Let F ⊆ ZE be an Nk-neighbor system. Proposition 2.3 shows that every proper
neighbor y of x is contained in Nk(F , x). On the other hand, it is possible that there exists a

neighbor y of x ∈ F such that y 6∈ Nk(F , x). For example, consider the set F ⊆ Z2 given in
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Figure 2: An example of 2-dimensional N2-neighbor system

Figure 2, which is an N2-neighbor system. For x = (0, 0), the vector y = (3, 3) is a neighbor of

x since (1, 1), (2, 2) 6∈ F , and it holds that y 6∈ N2(F , x) = {(2, 0), (0, 1)}. Note that y is not a

proper neighbor of x.

For a jump system, which is a special case of neighbor system, the conditions defining

(proper) neighbors can be simplified as follows.

Proposition 2.5. Let J ⊆ ZE be a jump system J and x, y ∈ J .

(i) y is a proper neighbor of x in J if and only if either of the following conditions holds:

(a) there exists some p ∈ U such that y − x = p, or y − x = 2p and x+ p 6∈ J ,

(b) there exist some p, q ∈ U with p 6∈ {+q,−q} such that y − x = p + q and

x+ p 6∈ J .

(ii) y is a neighbor of x in J if and only if either of the conditions (a) and (b0) below holds:

(b0) there exist some p, q ∈ U with p 6∈ {+q,−q} such that y − x = p+ q.

Proof. We prove (i) only. It is easy to see from the definition of proper neighbor that if either

of the conditions (a) and (b) holds, then y is a proper neighbor of x in J . Hence, it suffices

to show the “only if” part of the statement. Let x, y ∈ J be vectors such that y is a proper

neighbor of x in J . We will show that either (a) or (b) holds.

We firstly assume that y − x = αp holds for some α ∈ Z++ and p ∈ U . If α = 1, then (a)
holds immediately. Otherwise (i.e., α > 1), we have x + p 6∈ J , and the axiom (J) for jump

systems applied to x and y implies that y = x+ 2p ∈ J , i.e., (a) holds.

We next assume that there exist some α ∈ Z++ and p, q ∈ U with p 6∈ {+q,−q} such that

y − x = α(p + q) and x + α0p 6∈ F for all α0 ∈ Z with 0 < α0 ≤ α. If α = 1, then (b) holds

immediately. Otherwise, we have x+ p 6∈ J , x+ 2p 6∈ J , and the axiom (J) for jump systems

applied to x and y implies x+ p+ q ∈ J , i.e., (b) holds.

Remark 2.6. The conditions (a) and (b) in Proposition 2.5 are considered in [3] to define a

local optimality for the separable convex minimization problem on jump systems.
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3 Relationship between Neighbor Systems and Jump Systems

3.1 Result

We discuss the relationship between neighbor systems and jump systems. It is shown that for

every neighbor system, there exists a jump system which has the same neighborhood structure

as the original neighbor system.

Theorem 3.1. Let F ⊆ ZE be an all-neighbor system. Then, there exist a jump system J ⊆ ZE

and a bijective function π : J → F satisfying the following property, where π−1 : F → J is

the inverse function of π:

for every x, y ∈ F , the vector x is a proper neighbor of y in F if and only if π−1(x)
is a proper neighbor of π−1(y) in J .

We give a proof of Theorem 3.1. Let F ⊆ ZE be an all-neighbor system. By Proposition
2.1 (iv), we may assume, without loss of generality, that F contains the zero vector 0. For

e ∈ E, we define a set Fe ⊆ Z by

Fe = {α | α ∈ Z, ∃x ∈ F s.t. x(e) = α}.

Define the numbers u(e) ∈ Z ∪ {+∞} and `(e) ∈ Z ∪ {−∞} by

u(e) = the number of positive integers in Fe,

l(e) = −(the number of negative integers in Fe).

We also define a function πe : [`(e), u(e)]→ Z by πe(0) = 0 and

πe(k) = the k-th smallest positive integer in Fe (if 0 < k ≤ u(e)),

πe(−k) = the k-th largest negative integer in Fe (if `(e) ≤ −k < 0).

Then, each πe is a strictly increasing function in the interval [`(e), u(e)], and gives a bijection

between [`(e), u(e)] and Fe. We define a set J ⊆ ZE and a function π : J → F by

J = {z ∈ ZE | (πe(z(e)) | e ∈ E) ∈ F}, π(z) = (πe(z(e)) | e ∈ E) (z ∈ J ).

By the definitions of πe and J , the function π is bijective.

To complete the proof of Theorem 3.1, it suffices to show the following:

Lemma 3.2.

(i) The set J is a jump system.

(ii) For every x, y ∈ F , the vector x is a proper neighbor of y in F if and only if π−1(x) is a
proper neighbor of π−1(y) in J .

The proof is given in Section 3.2.

For illustration of the relationship between neighbor systems and jump systems, we again

consider the neighbor system given in Figure 1 (see Figure 3). In this example, we have

E = {1, 2}, F1 = {0, 3, 4, 6}, F2 = {0, 2, 5}, u(1) = 3, l(1) = 0, u(2) = 2, and l(2) = 0. Hence,

the functions π1 : [0, 3]→ Z and π2 : [0, 2]→ Z are given by

π1(0) = 0, π1(1) = 3, π1(2) = 4, π1(3) = 6, π2(0) = 0, π2(1) = 2, π2(2) = 5.
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Figure 3: Relationship between neighbor systems and jump systems

The resulting set J is shown in Figure 3, which is a jump system. It is easy to see that there

exists a one-to-one correspondence between points in the neighbor system F and points in the

jump system J .

Theorem 3.1 implies the following technical lemma, which will be used in Section 6.1.

Lemma 3.3. Let x ∈ F , i, j ∈ E be distinct elements, and α ∈ Z++. Suppose that x0 ≡
x+ α(χi + χj) is a proper neighbor of x. Then,

x0(i) = min{y(i) | y ∈ F , y(i) > x(i)}, x0(j) = min{y(j) | y ∈ F , y(j) > x(j)}.

Proof. Consider the jump system J and the bijective function π : J → F in the proof of

Theorem 3.1 above. Then, it holds that π−1(x + α(χi + χj)) = π−1(x) + χi + χj . By the

definition of the function π, we have

{y ∈ F | x(i) < y(i) < x0(i)} = ∅, {y ∈ F | x(j) < y(j) < x0(j)} = ∅,

which implies the statement of the lemma.

3.2 Proof of Lemma 3.2

3.2.1 Proof of Lemma 3.2 (i)

To prove Lemma 3.2 (i), we use the following lemmas. Recall that U = {+χe | e ∈ E}∪ {−χe |

e ∈ E} (see (2.1)).

Lemma 3.4. Let z ∈ F and suppose that z + αp + βq ∈ F holds for some p, q ∈ U with

p 6∈ {+q,−q} and α,β ∈ Z with α ≥ β ≥ 0. Then, there exists some ε ∈ Z with 0 ≤ ε ≤ α

such that z + (α− ε)p ∈ F .

Proof. The proof is done by induction on β. If β = 0, then the claim holds with ε = 0. Hence,

we assume β ≥ 1. By the property (NS) applied to z + αp+ βq and z, there exist some δ ∈ Z
with 0 < δ ≤ β and some δ0 ∈ {0, δ} such that z + (α − δ0)p + (β − δ)q is a vector in F

between z + αp+ βq and z. Note that 0 ≤ β − δ ≤ α− δ0 holds. By the induction hypothesis
applied to z + (α − δ0)p + (β − δ)q, there exists some ε0 ∈ Z with 0 ≤ ε0 ≤ β − δ such that

z + (α− δ0 − ε0)p ∈ F . Since δ0 + ε0 ≤ β, the claim holds with ε = δ0 + ε0.
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Lemma 3.5. Let z ∈ F , and p1, p2, p3 ∈ U be vectors such that ph 6∈ {pk,−pk} for all distinct

h, k ∈ {1, 2, 3}. Suppose that z + α1p1 + α2p2 + α3p3 ∈ F holds for some α1,α2,α3 ∈ Z+ with
α1 + α2 ≥ α3. Then, there exist some integers ε1 and ε2 such that 0 ≤ ε1 ≤ α1, 0 ≤ ε2 ≤ α2,

ε1 + ε2 ≤ α3, and z + (α1 − ε1)p1 + (α2 − ε2)p2 ∈ F .

Proof. The proof is similar to that for Lemma 3.4 and therefore omitted.

We now show that J is a jump system. Let x̃, ỹ ∈ J , and p ∈ inc(x̃, ỹ). By Proposition

2.1 (ii), we may assume that p = +χi for some i ∈ E. We show that

x̃+ χi ∈ J or ∃q ∈ inc(x̃+ χi, ỹ) such that x̃+ χi + q ∈ J . (3.1)

Define x, y ∈ F by x = π(x̃) and y = π(ỹ). Then, we have +χi ∈ inc(x, y) since +χi ∈ inc(x̃, ỹ)

and each πe is a strictly increasing function. Below we consider the following two cases and

give a proof of (3.1) for each case:

(Case 1) {α ∈ Z | 0 < α ≤ y(i)− x(i), x+ αχi ∈ F} 6= ∅,

(Case 2) {α ∈ Z | 0 < α ≤ y(i)− x(i), x+ αχi ∈ F} = ∅.

We firstly consider Case 1.

Lemma 3.6. It holds that

(a) x+ α1χi ∈ F , or (b) x+ α2χi ∈ F and y(i)− x(i) ≥ α2 (or both),

where α1 = πi(x̃(i) + 1)− πi(x̃(i)) and α2 = πi(x̃(i) + 2)− πi(x̃(i)).

Proof. Let

α∗ = min{α | α ∈ Z, 0 < α ≤ y(i)− x(i), x+ αχi ∈ F}.

By the definition of πi, every x
0 ∈ F satisfies neither πi(x̃(i)) = x(i) < x

0(i) < πi(x̃(i) + 1) nor

πi(x̃(i) + 1) < x0(i) < πi(x̃(i) + 2). Hence, if α∗ ≤ α2, α∗ is either α1 or α2, i.e., (a) or (b)
holds.

In the following, we assume, to the contrary, that α∗ > α2, and derive a contradiction. This

assumption and the definition of α∗ imply that

x+ α0χi 6∈ F for all α0 ∈ Z with 0 < α0 ≤ α2. (3.2)

Claim 1: There exists some q ∈ U \ {+χi} such that x+ α1(χi + q) ∈ F .

[Proof of Claim 1] Let z ∈ F be a vector with z(i) = πi(x̃(i) + 1) = x(i) + α1. Since

+χi ∈ inc(x, z), the property (NS0) implies that there exist some q ∈ inc(x, z) ∪ {0} \ {+χi}
and γ ∈ Z++ such that x+ γ(χi+ q) ∈ F and x+ γ(χi+ q) is between x and z. It follows that

0 < γ ≤ z(i) − x(i) = α1, implying γ = α1 since {x
0 ∈ F | x(i) < x0(i) < x(i) + α1} = ∅. By

(3.2), we have q 6= 0, implying that q ∈ U \ {+χi}. [End of Claim 1]

Claim 2: α∗ ≤ 2α1.
[Proof of Claim 2] Assume, to the contrary, that α∗ > 2α1. Put v = x + α∗χi (∈ F), and
consider the vector v + (α∗ − α1)(−χi) + α1q = x + α1(χi + q) ∈ F , where q is the vector in

Claim 1. By Lemma 3.4, there exists some ε ∈ Z with 0 ≤ ε ≤ α1 such that

v + (α∗ − α1 − ε)(−χi) = x+ (α1 + ε)χi ∈ F .
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This, however, is a contradiction to the definition of α∗ since α1 + ε ≤ 2α1 < α∗. [End of

Claim 2]

Let z ∈ F be a vector with z(i) = πi(x̃(i) + 2) = x(i) + α2. Since α∗ > α2, we have

−χi ∈ inc(x + α∗χi, z). By (NS0), there exists some s ∈ inc(x + α∗χi, z) ∪ {0} \ {−χi} and
γ ∈ Z++ such that x+ (α∗ − γ)χi + γs ∈ F and x+ (α∗ − γ)χi + γs is between x+ α∗χi and
z, where the latter condition implies α2 ≤ α∗ − γ < α∗. This inequality and the definition of
α∗ imply s 6= 0. We have

(α∗ − γ)− γ ≥ α∗ − 2(α∗ − α2) = −α∗ + 2α2 > −α∗ + 2α1 ≥ 0,

where the last inequality is by Claim 2. Hence, α∗ − γ > γ holds, and Lemma 3.4 applied

to x and x + (α∗ − γ)χi + γs implies that there exists some ε ∈ Z with 0 ≤ ε ≤ γ such

that x + (α∗ − γ − ε)χi ∈ F . This, however, is a contradiction to the definition of α∗ since
α∗ − γ − ε ≤ α∗ − 2γ < α∗.

Lemma 3.6 implies that we have either (a) x̃+χi ∈ J or (b) x̃+2χi ∈ J and ỹ(i)− x̃(i) ≥ 2

(or both), i.e., (3.1) holds in Case 1.

We next consider Case 2. That is, we assume

x+ αχi 6∈ F (0 < ∀α ≤ y(i)− x(i)), (3.3)

and show that (3.1) holds. The assumption (3.3) implies, in particular, x + α1χi 6∈ F since

α1 ≤ y(i)− x(i).

Since +χi ∈ inc(x, y), the property (NS0) implies that there exist q ∈ inc(x, y)∪{0}\{+χi}
and β ∈ Z++ such that x + β(χi + q) is a neighbor of x and between x and y. Note that

β ≤ y(i) − x(i), which, together with (3.3), implies q 6= 0. By Proposition 2.1 (ii), we may

assume that q = +χj for some j ∈ E \ {i}. Since x+ β(χi + χj) is a neighbor of x, we have

x+ α(χi + χj) 6∈ F (0 < ∀α < β). (3.4)

Lemma 3.7. Let β0,β00 ∈ Z be integers such that 0 ≤ β0 ≤ β, 0 ≤ β00 ≤ β, and x+β0χi+β00χj ∈
F . Then, we have (β0,β00) ∈ {(0, 0), (0,β), (β,β)}.

Proof. It suffices to show that β0,β00 ∈ {0,β} since x + βχi 6∈ F by (3.3). Assume, to the

contrary, that 0 < β0 < β holds. Since +χi ∈ inc(x, x + β0χi + β00χj), the property (NS0)
implies that there exists some η ∈ Z with 0 < η ≤ β0 < β such that either x+ η(χi + χj) ∈ F

or x+ ηχi ∈ F (or both). This, however, contradicts (3.3) or (3.4).

We then assume, to the contrary, that 0 < β00 < β holds. We have −χj ∈ inc(x + β(χi +

χj), x+ β0χi + β00χj). Therefore, the property (NS0) implies that there exists some η ∈ Z with
0 < η ≤ β−β00 < β such that either x+(β−η)(χi+χj) ∈ F or x+βχi+(β−η)χj ∈ F (or both).

By (3.4), we have x+ βχi + (β − η)χj ∈ F . Lemma 3.4 applied to x and x+ βχi + (β − η)χj
implies that there exists ε ∈ Z with 0 ≤ ε ≤ β − η such that and x + (β − ε)χi ∈ F , a

contradiction to (3.3).

We then prove

β = πi(x̃(i) + 1)− πi(x̃(i)) = πj(x̃(j) + 1)− πj(x̃(j)), (3.5)

which follows from the definitions of πi,πj and the next lemma.
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Lemma 3.8. (i) {z ∈ F | 0 < z(i)− x(i) < β} = ∅, (ii) {z ∈ F | 0 < z(j)− x(j) < β} = ∅.

Proof. [Proof of (i)] Assume, to the contrary, that there exists some z ∈ F such that x(i) <

z(i) < x(i) + β. Since χi ∈ inc(x, z), the property (NS0) implies that there exist some s ∈
inc(x, z) ∪ {0} \ {+χi} and γ ∈ Z such that

0 < γ ≤ z(i)− x(i) < β and x0 ≡ x+ γ(χi + s) ∈ F .

By the assumption (3.3), we have s 6= 0.

Suppose that s ∈ {+χj ,−χj}. Since −χi ∈ inc(x + β(χi + χj), x
0), the property (NS0)

implies that there exists some η ∈ Z with 0 < η ≤ β − γ < β such that

either x+ (β − η)χi + βχj ∈ F or x+ (β − η)(χi + χj) ∈ F (or both).

This, however, is a contradiction to Lemma 3.7. Hence, we have s 6∈ {+χj ,−χj}, implying

that s ∈ U \ {±χi,±χj}.

Lemma 3.5 applied to x+β(χi+χj) and x+γ(χi+s) implies that there exist some ε1, ε2 ∈ Z
such that

0 ≤ ε1 ≤ β − γ, 0 ≤ ε2 ≤ β, ε1 + ε2 ≤ γ, and x+ (γ + ε1)χi + ε2χj ∈ F .

This, however, is a contradiction to Lemma 3.7 since 0 < γ ≤ γ + ε1 ≤ β. This concludes the

proof of (i).

[Proof of (ii)] Assume, to the contrary, that there exists some z ∈ F such that x(j) <

z(j) < x(j) + β. Since +χj ∈ inc(x, z), the property (NS0) implies that there exist some
s ∈ inc(x, z) ∪ {0} \ {+χj} and γ ∈ Z such that

0 < γ ≤ z(j)− x(j) < β and x0 ≡ x+ γ(χj + s) ∈ F .

In a similar way as in the proof of (i), we can show that s ∈ U \ {±χi,±χj}.

Since −χj ∈ inc(x + β(χi + χj), x
0), the property (NS0) implies that there exists some

η ∈ Z++ such that at least one of (a), (b), or (c) holds, where

(a) x+ βχi + (β − η)χj ∈ F and η ≤ β − γ,

(b) x+ (β − η)(χi + χj) ∈ F and η ≤ β − γ,

(c) x+ βχi + (β − η)χj + ηs ∈ F and η ≤ min{β − γ, γ}.

By Lemma 3.7, we cannot have (a) and (b), and therefore (c) holds. By Lemma 3.5 applied to

x and x+βχi+(β−η)χj+ηs, there exist some ε1, ε2 ∈ Z such that 0 ≤ ε1 ≤ β, 0 ≤ ε2 ≤ β−η,

ε1 + ε2 ≤ η, and

x+ (β − ε1)χi + (β − η − ε2)χj ∈ F .

This, however, is a contradiction to Lemma 3.7 since β− η− ε2 < β and β− ε1 ≥ β− η ≥ γ >

0.

Since x + β(χi + χj) ∈ F , the equation (3.5) implies that x̃ + χi + χj ∈ J . We have

+χj ∈ inc(x̃, ỹ) \ {+χi} ⊆ inc(x̃+χi, ỹ), and therefore (3.1) holds. This concludes the proof of

Lemma 3.2 (i).

3.2.2 Proof of Lemma 3.2 (ii)

Let x, y ∈ F , and put x̃ = π−1(x), ỹ = π−1(y). By definition, it holds that x̃, ỹ ∈ J .
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Proof of “if” part We show that if ỹ is a proper neighbor of x̃ in J , then y is a proper

neighbor of x in F .

[Case 1: |supp(x̃ − ỹ)| = 1] Let i ∈ E be the unique element in {e ∈ E | x̃(e) 6= ỹ(e)}.

We may assume that x̃(i) < ỹ(i). Then, we have either

(a) ỹ = x̃+ χi ∈ J , or (b) ỹ = x̃+ 2χi ∈ J and x̃+ χi 6∈ J .

If (a) holds, then we have y = x+α1χi ∈ F with α1 = πi(x̃(i)+1)−πi(x̃(i)), which is a proper

neighbor of x in F . If (b) holds, then we have y = x+α2χi ∈ F with α2 = πi(x̃(i)+2)−πi(x̃(i))

and x+ α1χi 6∈ F , implying that y is a proper neighbor of x in F .

[Case 2: |supp(x̃−ỹ)| = 2] We may assume, without loss of generality, that ỹ = x̃+χi+χj
for some distinct i, j ∈ E. Since ỹ is a proper neighbor of x̃ in J , we may also assume

that x̃ + χi 6∈ J . Then, we have y = x + αχi + βχj ∈ F and x + αχi 6∈ F , where α =

πi(x̃(i)+ 1)−πi(x̃(i)), and β = πj(x̃(j)+ 1)−πj(x̃(j)). By the assumption and the definitions

of α,β, the following property holds:

if x+ α0χi + β0χj ∈ F , 0 ≤ α0 ≤ α, 0 ≤ β0 ≤ β, then (α0,β0) ∈ {(0, 0), (0,β), (α,β)}. (3.6)

Hence, y is a proper neighbor of x in F if α = β.

By the property (NS) applied to x, x + αχi + βχj , and i ∈ inc(x, x + αχi + βχj), there

exists some γ ∈ Z with 0 < γ ≤ min{α,β} such that x+ γχi ∈ F or x+ γ(χi+χj) ∈ F . Since

γ ≤ α, we cannot have x + γχi ∈ F . Hence, x + γ(χi + χj) ∈ F holds. By the definitions

of α,β, we have γ ≥ max{α,β}, implying that γ = α = β. This concludes that y is a proper

neighbor of x in F .

Proof of “only if” part We show that if y is a proper neighbor of x in F , then ỹ is a proper

neighbor of x̃ in J .

[Case 1: |supp(x − y)| = 1] Let i ∈ E be the unique element in {e ∈ E | x(e) 6= y(e)}.

We may assume that x(i) < y(i). Then, there exists some α∗ ∈ Z++ such that

y = x+ α∗χi ∈ F , x+ α0χi 6∈ F (0 < ∀α0 < α∗).

If α∗ = πi(x̃(i) + 1) − πi(x̃(i)), then ỹ = π−1(x + α∗χi) = x̃ + χi ∈ J , which is a proper

neighbor of x̃ in J since +χi ∈ inc(x̃, ỹ). Hence, suppose that α∗ > πi(x̃(i) + 1) − πi(x̃(i)).

Then, Lemma 3.6 implies that α∗ = πi(x̃(i) + 2)− πi(x̃(i)). Therefore, it holds that

ỹ = π−1(x+ α∗χi) = x̃+ 2χi ∈ J , x̃+ χi 6∈ J ,

which shows that ỹ is a proper neighbor of x̃ in J .

[Case 2: |supp(x − y)| = 2] We may assume, without loss of generality, that y = x +

α(χi + χj) for some distinct i, j ∈ E and α ∈ Z++. Since y is a proper neighbor of x in F , we
may also assume that

x+ α0χi 6∈ F (0 < ∀α0 < α).

Then, in the same way as in the proof of Lemma 3.8, we can show that

α = πi(x̃(i) + 1)− πi(x̃(i)) = πj(x̃(j) + 1)− πj(x̃(j))

(cf. (3.5)). This implies ỹ = π−1(x+α(χi+χj)) = x̃+χi+χj ∈ J and x̃+χi 6∈ J . Therefore,

ỹ is a proper neighbor of x̃ in J .
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4 Polyhedral Structure of Neighbor Systems

We consider the convex closure of neighbor systems, and reveal their polyhedral structure by

showing the relationship with bisubmodular polyhedra.

4.1 Results

For a set F ⊆ ZE , the convex closure (or closed convex hull) of F , denoted by conv(F) (⊆ RE) is
the (unique) minimal closed convex set containing F . If F is a finite set, then conv(F) coincides

with the convex hull of F , which is the set of vectors represented as a convex combination of

finite vectors in F .

We denote

2E = {X | X ⊆ E}, 3E = {(X,Y ) | X,Y ⊆ E, X ∩ Y = ∅}.

For x ∈ RE and X ∈ 2E , we define x(X) =
P
i∈X x(i). Similarly, for x ∈ RE and (X,Y ) ∈ 3E ,

we define x(X,Y ) = x(X)− x(Y ). A function ρ : 3E → R ∪ {+∞} is said to be bisubmodular
if it satisfies the bisubmodular inequality:

ρ(X1, Y1) + ρ(X2, Y2)

≥ ρ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)) + ρ(X1 ∩X2, Y1 ∩ Y2)

(∀(X1, Y1), (X2, Y2) ∈ 3
E).

For a function ρ : 3E → R ∪ {+∞} with ρ(∅, ∅) = 0, we define a polyhedron P∗(ρ) ⊆ RE by

P∗(ρ) = {x ∈ RE | x(X,Y ) ≤ ρ(X,Y ) ((X,Y ) ∈ 3E)}.

The polyhedron P∗(ρ) is called a bisubmodular polyhedron if ρ is a bisubmodular function. A
polyhedron P ⊆ RE is said to be integral if it satisfies conv(P ∩ ZE) = P . For a bounded

polyhedron P , we have conv(P ∩ ZE) = P if and only if all extreme points in P are integral

vectors.

The following result is known for the convex closure of a jump system, which is a special

case of neighbor systems.

Theorem 4.1 ([6, Theorem 5.3]). For every jump system J ⊆ ZE, its convex closure conv(J )
is an integral bisubmodular polyhedron.

We show that this result extends to neighbor systems.

Theorem 4.2. For every all-neighbor system F ⊆ ZE, its convex closure conv(F) is an integral
bisubmodular polyhedron.

It should be noted that Theorem 4.2 does not follow from Theorems 3.1 and 4.1.

We also provide a characterization of neighbor systems by the property that the convex

closure is a bisubmodular polyhedron.

Theorem 4.3. A nonempty set F ⊆ ZE is an all-neighbor system if and only if for all vectors

`, u ∈ ZE satisfying ` ≤ u and F ∩ [`, u] 6= ∅, the convex closure conv(F ∩ [`, u]) is an integral
bisubmodular polyhedron.

In the next section we give proofs of Theorems 4.2 and 4.3.
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4.2 Proofs

4.2.1 Proof of Theorem 4.2

Let F ⊆ ZE be a neighbor system, and ρ : 3E → R ∪ {+∞} is a function defined by

ρ(X,Y ) = sup{x(X,Y ) | x ∈ F} ((X,Y ) ∈ 3E).

By the definition of ρ, the following properties hold:

x(X,Y ) ≤ ρ(X,Y ) (∀x ∈ F , ∀(X,Y ) ∈ 3E), (4.1)

ρ(∅, ∅) = 0, ρ(X,Y ) ∈ Z if ρ(X,Y ) < +∞.

We use the following property of bisubmodular polyhedra to prove that conv(F) is an

integral bisubmodular polyhedron.

Theorem 4.4 ([6, Corollary 5.4]; see also [16, 20, 21]). If ρ is an integer-valued bisubmodular

function, then the bisubmodular polyhedron P∗(ρ) is an integral polyhedron.

By Theorem 4.4, it suffices to show the following property holds:

ρ is a bisubmodular function satisfying conv(F) = P∗(ρ). (4.2)

We firstly consider the case where F is a finite set. In this case, ρ(X,Y ) < +∞ holds for

every (X,Y ) ∈ 3E . We give a key property to show (4.2).

Lemma 4.5. For every (A,B) ∈ 3E with A∪B = E and all k-tuples of subsets E1, E2, . . . , Ek
(k ≥ 1) of E with E1 ⊂ E2 ⊂ · · · ⊂ Ek, there exists some x ∈ F such that

x(Et ∩A,Et ∩B) = ρ(Et ∩A,Et ∩B) (t = 1, 2, . . . , k).

Proof. We prove the claim by induction on k. The case where k = 1 is obvious from the

definition of ρ. Hence, we assume k > 1. By the induction hypothesis, there exists some x ∈ F

such that

x(Et ∩A,Et ∩B) = ρ(Et ∩A,Et ∩B) (t = 1, 2, . . . , k − 1).

Let y ∈ F be a vector satisfying y(Ek ∩ A,Ek ∩ B) = ρ(Ek ∩ A,Ek ∩ B), and assume that y

minimizes the value ||y − x||1 among all such y. We will show that y satisfies

y(Et ∩A,Et ∩B) = ρ(Et ∩A,Et ∩B) (t = 1, 2, . . . , k − 1).

Assume, to the contrary, that there exists some t ∈ {1, 2, . . . , k − 1} such that y(Et ∩

A,Et ∩ B) < ρ(Et ∩ A,Et ∩ B). Since x(Et ∩ A,Et ∩ B) = ρ(Et ∩ A,Et ∩ B), we have either

{e ∈ E | e ∈ Et ∩A, x(e) > y(e)} 6= ∅ or {e ∈ E | e ∈ Et ∩B, x(e) < y(e)} 6= ∅ (or both). We

consider the former case only since the latter case can be dealt with in a similar way.

Let i ∈ E be an element such that i ∈ Et ∩ A and x(i) > y(i). Since +χi ∈ inc(y, x), the

property (NS0) implies that there exist q ∈ inc(y, x) ∪ {0} \ {+χi} and α ∈ Z++ such that
y0 = y + α(χi + q) ∈ F and y0 is between y and x. We note that ||y0 − x||1 < ||y − x||1 holds.
If q = 0, then we have

y0(Ek ∩A,Ek ∩B) > y(Ek ∩A,Ek ∩B) = ρ(Ek ∩A,Ek ∩B)
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since i ∈ Et ∩A ⊆ Ek ∩A, a contradiction. Hence, q 6= 0 holds. From this follows that

y0(Ek ∩A,Ek ∩B) ≥ y(Ek ∩A,Ek ∩B) = ρ(Ek ∩A,Ek ∩B),

where the inequality must hold with equality by (4.1). In addition, we have ||y0−x||1 < ||y−x||1,
a contradiction to the choice of y.

To show the bisubmodularity of ρ, we use the following characterization.

Lemma 4.6 ([4, Theorem 2]). A function ρ : 3E → R is bisubmodular if and only if ρ satisfies
the following conditions:

ρ(X ∩A,X ∩B) + ρ(Y ∩A,Y ∩B)

≥ ρ((X ∪ Y ) ∩A, (X ∪ Y ) ∩B) + ρ((X ∩ Y ) ∩A, (X ∩ Y ) ∩B)

(∀(A,B) ∈ 3E with A ∪B = E, ∀X,Y ∈ 2E), (4.3)

ρ(X ∪ {e}, Y ) + ρ(X,Y ∪ {e}) ≥ 2ρ(X,Y )

(∀(X,Y ) ∈ 3E , ∀e ∈ E \ (X ∪ Y )). (4.4)

Note that the condition (4.3) is equivalent to the submodularity of the function ρA,B : 2
E → R

defined by ρA,B(X) = ρ(X ∩ A,X ∩ B) (X ∈ 2E). By using this characterization, we prove

that the function ρ is bisubmodular.

Lemma 4.7. The function ρ is bisubmodular.

Proof. By Lemma 4.6 it suffices to show that ρ satisfies the conditions (4.3) and (4.4).

We firstly show the condition (4.3). By Lemma 4.5, there exists a vector x ∈ F satisfying

x((X ∩ Y ) ∩A, (X ∩ Y ) ∩B) = ρ((X ∩ Y ) ∩A, (X ∩ Y ) ∩B),

x(X ∩A,X ∩B) = ρ(X ∩A,X ∩B),

x((X ∪ Y ) ∩A, (X ∪ Y ) ∩B) = ρ((X ∪ Y ) ∩A, (X ∪ Y ) ∩B),

which, together with (4.1), implies the desired inequality as follows:

ρ((X ∪ Y ) ∩A, (X ∪ Y ) ∩B) + ρ((X ∩ Y ) ∩A, (X ∩ Y ) ∩B)

= x((X ∪ Y ) ∩A, (X ∪ Y ) ∩B) + x((X ∩ Y ) ∩A, (X ∩ Y ) ∩B)

= x(X ∩A,X ∩B) + x(Y ∩A, Y ∩B)

≤ ρ(X ∩A,X ∩B) + ρ(Y ∩A, Y ∩B).

We then show the condition (4.4). By the definition of ρ, there exists a vector x ∈ F

satisfying x(X,Y ) = ρ(X,Y ), which, together with (4.1), implies the desired inequality:

ρ(X ∪ {e}, Y ) + ρ(X,Y ∪ {e}) ≥ {x(X) + x(e)− x(Y )}+ {x(X)− x(Y )− x(e)}

= 2{x(X)− x(Y )} = ρ(X,Y ).

To show the equation conv(F) = P∗(ρ), we use the following characterization of extreme
points in a bounded bisubmodular polyhedron.
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Lemma 4.8 ([12, Corollary 3.59]). Let ρ : 3E → R be a bisubmodular function. A vector

x ∈ RE is an extreme point of P∗(ρ) if and only if there exist (A,B) ∈ 3E with A∪B = E and

an ordering e1, e2, . . . , en of elements in E such that

x(Et ∩A,Et ∩B) = ρ(Et ∩A,Et ∩B) (t = 1, 2, . . . , n),

where Et = {e1, e2, . . . , et}.

Lemma 4.9. It holds that conv(F) = P∗(ρ).

Proof. By the definition of P∗(ρ), it is easy to see that conv(F) ⊆ P∗(ρ). To show the reverse
inclusion, it suffices to show that every extreme point of P∗(ρ) is contained in F , which follows
from Lemmas 4.5 and 4.8.

This concludes the proof of (4.2) for the case where F is a finite neighbor system.

We then prove (4.2) for the case where a neighbor system F is an infinite set. With a fixed

vector x0 ∈ F , we define Fk (k = 1, 2, . . .) by

Fk = {x ∈ F | |x(e)− x0(e)| ≤ k (∀e ∈ E)}.

Note that Fk is a finite set. We also define a function ρk : 3
E → Z (k = 1, 2, . . .) by

ρk(X,Y ) = max{x(X,Y ) | x ∈ Fk} ((X,Y ) ∈ 3E).

By Proposition 2.1 (iii), each Fk is a neighbor system, and therefore ρk is a bisubmodu-

lar function by Lemma 4.7. Moreover, it holds that limk→+∞ fk(X,Y ) = f(X,Y ) for every

(X,Y ) ∈ 3E . Therefore, for every (X1, Y1), (X2, Y2) ∈ 3E , we have

ρ(X1, Y1) + ρ(X2, Y2)

= lim
k→+∞

ρk(X1, Y1) + lim
k→+∞

ρk(X2, Y2)

≥ lim
k→+∞

ρk((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)) + lim
k→+∞

ρk(X1 ∩X2, Y1 ∩ Y2)

= ρ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)) + ρ(X1 ∩X2, Y1 ∩ Y2),

i.e., ρ is a bisubmodular function.

We then show that conv(F) = P∗(ρ) holds. Since F ⊆ P∗(ρ), we have conv(F) ⊆ P∗(ρ).
It holds that P∗(ρ) = limk→+∞ P∗(ρk), and that P∗(ρk) = conv(Fk) for each k = 1, 2, . . . by

Lemma 4.9. Since conv(Fk) ⊆ conv(F), we have

P∗(ρ) = lim
k→+∞

P∗(ρk) = lim
k→+∞

conv(Fk) ⊆ conv(F).

Hence, conv(F) = P∗(ρ) holds. This concludes the proof of (4.2) for the case where F is an

infinite neighbor system.

4.2.2 Proof of Theorem 4.3

We show that a nonempty set F ⊆ ZE is an all-neighbor system if and only if the convex closure
conv(F∩ [`, u]) is an integral bisubmodular polyhedron for all vectors `, u ∈ ZE satisfying ` ≤ u
and F ∩ [`, u] 6= ∅.
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[Proof of “only if” part] Let F be an all-neighbor system. By Proposition 2.1 (iii), F∩[`, u]

is also an all-neighbor system for all vectors `, u ∈ ZE satisfying ` ≤ u and F ∩ [`, u] 6= ∅.

Therefore, the “only if” part follows immediately from Theorem 4.2.

[Proof of “if” part] Let x, y ∈ F and i ∈ supp(x− y). Assume, without loss of generality,

that x(i) < y(i). We show that there exists a neighbor z ∈ F of x such that z is between x

and y and z(i) > x(i).

We define vectors `, u ∈ ZE by

`(e) = min{x(e), y(e)}, u(e) = max{x(e), y(e)} (e ∈ E).

The set F ∩ [`, u] is nonempty since x ∈ F ∩ [`, u]. Let S = conv(F ∩ [`, u]), which is an integral

bisubmodular polyhedron by assumption. By the definitions of ` and u, the vector x is an

extreme point of S. We consider the tangent cone TC(x) of S at x, which is given by

TC(x) = {αz | z ∈ RE , x+ z ∈ S, α ∈ R, α ≥ 0}.

Since S is a polyhedron, TC(x) is a polyhedral cone.

Theorem 4.10 ([1, Theorem 3.5]). Let S ⊆ RE be a bisubmodular polyhedron, and x ∈ S.

Then, every extreme ray of the tangent cone TC(x) is a positive multiple of a {0,+1,−1}-vector

with exactly one or two nonzero components.

Since y−x ∈ TC(x) and y(i) > x(i), Theorem 4.10 implies that there exists an extreme ray

d ∈ RE of TC(x) that is a positive multiple of a vector +χi, +χi + χk, or +χi − χk for some

k ∈ E\{i}. Since S is a bounded polyhedron, there exists some vector z0 ∈ S such that z0 is an

extreme point of S and z0 − x is a positive multiple of d. Since d(i) > 0, we have z0(i) > x(i).

The vector z0 is contained in F ∩ [`, u] since it is an extreme point of S = conv(F ∩ [`, u]).

This implies, in particular, z0 ∈ F and z0 is between x and y. Let α be the minimum positive

number such that αz0 + (1− α)x ∈ F , and put z = αz0 + (1− α)x. Then, z is a neighbor of x

between x and y and satisfies z(i) > x(i). This concludes the proof for the “if” part.

5 Linear Optimization on Neighbor Systems

We consider a linear optimization problem on a finite all-neighbor system F , which is formulated

as follows:

(Lin) Maximize
P
e∈E w(e)x(e) subject to x ∈ F ,

where w ∈ RE . By using the result in Section 4, we show in Section 5.1 that a greedy algorithm
below works for the linear optimization.

Greedy Algorithm for Linear Optimization

Step 0: Let x0 be any vector in F and put x := x0. Order the elements in E = {e1, e2, . . . , en}

so that

|w(e1)| ≥ |w(e2)| ≥ · · · ≥ |w(en)|.

Step 1: For i = 1, 2, . . . , n, do the following: if w(ei) ≥ 0 (resp., w(ei) < 0), then fix the

components x(e1), x(e2), . . . , x(ei−1) and decrease (resp., increase) x(ei) as much as possible
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under the condition x ∈ F .

Step 2: Output the current vector x.

We note that the greedy algorithm is essentially equivalent to a variant of the greedy

algorithm (called the “altered greedy algorithm”) proposed by Hartvigsen [14], although they

seem different. We discuss the relationship between the two greedy algorithms in Section 5.2.

5.1 Validity of Greedy Algorithm

We firstly show the validity of the greedy algorithm above. We define a function ρ : 3E → Z
by

ρ(X,Y ) = max{x(X,Y ) | x ∈ F} ((X,Y ) ∈ 3E).

Theorem 4.2 and its proof show that ρ is an integer-valued bisubmodular function with ρ(∅, ∅) =

0 and the convex closure conv(F) is an integral bisubmodular polyhedron with conv(F) =

P∗(ρ). For i = 1, 2, . . . , n, we define Xi, Yi ⊆ E by

Xi = {eh | 1 ≤ h ≤ i, w(eh) ≥ 0}, Yi = {eh | 1 ≤ h ≤ i, w(eh) < 0}.

Hence, {Xi, Yi} is a partition of the set {e1, e2, . . . , ei} for each i. It is known that the vector

x∗ ∈ RE given by

x∗(ei) = ρ(Xi, Yi)− ρ(Xi−1, Yi−1) (i = 1, 2, . . . , n)

is a vector in the bisubmodular polyhedron conv(F) maximizing the value
P
e∈E w(e)x(e)

among all vectors in conv(F) (see [9], [12, §3.5 (b)]). Since x∗ is an extreme point of conv(F),
x∗ is a vector in F ; moreover, it is an optimal solution of (Lin). Below we show that x∗ is the
vector found by the greedy algorithm.

Let xa ∈ F be the vector found by the greedy algorithm, and we show xa(ei) = x∗(ei)
(i = 1, 2, . . . , n) by induction on i. Assume that xa(eh) = x∗(eh) (h = 1, 2, . . . , i) holds for

some i < n. For simplicity, we assume that w(ei+1) ≥ 0. By the definition of xa(ei+1), we

have xa(ei+1) ≥ x∗(ei+1). On the other hand, it holds that x∗(Xi+1, Yi+1) = ρ(Xi+1, Yi+1) ≥

xa(Xi+1, Yi+1), implying that

x∗(ei+1) = x∗(Xi+1, Yi+1)− x∗(Xi+1 \ {ei+1}, Yi+1)

≥ xa(Xi+1, Yi+1)− xa(Xi+1 \ {ei+1}, Yi+1) = xa(ei+1).

Hence, xa(ei+1) = x∗(ei+1) holds. This shows that x∗ coincides with the vector found by the
greedy algorithm.

5.2 Relationship with Hartvigsen’s Greedy Algorithm

We explain a greedy algorithm proposed by Hartvigsen [14] and discuss the relationship with

our greedy algorithm.

Let F ⊆ ZE be an all-neighbor system. Recall that D ⊆ {0,+1,−1}E denotes the set of all

directions (see Section 2); for every x ∈ F and every neighbor y ∈ F of x, we have y − x = αd

for some d ∈ D and α ∈ Z++. For each direction d ∈ D, we define a value wp(d) by

wp(d) =

P
e∈E w(e)d(e)P
e∈E |d(e)|

,
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which means the ”slope” of the direction d. The greedy algorithm of Hartvigsen [14] improves

the current solution iteratively by using the steepest ascent direction, i.e., a direction d which

maximizes the value wp(d) among all directions.

Hartvigsen’s Greedy Algorithm for (Lin)

Step 0: Let x0 be any vector in F and put x := x0. Label all the directions d1, d2, . . . , dm in

D so that

wp(d1) ≥ w
p(d2) ≥ · · · ≥ w

p(dm).

Let m0 be the maximum integer with wp(dm0) ≥ 0.

Step 1: If there exists no dj with 1 ≤ j ≤ m0 and α ∈ Z++ such that x + αdj ∈ F , then

output the current vector x and stop.

Step 2: For j = 1, 2, . . . ,m0, do the following: if x + αdj ∈ F holds for some α ∈ Z++, then
update x by x := x+ αdj and go to Step 1.

We note that the description of the greedy algorithm is slightly different from the original one

in [14], which describes the algorithm by using a neighbor function.

A variant of Hartvigsen’s greedy algorithm, called the altered greedy algorithm in [14],

has a better time complexity. The altered greedy algorithm is the same as the original greedy

algorithm of Hartvigsen, except that it replaces the coefficient vector w of the objective function

to a new one, based on the following property:

Proposition 5.1 ([14, Proposition 13]). Let w,w∗ ∈ RE be vectors satisfying the following

conditions:

for every e ∈ E, if w(e) > 0 then w∗(e) > 0, if w(e) < 0 then w∗(e) < 0,

for every e ∈ E, if |w(e)| > 0 then |w∗(e)| > 0,

for every e, e0 ∈ E, if |w(e)| > |w(e0)| then |w∗(e)| À |w∗(e0)|,

where aÀ b means that a is sufficiently larger than b. Then, argmax{
P
e∈E w∗(e)x(e) | x ∈ F}

is contained in argmax{
P
e∈E w(e)x(e) | x ∈ F}.

A proof of Proposition 5.1 is given in [14]; an alternative proof can be given by using the fact

that the convex closure of a neighbor system is a bisubmodular polyhedron (Theorem 4.2).

Given a coefficient vector w ∈ RE of the problem (Lin), we consider a vector w∗ ∈ RE satis-
fying the conditions in Proposition 5.1. The altered greedy algorithm uses the vector w∗ instead
of w, and applies the greedy algorithm of Hartvigsen to the problem max{

P
e∈E w∗(e)x(e) |

x ∈ F} to obtain an optimal solution of the original linear optimization problem.

We now explain the relationship between the altered greedy algorithm and our greedy

algorithm. For the simplicity of the description, we assume, without loss of generality, that

E = {e1, e2, . . . , en} and

w(e1) > w(e2) > · · · > w(en) > 0.

Then, the vector w∗ ∈ RE satisfies

w∗(e1)À w∗(e2)À · · · À w∗(en)À 0.

Therefore, the altered greedy algorithm firstly uses directions d ∈ {0,+1,−1}E with d(e1) =

+1, implying that the algorithm maximizes the value x(e1). The algorithm then uses directions
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d with d(e1) = 0 and d(e2) = +1, implying that it maximizes the value x(e2) without changing

the value x(e1). Similarly, the algorithm then maximizes the value x(e3) without changing

the values x(e1) and x(e2), and so on. From this observation we see that the altered greedy

algorithm is essentially equivalent to our greedy algorithm

We define the size of a set F ⊆ ZE as

Φ(F) = max
e∈E

½
max
x∈F

x(e)−min
x∈F

x(e)

¾
; (5.1)

Φ(F) is just the length of the longest edge in the bounding box of F . It is shown in [14]

that the altered greedy algorithm (and hence our greedy algorithm also) can be implemented

to run in O(n2Φ(F)) time for a finite all-neighbor system and in O(kn2 log(Φ(F))) time for

a finite Nk-neighbor system, where it is assumed that we are given a membership oracle for

F , which enables us to check whether a given vector is contained in F or not in constant

time. In particular, the analysis of the time complexity in [14] implies that the problems

max{x(e) | x ∈ F} and min{x(e) | x ∈ F}, which are special cases of (Lin), can be solved

faster by a factor of n.

Theorem 5.2. Let e ∈ E. For a finite all-neighbor system F ⊆ ZE, the problems max{x(e) |
x ∈ F} and min{x(e) | x ∈ F} can be solved in O(nΦ(F)) time; if F is a finite Nk-neighbor

system, then the problems can be solved in O(nk logΦ(F)) time.

In the proof of Theorem 5.2 we use a fact that the (altered) greedy algorithm applied to

max{x(e) | x ∈ F} requires only directions d ∈ D with d(e) = +1, and there exist at most

2n+ 1 such directions. Theorem 5.2 will be used in Section 6.

6 Separable Convex Optimization on Neighbor Systems

We consider the problem of minimizing a separable convex function on a finite neighbor system,

which is formulated as follows:

(SC) Minimize f(x) ≡
X
e∈E

fe(x(e)) subject to x ∈ F ,

where fe : Z → R (e ∈ E) is a family of univariate convex functions and F ⊆ ZE is a finite
all-neighbor system. We propose efficient algorithms for (SC). We firstly show some useful

properties in developing efficient algorithms for (SC) in Section 6.1. In Section 6.2, we propose

a greedy algorithm for the problem (SC) and show that it runs in pseudo-polynomial time, i.e.,

time polynomial in n = |E| and in the size Φ(F) of F ; recall the definition of Φ(F) in (5.1).

We finally show in Section 6.3 that if F is an Nk-neighbor system, then the problem (SC) can

be solved in weakly-polynomial time, i.e., time polynomial in n, in k, and in logΦ(F).

Remark 6.1. As mentioned in Introduction, the separable convex optimization problem on

jump systems can be solved in weakly-polynomial time by an algorithm. Hence, it is a natural

idea to reduce the problem (SC) to an optimization problem on a jump system by using the

relationship between neighbor systems and jump systems shown in Section 3, and then to apply

the existing results on jump systems. Indeed, the problem (SC) can be reduced to the following

optimization problem on a jump system J ⊆ ZE :
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(SC0) Minimize g(x) ≡
X
e∈E

ge(x(e)) subject to x ∈ J ,

where vectors `, u ∈ ZE and a family of strictly increasing functions πe : [`(e), u(e)] → Z
(e ∈ E) are given as in Section 3, and functions ge : [`(e), u(e)]→ R (e ∈ E) are defined by

ge(α) = fe(πe(α)) (α ∈ [`(e), u(e)]).

This approach, however, does not lead to a polynomial-time algorithm for (SC) due to the

following reasons.

One reason is that the objective function g of the problem (SC0) is not separable convex.
In particular, each function ge is quasi-convex but not convex in general, due to the nonlinear

coordinate scaling πe. Hence, algorithms for the separable convex optimization problem on

jump systems cannot be applied to (SC0).
Another reason is that it is difficult to transformation a neighbor system F to a jump

system J efficiently. Since F may contain an exponential number of vectors, it is better to

compute functions πe and obtain J implicitly, instead of computing J explicitly. We can

indeed compute functions πe by using the ideas in proofs of Section 3, but it still requires

pseudo-polynomial time.

6.1 Theorems

The next theorem shows that the optimality of a vector can be characterized by a local opti-

mality. This is an extension of an optimality condition [3, Corollary 4.2] for jump systems.

Theorem 6.2. Let F ⊆ ZE be an all-neighbor system, and x ∈ F . Then, x is an optimal

solution of (SC) if and only if f(x) ≤ f(y) holds for all proper neighbor y ∈ F of x.

Proof. The proof is given in Section 6.4.1.

The next property, which is an extension of the corresponding result [23, Theorem 4.2] for

jump systems, shows that a given nonoptimal vector in F can be easily separated from an

optimal solution. Recall that U denotes the set of unit vectors given by (2.1).

For an all-neighbor system F ⊆ ZE and x ∈ F , we define

PN(F , x) = {(p, q,α) | p ∈ U, q ∈ U ∪ {0} \ {+p,−p}, α ∈ Z++,
x+ α(p+ q) is a proper neighbor of x}.

(6.1)

We note that if (p, q,α) ∈ PN(F , x) and q 6= 0 then we also have (q, p,α) ∈ PN(F , x).

Theorem 6.3. Let F ⊆ ZE be an all-neighbor system. Suppose that (SC) has an optimal

solution, and let x ∈ F be a vector which is not an optimal solution of (SC). Let (p∗, q∗,α∗) be
an element in PN(F , x) such that f(x+α∗(p∗+ q∗)) < f(x), and assume that it minimizes the
value {f(x+α∗p∗)−f(x)}/α∗ among all such elements. Then, there exists an optimal solution
x∗ of (SC) satisfying (

x∗(i) ≤ x(i)− α− (if p∗ = −χi),
x∗(i) ≥ x(i) + α+ (if p∗ = +χi),
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where

α− = min{x(i)− y(i) | y ∈ F , y(i) < x(i)},

α+ = min{y(i)− x(i) | y ∈ F , y(i) > x(i)}.

Proof. The proof is given in Section 6.4.2.

We then show that the enumeration of proper neighbors of a given vector can be done

efficiently. This property is useful in checking the local optimality in the sense of Theorem 6.2

and the computation of an element (p∗, q∗,α∗) ∈ PN(F , x) in Theorem 6.3.

Theorem 6.4. Let F ⊆ ZE be an all-neighbor system and x ∈ F . All proper neighbors of x

can be computed in O(n2Φ(F)) time; it can be done in O(n2k) time if F is an Nk-neighbor

system.

Proof. Since an all-neighbor system F is an Nk-neighbor system with k = Φ(F), it suffices

to show the bound O(kn2) for an Nk-neighbor system F . In this case, computation of all

proper neighbors of x can be done as follows. Recall that all proper neighbors are contained

in Nk(F , x) by Proposition 2.3.

We firstly compute proper neighbors of the form x+ αχi (i ∈ E, 0 < α ≤ k). We set

α+i = min{α | α ∈ Z, x+ αχi ∈ F , 0 < α ≤ k};

if {α ∈ Z | x + αχi ∈ F , 0 < α ≤ k} = ∅, then set α+i = +∞. If α+i < +∞, then output

x + α+i χi, which is a proper neighbor of x; otherwise, there exists no proper neighbor of the

form x+ αχi. It is easy to see that this can be done in O(nk) time for all i ∈ E. Similarly, we

can compute all proper neighbors of the form x− αχi (i ∈ E, 0 < α ≤ k) in O(nk) time.

We then compute proper neighbors of the form x + α(χi + χj) for some distinct i, j ∈ E

and α ∈ Z with 0 < α ≤ k. If the set {α | x+ α(χi + χj) ∈ F , 0 < α ≤ k} is nonempty, then

we compute the value α+ij defined by

α+ij = min{α | x+ α(χi + χj) ∈ F , 0 < α ≤ k}.

If α+ij < α+i or α
+
ij < α+j , then the vector x+ α+ij(χi + χj) is a proper neighbor, and we output

it. It is easy to see that this can be done in O(n2k) time. Similarly, we can compute all proper

neighbors of the forms x + α(χi − χj) and x + α(−χi − χj) in O(n
2k) time. Hence, we can

compute all proper neighbors of x in O(n2k) time.

6.2 Pseudopolynomial-Time Algorithm

Based on Theorems 6.2 and 6.3, we propose a greedy algorithm for solving the problem (SC).

We assume in this section that F is a finite all-neighbor system, unless otherwise stated. The

greedy algorithm maintains an interval [a, b] with a, b ∈ ZE containing an optimal solution of
(SC). Note that F ∩ [a, b] is a neighbor system by Proposition 2.1 (iii). The vectors a and b are

updated by using Theorem 6.3 so that the value ||b− a||1 reduces in each iteration, and finally

an optimal solution is found. We assume that an initial vector x0 ∈ F is given.
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Algorithm Greedy SC

Step 0: Let x := x0 ∈ F . Set a(e) := aF (e) and b(e) := bF (e), where

aF (e) = min{x(e) | x ∈ F}, bF (e) = max{x(e) | x ∈ F} (e ∈ E). (6.2)

Step 1: If f(x) ≤ f(y) holds for all proper neighbors y of x in F ∩ [a, b], then output the

current x and stop.

Step 2: Let (p∗, q∗,α∗) be an element in PN(F , x) with f(x+α∗(p∗+ q∗)) < f(x) minimizing
the value {f(x+ α∗p∗)− f(x)}/α∗ among all such elements.
Step 3: Modify a or b as follows:(

b(i) := x(i)− α− (if p∗ = −χi),
a(i) := x(i) + α+ (if p∗ = +χi),

(6.3)

where α−,α+ are defined by(
α− = min{x(i)− y(i) | y ∈ F ∩ [a, b], y(i) < x(i)},

α+ = min{y(i)− x(i) | y ∈ F ∩ [a, b], y(i) > x(i)}.
(6.4)

Set x := x0. Go to Step 1.

By Theorem 6.2, the output x of the algorithm is a minimizer of the function f in the set

F ∩ [a, b]. We see from Theorem 6.3 that the set F ∩ [a, b] always contains an optimal solution

of (SC). Hence, the output x of the algorithm is an optimal solution of (SC).

We analyze the running time of the algorithm Greedy SC. By Theorem 5.2, the values

aF (e) and bF (e) can be computed in O(nΦ(F)) time for each e ∈ E. Hence, Step 0 can be
done in O(n2Φ(F)) time. Steps 1 and 2 can be done in O(n2Φ(F)) time by Theorem 6.4.

The values α−,α+ can be also computed in O(nΦ(F)) time by Theorem 5.2 since the sets

{y ∈ F ∩ [a, b] | y(i) < x(i)} and {y ∈ F ∩ [a, b] | y(i) > x(i)} are all-neighbor systems if they

are nonempty. Hence, each iteration of the algorithm requires O(n2Φ(F)) time.

To bound the number of iterations of the algorithm, we use the value ||b − a||1. Suppose

that we have p∗ = −χi in Step 3, and denote by bold (resp., bnew) the vector b before update

(resp., after update). Then, it holds that a(i) ≤ bnew(i) = x(i)− α− < x(i) ≤ bold(i), implying
that ||bnew − a||1 < ||bold − a||1. If p∗ = +χi holds in Step 3, then we can show in the same

way that ||b− anew||1 < ||b− aold||1, where aold (resp., anew) the vector a before update (resp.,

after update). Hence, the value ||b − a||1 reduces in each iteration, and therefore the number

of iterations is bounded by nΦ(F).

Theorem 6.5. The algorithm Greedy SC finds an optimal solution of the problem (SC) in

O(n3Φ(F)2) time.

6.3 Polynomial-Time Algorithm

We propose a faster algorithm for (SC) with a finite Nk-neighbor system F by using the domain

reduction approach. The domain reduction approach has been used to develop polynomial-time

algorithms for various optimization problems with discrete convex objective functions [22, 23].

We show that the proposed algorithm runs in weakly polynomial time if F is an Nk-neighbor

system and the value k is known a priori.

25



Given a finite Nk-neighbor system F ⊆ ZE , we define a set F• ⊆ ZE by F• = F ∩ [a•F , b•F ],
where aF , bF ∈ ZE are defined by (6.2) and

a•F (e) = aF (e) +
¹
bF (e)− aF (e)

nk

º
, b•F (e) = bF (e)−

¹
bF (e)− aF (e)

nk

º
(e ∈ E).

Theorem 6.6. Let F ⊆ ZE be a finite Nk-neighbor system.
(i) The set F• is nonempty and hence an Nk-neighbor system.
(ii) A vector in F• can be found in O(n2k logΦ(F)) time, provided a vector in F is given.

Proof. Proofs of (i) and (ii) are given in Sections 6.4.3 and 6.4.4, respectively.

The algorithm is described as follows. Assume that an initial vector x0 ∈ F is given.

Algorithm Domain Reduction

Step 0: Set a := aF and b := bF , where aF and bF are given by (6.2).
Step 1: Find a vector x ∈ (F ∩ [a, b])•.
Step 2: If f(x) ≤ f(y) holds for all proper neighbors y of x in F ∩ [a, b], then output the

current x and stop.

Step 3: Let (p∗, q∗,α∗) be an element in PN(F ∩ [a, b], x) with f(x + α∗(p∗ + q∗)) < f(x)

minimizing the value {f(x+ α∗p∗)− f(x)}/α∗ among all such elements.
Step 4: Modify a or b as in Step 3 of Greedy SC. Go to Step 1.

The validity of this algorithm can be shown in a similar way as the algorithm Greedy SC

by using Theorems 6.2 and 6.3.

We analyze the number of iterations. Denote by am, bm the vectors a, b in Step 1 of the

m-th iteration, and define vectors a0m, b0m ∈ ZE by

a0m(e) = min{x(e) | x ∈ F ∩ [am, bm]}, b0m(e) = max{x(e) | x ∈ F ∩ [am, bm]}.

It is noted that a0m(e) ≥ am(e) and b
0
m(e) ≤ bm(e) hold for every e ∈ E and F ∩ [a0m, b0m] =

F ∩ [am, bm] holds. In addition, it is clear that the value a0m(e) is nondecreasing and b0m(e) is
nonincreasing with respect to m for each e ∈ E. The following property is the key to obtain a

polynomial bound.

Lemma 6.7. Let p∗ be the vector chosen in Step 3 of the m-th iteration, and i ∈ E be the

element with {i} = supp(p∗). Then, it holds that

b0m+1(i)− a
0
m+1(i) <

µ
1−

1

nk

¶
{b0m(i)− a

0
m(i)}.

Proof. We show the inequality in the case p∗ = −χi only since the case p∗ = +χi can be shown
similarly. Let x ∈ (F ∩ [am, bm])

• be the vector chosen in Step 1 of the m-th iteration. By
using the inequalities b0m+1(i) ≤ bm+1(i) and a0m+1(i) ≥ a0m(i), we have

b0m+1(i)− a
0
m+1(i) ≤ bm+1(i)− a

0
m(i). (6.5)

By (6.3), it holds that

bm+1(i) = x(u)− α−. (6.6)
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Since x ∈ (F ∩ [am, bm])• = (F ∩ [a0m, b0m])•, we have

x(i) ≤ b0m(i)−
¹
b0m(i)− a0m(i)

nk

º
. (6.7)

From (6.5), (6.6), and (6.7) follows that

b0m+1(i)− a
0
m+1(i) ≤

µ
b0m(i)−

¹
b0m(i)− a0m(i)

nk

º¶
− α− − a0m(i)

≤

µ
b0m(i)−

¹
b0m(i)− a0m(i)

nk

º¶
− 1− a0m(i)

<

µ
1−

1

nk

¶
{b0m(i)− a

0
m(i)}.

We have b01(e)−a01(e) = b1(e)−a1(e) = bF (e)−aF (e) ≤ Φ(F) for all e ∈ E at the beginning
of the algorithm, and if b0m(e) − a0m(e) < 1 for all e ∈ E, then we obtain an optimal solution
immediately. Hence, it follows from Lemma 6.7 that the algorithm Domain Reduction ter-

minates in O(n2k logΦ(F)) iterations.

Recall that Fk is an Nk-neighbor system. By Theorem 5.2, the values aF (e) and bF (e)
can be computed in O(nk logΦ(F)) time for each e ∈ E. Hence, Step 0 can be done in

O(n2k logΦ(F)) time. By Theorem 6.6 (ii), Step 1 can be done in O(n2k logΦ(F)) time. Step

2 can be done in O(n2k) time by Theorem 6.4. The values α−,α+ in Step 3 can be also

computed in O(n2k) time by the following property:

Proposition 6.8. Let F ⊆ ZE be an all-neighbor system and x ∈ F .

(i) Suppose that {y ∈ F | y(i) < x(i)} 6= ∅. Then, there exists a proper neighbor y∗ ∈ F of x

such that x(i)− y∗(i) = min{x(i)− y(i) | y ∈ F , y(i) < x(i)}.
(ii) Suppose that {y ∈ F | y(i) > x(i)} 6= ∅. Then, there exists a proper neighbor y∗ ∈ F of x

such that y∗(i)− x(i) = min{y(i)− x(i) | y ∈ F , y(i) > x(i)}.

Proof. The statements (i) and (ii) follow from the discussion in Section 3.2.1.

Note that the sets {y ∈ F∩[a, b] | y(i) < x(i)} and {y ∈ F∩[a, b] | y(i) > x(i)} are Nk-neighbor

systems if they are nonempty. Hence, each iteration of the algorithm runs in O(n2k logΦ(F))

time.

Theorem 6.9. The algorithm Domain Reduction finds an optimal solution of the problem

(SC) in O(n4k2(logΦ(F))2) time if F is a finite Nk-neighbor system.

6.4 Proofs

In the proofs below, we often use the following fundamental properties of separable convex

functions.

Proposition 6.10. Let f : ZE → R be a separable convex function.
(i) Let x, y ∈ ZE and p ∈ inc(x, y). For every α,β ∈ Z++, if both of x + αp and y − βp are

between x and y, then we have

f(x+ αp)− f(x)

α
≤
f(y)− f(y − βp)

β
.

27



(ii) Let x ∈ ZE, p ∈ U , q ∈ U ∪ {0} \ {+p,−p}, and α,β ∈ Z++. Then, we have

f(x+ αp+ βq)− f(x) = {f(x+ αp)− f(x)}+ {f(x+ βq)− f(x)}.

6.4.1 Proof of Theorem 6.2

The “only if” part is obvious. We give a proof of “if” part below.

We firstly consider the case where F is a finite set. This implies the existence of an optimal

solution of (SC), in particular. Let x∗ ∈ F be an optimal solution of (SC) minimizing the value
kx∗ − xk1. If kx∗ − xk1 = 0, then x∗ = x and we are done. Hence, we assume, to the contrary,
that x∗ 6= x and derive a contradiction.

Since x∗ 6= x, there exists some (p, q,α) ∈ PN(F , x) such that x + α(p + q) is between x

and x∗, and suppose that (p, q,α) maximizes the value {f(x + αp) − f(x)}/α among all such

elements in PN(F , x); recall the definition of PN(F , x) in (6.1).

We show that

f(x+ αp)− f(x) ≥ 0. (6.8)

Since x+α(p+q) is a proper neighbor of x, we have f(x+α(p+q)) ≥ f(x). Hence, (6.8) holds

immediately from this inequality if q = 0. If q 6= 0, then Proposition 6.10 (ii) implies that

0 ≤
f(x+ α(p+ q))− f(x)

α

=
f(x+ αp)− f(x)

α
+
f(x+ αq)− f(x)

α
≤ 2 ·

f(x+ αp)− f(x)

α
,

where the last inequality is by the choice of (p, q,α). Hence, (6.8) holds.

Since −p ∈ inc(x∗, x), the property (NS0) and Theorem 2.2 imply that there exist −s ∈

inc(x∗, x) ∪ {0} \ {+p,−p} and β ∈ Z++ such that x∗ − β(p + s) is a proper neighbor of x∗
between x∗ and x. Since x+αp and x∗−βp are between x and x∗, Proposition 6.10 (i) implies
that

f(x∗)− f(x∗ − βp)

β
≥
f(x+ αp)− f(x)

α
≥ 0. (6.9)

Hence, we have f(x∗ − βp) ≤ f(x∗). In addition, we have f(x∗ − β(p + s)) > f(x∗) since
k(x∗−β(p+ s))−xk1 < kx∗−xk1. Therefore, we have s 6= 0. It follows from Proposition 6.10

(ii) that

0 < f(x∗ − β(p+ s))− f(x∗) = {f(x∗ − βp)− f(x∗)}+ {f(x∗ − βs)− f(x∗)},

implying that
f(x∗ − βs)− f(x∗)

β
>
f(x∗)− f(x∗ − βp)

β
. (6.10)

Since s ∈ inc(x, x∗), the property (NS0) and Theorem 2.2 imply that there exist t ∈

inc(x, x∗) ∪ {0} \ {+s,−s} and γ ∈ Z++ such that x + γ(s + t) is a proper neighbor of x

between x and x∗. Since x∗−βs and x+ γs are between x∗ and x, Proposition 6.10 (i) implies
that

f(x)− f(x+ γs)

γ
≥
f(x∗ − βs)− f(x∗)

β
. (6.11)

By combining (6.9), (6.10), and (6.11), we have {f(x)−f(x+γs)}/γ > 0. Hence, it holds that

f(x + γs) < f(x), which, combined with the choice of x, implies that t 6= 0. In addition, we
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have f(x+ γ(s+ t)) ≥ f(x) by the choice of x. Therefore, it follows from Proposition 6.10 (ii)

that

0 ≤ f(x+ γ(s+ t))− f(x) = {f(x+ γs)− f(x)}+ {f(x+ γt)− f(x)},

implying that
f(x+ γt)− f(x)

γ
≥
f(x)− f(x+ γs)

γ
.

This inequality, together with (6.9), (6.10), and (6.11), yields

f(x+ γt)− f(x)

γ
>
f(x+ αp)− f(x)

α
,

a contradiction to the choice of (p, q,α). This concludes the proof for the optimality of x when

F is a finite set.

We then consider the case where F is an infinite set. For every positive integer α, we define

a set Fα = {y ∈ F | ky − xk∞ ≤ α}. Then, Fα is an all-neighbor system by Proposition 2.1

(iii). Therefore, the discussion above implies that the vector x minimizes the function value

of f among all vectors in Fα. Since this holds for all nonnegative integer α, x minimizes the

function value of f among all vectors in F , i.e., x is an optimal solution of (SC).

6.4.2 Proof of Theorem 6.3

The proof given below is similar to that for [23, Theorem 4.2].

Let F ⊆ ZE be an all-neighbor system, and x ∈ F be a vector which is not an optimal

solution of (SC). Then, Theorem 6.2 implies that there exists some element (p∗, q∗,α∗) ∈
PN(F , x) such that

f(x+ α∗(p∗ + q∗)) < f(x). (6.12)

We assume that (p∗, q∗,α∗) minimizes the value {f(x + α∗p∗) − f(x)}/α∗ among all such
elements. Assume, without loss of generality, that p∗ = +χi for some i ∈ E. Let x∗ be an
optimal solution of (SC) maximizing the value x∗(i), and assume that x∗ minimizes kx∗ − xk1
among all such optimal solutions. We assume, to the contrary, that x∗(i) ≤ x(i) and derive a
contradiction.

Lemma 6.11. f(x+ α∗p∗) < f(x).

Proof. If q∗ = 0, then the claim follows immediately from (6.12). Hence, we assume q∗ 6= 0.

Then, it holds that

2 ·
f(x+ α∗p∗)− f(x)

α∗
≤

f(x+ α∗p∗)− f(x)
α∗

+
f(x+ α∗q∗)− f(x)

α∗

=
f(x+ α∗(p∗ + q∗))− f(x)

α∗
< 0,

where the first inequality is by the choice of (p∗, q∗,α∗), the equation is by Proposition 6.10
(ii), and the last inequality is by (6.12).

The next lemma shows a key property in the proof of Theorem 6.3.
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Lemma 6.12. There exists some (−s, t,β) ∈ PN(F , x) such that s ∈ inc(x∗, x) and

f(x− βs)− f(x)

β
<
f(x+ α∗p∗)− f(x)

α∗
. (6.13)

Proof. Since p∗ = +χi and x∗(i) ≤ x(i), we have p∗ ∈ inc(x∗, x+ α∗(p∗ + q∗)). Therefore, the
property (NS0) and Theorem 2.2 imply that there exist some s ∈ inc(x∗, x+α∗(p∗+q∗))∪{0}\
{+p∗,−p∗} and γ ∈ Z++ such that x∗ + γ(p∗ + s) is a proper neighbor of x∗ between x∗ and
x+ α∗(p∗ + q∗).

We show that s 6= 0. Recall that x∗ is an optimal solution of (SC) with the maximum value
of x∗(i). Hence, it holds that f(x∗+ γ(p∗+ s)) > f(x∗), which, together with Proposition 6.10
(ii), implies that

f(x∗ + γp∗)− f(x∗)
γ

+
f(x∗ + γs)− f(x∗)

γ
=
f(x∗ + γ(p∗ + s))− f(x∗)

γ
> 0. (6.14)

Since x∗ + γp∗ and x are between x∗ and x + α∗p∗, it follows from Proposition 6.10 (i) and

Lemma 6.11 that
f(x∗ + γp∗)− f(x∗)

γ
≤
f(x+ α∗p∗)− f(x)

α∗
< 0. (6.15)

If s = 0, the inequality (6.14) implies f(x∗+γp∗)−f(x∗) > 0, a contradiction to (6.15). Hence,
we have s 6= 0.

We then prove s ∈ inc(x∗, x). Suppose, to the contrary, that s 6∈ inc(x∗, x). Since s 6= 0,
we have s = q∗ 6= 0. We may assume, without loss of generality, that q∗ = +χj for some

j ∈ E \ {i}. Since s = +χj 6∈ inc(x∗, x), we have x∗(j) ≥ x(j). If x∗(j) > x(j), then Lemma
3.3 implies that x∗(j) ≥ x(j) + α∗, a contradiction to the fact that x∗ + γ(p∗ + q∗) is between
x∗ and x + α∗(p∗ + q∗). Hence, we have x∗(j) = x(j). Then, it follows from Lemma 3.3 that

γ = α∗, implying that

f(x∗ + γq∗)− f(x∗)
γ

=
f(x+ α∗q∗)− f(x)

α∗
. (6.16)

By (6.14), (6.15), (6.16), and Proposition 6.10 (ii), it holds that

0 <
f(x+ α∗p∗)− f(x)

α∗
+
f(x+ α∗q∗)− f(x)

α∗
=
f(x+ α∗(p∗ + q∗))− f(x)

α∗
,

a contradiction to the inequality (6.12). Hence, we have s ∈ inc(x∗, x).
Since −s ∈ inc(x, x∗), the property (NS0) and Theorem 2.2 imply that there exist some

t ∈ inc(x, x∗) ∪ {0} \ {+s,−s} and β ∈ Z++ such that x+ β(−s+ t) is a proper neighbor of x

between x and x∗. We note that x∗ + γ(p∗ + s) is between x∗ and x since it is between x∗ and
x+ α∗(p∗ + q∗) and s 6∈ {p∗, q∗}. Hence, Proposition 6.10 (i) implies that

f(x∗ + γs)− f(x∗)
γ

≤
f(x)− f(x− βs)

β
. (6.17)

From (6.14), (6.15), and (6.17) follows (6.13).

Let (−s, t,β) be an element in PN(F , x) satisfying s ∈ inc(x∗, x), and assume that it
minimizes the value {f(x − βs) − f(x)}/β among all such elements in PN(F , x). By Lemma

6.12, we have
f(x− βs)− f(x)

β
<
f(x+ α∗p∗)− f(x)

α∗
. (6.18)
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By the choice of (p∗, q∗,α∗), we have f(x+ β(−s+ t)) ≥ f(x). By (6.18) and Lemma 6.11, it

holds that f(x − βs) < f(x), implying that t 6= 0. By t 6= 0, f(x + β(−s + t)) ≥ f(x), and

Proposition 6.10 (ii), it holds that

f(x+ βt)− f(x)

β
≥
f(x)− f(x− βs)

β
> 0. (6.19)

Since −t ∈ inc(x∗, x), there exist some s0 ∈ inc(x∗, x) ∪ {0} \ {+t,−t} and η ∈ Z++ such
that x0 ≡ x∗+ η(−t+ s0) is a proper neighbor of x∗ between x∗ and x. By Proposition 6.10 (i),
it holds that

f(x+ βt)− f(x)

β
≤
f(x∗)− f(x∗ − ηt)

η
. (6.20)

Since −t, s0 ∈ inc(x∗, x) and x∗(i) ≤ x(i), we have x0(i) ≥ x∗(i), which, combined with k(x∗ +
η(−t + s0)) − xk1 < kx∗ − xk1, implies f(x∗ + η(−t + s0)) > f(x∗). From (6.19) and (6.20)

follows f(x∗) > f(x∗−ηt). Hence, s0 6= 0 holds. By f(x∗+η(−t+s0)) > f(x∗) and Proposition
6.10 (ii), we have

f(x∗ − ηt)− f(x∗)
η

+
f(x∗ + ηs0)− f(x∗)

η
> 0. (6.21)

Since −s0 ∈ inc(x, x∗), there exist some t0 ∈ inc(x, x∗) ∪ {0} \ {+s0,−s0} and ξ ∈ Z++ such
that x + ξ(−s0 + t0) is a proper neighbor of x between x and x∗. By Proposition 6.10 (i), it
holds that

f(x∗ + ηs0)− f(x∗)
η

≤
f(x)− f(x− ξs0)

ξ
. (6.22)

By combining (6.19), (6.20), (6.21), and (6.22), we obtain

f(x− ξs0)− f(x)
ξ

<
f(x− βs)− f(x)

β
,

a contradiction to the choice of (−s, t,β).

6.4.3 Proof of Theorem 6.6 (i)

To prove the statement (i), we use the following property of jump systems.

Theorem 6.13 ([23, Theorem 4.3]). Let J ⊆ ZE be a jump system. Define a set J ◦ ⊆ ZE by
J ◦ = J ∩ [a◦J , b

◦
J ], where for each e ∈ E,

aJ (e) = min{x(e) | x ∈ J }, bJ (e) = max{x(e) | x ∈ J },

a◦J (e) = aJ (e) +
¹
bJ (e)− aJ (e)

n

º
, b◦J (e) = bJ (e)−

¹
bJ (e)− aJ (e)

n

º
.

Then, the set J ◦ is nonempty.

Let F be a given Nk-neighbor system, and define vectors `, u ∈ ZE , a jump system J ⊆ ZE ,
and a family of strictly increasing functions πe : [`(e), u(e)] → Z (e ∈ E) as in Section 3. For
e ∈ E, let `0(e) be the minimum integer with πe(`

0(e)) ≥ a•F (e) and u
0(e) be the maximum

integer with πe(u
0(e)) ≤ b•F (e). Then, we have

F• = {x ∈ F | πe(`0(e)) ≤ x(e) ≤ πe(u
0(e)) (∀e ∈ E)}.
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Therefore, F• is nonempty if and only if the set J 0 ⊆ J given by

J 0 = {x ∈ J | `0(e) ≤ x(e) ≤ u0(e) (∀e ∈ E)}

is nonempty. By Theorem 6.13, the set J 0 is nonempty if J 0 ⊇ J ◦, i.e., if it holds that

`0(e) ≤ `(e) +
¹
u(e)− `(e)

n

º
, u0(e) ≥ u(e)−

¹
u(e)− `(e)

n

º
(∀e ∈ E). (6.23)

In the following, we prove the former inequality in (6.23) only since the latter can be proven

in a similar way. For e ∈ E, it holds that

(`0(e)− 1)− `(e) ≤ πe(`
0(e)− 1)− πe(`(e)) ≤ (a

•
F (e)− 1)− aF (e),

where the first inequality follows from the fact that πe is a strictly increasing, integer-valued

function, and the second is by the definition of `0(e). Hence, we have

`0(e)− `(e) ≤ a•F (e)− aF (e) =
¹
bF (e)− aF (e)

nk

º
. (6.24)

Lemma 6.14. It holds that πe(α+ 1)− πe(α) ≤ k (∀e ∈ E, `(e) ≤ ∀α < u(e)).

Proof. Let x ∈ F (resp., y ∈ F) be a vector with x(e) = πe(α) (resp., y(e) = πe(α + 1)).

Since x(e) < y(e), the property (NS) implies that there exist a neighbor x0 of x such that
x(e) < x0(e) ≤ y(e), and ||x0 − x||1 ≤ k. By the definition of the value πe(α + 1), we have

x0(e) = πe(α+ 1) = y(e). Hence, πe(α+ 1)− πe(α) = y(e)− x(e) ≤ ||x0 − x||1 ≤ k.

It follows from Lemma 6.14 that

bF (e)− aF (e) ≤ k(u(e)− `(e)) (e ∈ E).

From this inequality and (6.24) follows that

`0(e)− `(e) ≤
¹
bF (e)− aF (e)

nk

º
≤

¹
u(e)− `(e)

n

º
,

i.e., the former inequality in (6.23) holds.

6.4.4 Proof of Theorem 6.6 (ii)

We can compute a vector in F• by the following algorithm.
Let x0 be a given vector in F and assume for simplicity that E = {1, 2, . . . , n}. For

i = 1, 2, . . . , n, we iteratively define a vector xi ∈ F as follows:

• if a•F (i) ≤ xi−1(i) ≤ b
•
F (i), then set xi = xi−1.

• if xi−1(i) < a•F (i), then let xi be a vector in F which maximizes the value xi(i)

under the constraints xi(i) ≤ b
•
F (i) and a

•
F (e) ≤ xi(e) ≤ b

•
F (e) (e = 1, 2, . . . , i− 1).

• if xi−1(i) > b•F (i), then let xi be a vector in F which minimizes the value xi(i)

under the constraints xi(i) ≥ a
•
F (i) and a

•
F (e) ≤ xi(e) ≤ b

•
F (e) (e = 1, 2, . . . , i− 1).

By the statement (i) of Theorem 6.6, we see that the set

Fi ≡ F ∩ {x | a
•
F (e) ≤ xi(e) ≤ b

•
F (e) (e = 1, 2 . . . , i)}

is nonempty for all i = 1, 2, . . . , n. Therefore, the vector xi is contained in Fi; in particular,

we have xn ∈ Fn = F•.
By Theorem 5.2, each iteration of the algorithm can be done in O(nk logΦ(F)) time since

Fi is a finite Nk-neighbor system. Hence, a vector in F
• can be found in O(n2k logΦ(F)) time.
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