
Journal of the Operations Research Society of Japan c° The Operations Research Society of Japan
Vol. , No. , pp.

OPTIMAL ALLOCATION PROBLEM
WITH QUADRATIC UTILITY FUNCTIONS

AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM

Akiyoshi Shioura Shunya Suzuki
Tohoku University

(Received September 30, 2011; Revised December 27, 2011)

Abstract We discuss the optimal allocation problem in combinatorial auctions, where the items are al-
located to bidders so that the sum of the bidders’ utilities is maximized. In this paper, we consider the
case where utility functions are given by quadratic functions; the class of such utility functions has a suc-
cinct representation but is sufficiently general. The main aim of this paper is to show the computational
complexity of the optimal allocation problem with quadratic utility functions. We consider the cases where
utility functions are submodular and supermodular, and show NP-hardness and/or polynomial-time ex-
act/approximation algorithms. These results are given by using the relationship with graph cut problems
such as the min/max cut problem and the multiway cut problem.

Keywords: Combinatorial optimization, allocation problem, submodular function,
supermodular function, combinatorial auction, graph cut

1. Introduction

In this paper, we consider the optimal allocation problem arising from combinatorial auc-
tions. A combinatorial auction is an auction such that bidders can place bids on combi-
nations of items, rather than individual items. Combinatorial auctions can be used, for
instance, to sell spectrum licenses, pollution permits, land lots, etc., and has emerged as
a mechanism to improve economic efficiency when many items are on sale; see [2, 3] for
comprehensive survey on combinatorial auctions.
In a combinatorial auction, bidders can present bids on bundles of items, and thus may

easily express relationship among the items on sale such as substitutability and complemen-
tarity. Two items are said to be substitutes if both items have similar roles and a bidder
does not obtain so much gain with having both items, compared to having each item sepa-
rately; typical examples are margarine and butter, and tea and coffee. On the other hand,
two items are said to be complements if neither of the two items are not useful without
the other, and a bidder obtain more gain with having both items than having each item
separately; typical examples are lock and key, and pencil and eraser. The function that,
given a bundle, returns the bidder’s value for that bundle is called a utility function. A
utility function is associated with each bidder specifying the degree of satisfaction of the
bidder for each subset of the items.
Given utility functions of bidders, the auctioneer of a combinatorial auction needs to

solve the problem of “optimally” allocating items to bidders, which we call the optimal
allocation problem. One natural objective for the auctioneer is to maximize the economic
efficiency of the auction, which is the sum of the utilities of all the bidders. Formally, the
optimal allocation problem is defined as follows. Let V be a set of n items, and M a set

of m bidders, and assume, for simplicity, that V = {1, 2, . . . , n} and M = {1, 2, . . . ,m}.
We denote by R+ the set of nonnegative real numbers. Bidder i has a utility function
fi : 2

V → R+ which is monotone, i.e., fi(X) ≥ fi(Y) whenever X ⊇ Y . Then, the optimal
allocation problem is formulated as follows:

Maximize

mX
i=1

fi(Si) subject to (S1, S2, . . . , Sm) is a partition of V .

Recall that (S1, S2, . . . , Sm) is called a partition of V if S1, S2, . . . , Sm are subsets of V which
are mutually disjoint and satisfy ∪mi=1Si = V .
In the literature of combinatorial auctions, it is often assumed that bidders exhibit

substitutability. This assumption is widely used in theory, and often justified in practice;
examples are auctions with labors, housing, cars, etc. Substitutability of items is often
modeled by using submodularity of utility functions in combinatorial auction; a utility
function f : 2V → R+ is said to be submodular if it satisfies

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y)

(∀X,Y ∈ 2V with Y ⊃ X, ∀v ∈ V \ Y).

A utility function with submodularity is also called a decreasing marginal utility.
On the other hand, combinatorial auctions with complementary items often appear in

theory and in practice. A very special case is the one with “single-minded” bidders who are
interested in only in a specified bundle of items, and not in any proper subset of the bundle.
Complementarity of items is often modeled by using supermodularity of utility functions
in combinatorial auction; a utility function f : 2V → R+ is said to be supermodular if it
satisfies

f(X ∪ {v})− f(X) ≤ f(Y ∪ {v})− f(Y)

(∀X,Y ∈ 2V with Y ⊃ X, ∀v ∈ V \ Y).

A utility function of a single bidder who is interested in a bundle S of items can be repre-
sented as follows by using a positive value α:

f(X) =

½
α (if X ⊇ S),
0 (otherwise),

which is a supermodular function.
Implementation of combinatorial auctions faces several issues to be discussed, including

representation of utility functions. A utility function for a bidder requires a value for each
subset of items, and therefore requires an exponential number of real values in total. This
makes it difficult for bidders to reveal their preference correctly since in practice it is not
possible for bidders to submit correct values of utilities for a exponential number of subsets
of items. This also brings a difficulty to the auctioneer since the input size of utility functions
becomes exponential, and the optimal allocation becomes hard to solve efficiently.
Thus, we need a restricted class of utility functions which has a succinct representation

but is sufficiently general. Representation of utility functions is called a bidding language,
and various bidding languages have been considered in the literature of combinatorial auction
(see, e.g., [2], [3, Ch. 9]). Some examples are symmetric functions, (budgeted) additive
functions, single-minded functions [23], OR functions, XOR functions, and OR-of-XOR
functions [27].

In this paper, we consider one such class of utility functions called quadratic functions.
In the context of combinatorial auction, the use of quadratic functions is firstly considered
independently by Conitzer et al. [6] (as 2-wise dependent functions) and by Chevaleyre et
al. [5] (as 2-additive functions). A utility function f : 2V → R+ with f(∅) = 0 is said to be
quadratic (or of order 2) if it is represented as

f(X) =
X

u,v∈X,u<v
a(u, v) +

X
v∈X

b(v) (X ⊆ V) (1.1)

by using real values a(u, v) (u, v ∈ V, u < v) and b(v) (v ∈ V) (see [9, Section 3.6]). Note that
every quadratic utility function of the form (1.1) has a natural one-to-one correspondence
with a quadratic polynomial function with {0, 1}-variables of the following form:

ϕf (x) =
X

u,v∈V,u<v
a(u, v)x(u)x(v) +

X
v∈V

b(v)x(v) (x ∈ {0, 1}V).

While a quadratic utility function is simple and can be represented in a succinct way, it is
sufficiently general so that by using the term a(u, v) it can easily express substitutability and
complementarity among items (see Section 2). These facts indicate that quadratic utility
functions constitute an important class of utility functions.
The main aim of this paper is to reveal the computational complexity of the optimal

allocation problem with quadratic utility functions. That is, we consider the case where a
utility function fi : 2

V → R+ of bidder i ∈M is given as

fi(X) =
X

u,v∈X,u<v
ai(u, v) +

X
v∈X

bi(v) (X ⊆ V) (1.2)

by using real values ai(u, v) (u, v ∈ V, u < v) and bi(v) (v ∈ V). The same problem is
considered in [5, 6], where they only show the NP-hardness in the case of general quadratic
utility functions. In contrast, we classify the optimal allocation problem according to the
type of utility functions (substitutes or complements) and the number of bidders (2 or
more), analyze the computational complexity of each case, and present exact/approximation
algorithms.

1.1. Previous results

We review the computational complexity results of the optimal allocation problem with
general utility functions. We here consider only the case where a utility function f is given
implicitly by a value oracle, which, given a set S ⊆ V , returns a function value f(S). It is
noted that the value oracle can be easily constructed for quadratic utility functions.
We firstly consider the case of submodular utility functions. The problem is NP-hard,

even if m = 2. Moreover, there exists no polynomial-time approximation algorithm with
a ratio better than 1 − 1/e, unless P=NP [18]. Mirrokni et al. [25] also show that an
approximation algorithm with a ratio better than 1−(1−1/m)m requires exponentially many
calls to the value oracle, implying, without any assumption, that there exists no polynomial-
time approximation algorithm with a ratio better than 1 − 1/e. For the class of gross-
substitutes utility functions, which is known to be an important subclass of submodular
utility functions [12, 16], the optimal allocation problem can be solved in polynomial time
[22].
We then consider the case of supermodular utility functions. Supermodularity of utility

functions is often used to model complementarity of items. Compared to the case of sub-
modular utility functions, this case attracts less attention in the literature of combinatorial

Table 1: Summary of Our Results
type of utility function # of bidders m = 2 # of bidders m ≥ 3

submodular NP-hard NP-hard
0.874-approximation

gross substitutes P (O(n2 log n) time) P (O(mn2 log(mn)) time)
supermodular P (O(n3/ log n) time) NP-hard

0.5-approximation
(2/3-approximation for m = 3)

auction, and much is not known yet for this case. If m = 2, then the optimal allocation
problem can be easily reduced to the submodular function minimization problem, which
can be solved in polynomial time [11]. On the other hand, if m ≥ 3 then the problem is
NP-hard (see, e.g., [6]). While an O(

√
log n/n)-approximation algorithm is given [15], no

inapproximability result is known.

1.2. Our results

We analyze the computational complexity of the optimal allocation problem with quadratic
utility functions. We consider the two important cases where utility functions are submodular
and supermodular, and for each case we also consider subcases where the number m of
bidders are equal to 2 and more than 2. That is, we consider 4 cases, each of which is
denoted as (SUB|m=2), (SUB|m>2), (SUP|m=2), and (SUP|m>2). The results obtained
in this paper are summarized in Table 1. These results are shown by using the relationship
with graph cut problems such as the min/max cut problem and the multiway (un)cut
problem.
For the case of submodular quadratic utility functions, we show the NP-hardness even

in the case (SUB|m=2) by using the reduction of the max cut problem in undirected graphs.
On the other hand, we present the reduction of the case (SUB|m=2) to the max cut problem
in directed graphs. This reduction yields a 0.874-approximation algorithm for (SUB|m=2),
which is better than the approximation ratio 1 − 1/e ' 0.632 for the case of general sub-
modular utility functions.
We also consider the special case of gross-substitutes quadratic utility functions as an

important subclass of submodular utility functions. As mentioned in Section 1.1, this case
can be solved in polynomial time, even for general utility functions which are not necessarily
quadratic. It is shown that this case can be reduced to the minimum quadratic-cost flow
problem and solved in O(mn2 log(mn)) time, which means that this case can be solved much
faster by a relatively simple algorithm than the general case.
Then, the case of supermodular quadratic utility functions is considered. As shown in

Section 1.1, it is known that (SUP|m=2) can be solved in polynomial time. We show in this
paper that (SUP|m=2) can be reduced to the min cut problem in directed graphs, which
implies that (SUP|m=2) can be solved in O(n3/ log n) time. We then show the NP-hardness
of (SUP|m>2) by using the reduction of the multiway (un)cut problem. For this problem,
we also present a 0.5-approximation algorithm based on randomized LP rounding, where
we use the technique in Langberg et al. [21] for the multiway uncut problem.
The organization of this paper is as follows. Characterizations of submodular/supermodular

quadratic utility functions are given in Section 2. In Section 3, we present our results for
(SUB|m=2) and (SUB|m>2), while the results for (SUP|m=2), and (SUP|m>2) are given
in Section 4.

2. Characterizations of Quadratic Utility Functions

We give characterizations of quadratic utility functions of the form (1.1) which have sub-
modularity and supermodularity. In this section, we consider utility functions which may
take negative values, although utility functions are originally assumed to be nonnegative-
valued functions. Throughout this paper we assume a(v, u) = a(u, v) for every u, v ∈ V
with u < v.
A utility function f : 2V → R is said to be submodular if it satisfies the following

condition:

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y)

(∀X,Y ∈ 2V with Y ⊃ X, ∀v ∈ V \ Y). (2.1)

This condition is known to be equivalent to the following condition:

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) (∀X, Y ∈ 2V).

Intuitively, the condition (2.1) says that the marginal value of an item decreases as the set of
items already acquired increases. A utility function f : 2V → R is said to be supermodular if
−f is submodular. Submodularity (resp., supermodularity) of utility functions is often used
to model substitutability (resp., complementarity) of items in the context of combinatorial
auction. A utility function f : 2V → R is said to be monotone if it satisfies f(X) ≤ f(Y)
for every X,Y ∈ 2V with X ⊆ Y .
Theorem 2.1. Let f : 2V → R be a quadratic utility function of the form (1.1).
(i) f is submodular if and only if a(u, v) ≤ 0 (∀u, v ∈ V, u 6= v).
(ii) A submodular function f is monotone if and only if b(v) +

P
u∈V \{v} a(u, v)≥0 (∀v∈V).

Proof. It is well known that the condition (2.1) is equivalent to the following:

f(X ∪ {u}) + f(X ∪ {v}) ≥ f(X ∪ {u, v}) + f(X) (∀X ⊆ V, ∀u, v ∈ V \X, u 6= v).

Since
{f(X ∪ {u, v}) + f(X)}− {f(X ∪ {u}) + f(X ∪ {v})} = a(u, v),

the inequality above is equivalent to the condition that a(u, v) ≤ 0 for every distinct u, v ∈ V .
We then suppose that f is submodular. The condition (2.1) implies that f is monotone

if and only if f(V)−f(V \{v}) ≥ 0 for all v ∈ V , which is in turn equivalent to the condition
b(v) +

P
u∈V \{v} a(u, v)≥0 (∀v∈V) since

f(V)− f(V \ {v}) = b(v) +
X

u∈V \{v}
a(u, v).

Theorem 2.2. Let f : 2V → R be a quadratic utility function of the form (1.1).
(i) f is supermodular if and only if a(u, v) ≥ 0 (∀u, v ∈ V, u 6= v).
(ii) A supermodular function f is monotone if and only if b(v) ≥ 0 (∀v ∈ V).

Proof. The statement (i) follows immediately from Theorem 2.1 (i) since f is supermodular
if and only if −f is submodular.
Suppose that f is supermodular. Then, f is monotone if and only if 0 ≤ f({v})−f(∅) =

b(v) for all v ∈ V .

We also consider an important subclass of submodular utility functions, called utility
functions with gross substitutes condition [12, 16]. The gross substitutes condition of a
utility function f : 2V → R is described as follows:
∀p, q ∈ RV with p ≤ q, ∀X ∈ argmax

S⊆V
{f(S)− p(S)},

∃Y ∈ argmax
S⊆V

{f(S)− q(S)} s.t. X ∩ {v ∈ V | p(v) = q(v)} ⊆ Y ,

where p and q are price vectors. We here denote x(S) =
P

v∈S x(v) for a vector x ∈ RV and
a subset S ⊆ V . Intuitively, the gross substitutes condition says that a bidder still wants to
get items that do not change in price after the prices on other items increase.
Theorem 2.3 (cf. [14]). A quadratic utility function f : 2V → R of the form (1.1) satisfies
the gross substitutes condition if and only if the following condition holds for all distinct
u, v, t ∈ V :

a(u, v) ≤ max{a(u, t), a(v, t)} ≤ 0. (2.2)

We note that the condition (2.2) implies, in particular, that for every distinct u, v, t ∈ V , at
least two values in {a(u, v), a(u, t), a(v, t)} achieve the maximum among the three values.
In the proof of Theorem 2.3, we use the following characterization of gross-substitutes

utility functions.
Theorem 2.4 ([26]; see also [3, Theorem 13.5]). A utility function f : 2V → R satisfies the
gross-substitutes condition if and only if f is submodular and satisfies the following condition
for all X ∈ 2V and all distinct u, v, t ∈ V :

f(X ∪ {u, v}) + f(X ∪ {t})

≤ max{f(X ∪ {u, t}) + f(X ∪ {v}), f(X ∪ {v, t}) + f(X ∪ {u})}. (2.3)

Proof of Theorem 2.3. For every X ⊆ V and distinct u, v, t ∈ V \X , it holds that

{f(X ∪ {u, v})− f(X)}+ {f(X ∪ {t})− f(X)}

= a(u, v) +
X
s∈X

a(s, u) +
X
s∈X

a(s, v) +
X
s∈X

a(s, t) + {b(u) + b(v) + b(t)}.

Therefore, the inequality (2.3) in Theorem 2.4 is equivalent to

a(u, v) ≤ max{a(u, t), a(v, t)}.

Hence, the statement of Theorem 2.3 follows from this fact and Theorem 2.1 (i).

3. Results for Submodular Utility Functions

3.1. Hardness

We show the hardness of the problem (SUB|m=2) by the reduction of the max cut problem
in undirected graphs. The max cut problem is a famous NP-hard problem; moreover, it
is NP-hard to compute a solution with approximation ratio better than 0.879, under the
assumption of the unique games conjecture [17].
As an instance of the max cut problem, let us consider an undirected graph G = (V,E)

with edge weight w(u, v) ≥ 0 ((u, v) ∈ E). We define an instance of (SUB|m=2) by regarding
V as the item set and by using quadratic utility functions such that

ai(u, v) =

½
−w(u, v) ((u, v) ∈ E),
0 (otherwise),

bi(v) =
X

(u,v)∈E,u∈V \{v}
w(u, v)

for i = 1, 2. The definitions of ai and bi imply that the resulting quadratic utility functions
f1 and f2 are monotone and submodular by Theorem 2.1. Moreover, for every partition
(V1, V2) of V , the objective function value f1(V1) + f2(V2) is equal to

−
2X
i=1

X
(u,v)∈E
u,v∈Vi

w(u, v) + 2
X

(u,v)∈E
w(u, v) =

X
(u,v)∈E
u∈V1,v∈V2

w(u, v) +
X

(u,v)∈E
w(u, v),

i.e., the total weight of cut edges in G plus a constant value. Hence, the max cut problem
on undirected graphs is reduced to (SUB|m=2), although this reduction does not preserve
approximation ratio.
To obtain a reduction preserving approximation ratio, we need to use non-monotone

utility functions f1 and f2 by changing the definition of bi(v) as follows:

bi(v) =
1

2

X
(u,v)∈E,u∈V \{v}

w(u, v) (v ∈ V),

which is the half of the original value. The resulting functions f1 and f2 are still submodular
and take nonnegative values, but are non-monotone. With this change, we obtain the
formula

f1(V1) + f2(V2) =
X

(u,v)∈E
u∈V1,v∈V2

w(u, v).

This shows that the max cut problem on undirected graphs is reduced to (SUB|m=2) with
non-monotone utility functions, which preserves approximation ratio.
Theorem 3.1. The problems (SUB|m=2) and (SUB|m>2) are NP-hard. Moreover, for
both problems with non-monotone utility functions, it is NP-hard to compute a solution with
approximation ratio better than 0.879, under the assumption of the unique games conjecture.

3.2. Approximability

We present an approximability result for the problem (SUB|m=2) by showing the reduction
to the max s-t cut problem in directed graphs.
Given an instance of (SUB|m=2), we define a directed graph G = (V ∪ {s, t}, E) by

E = {(u, v) | u, v ∈ V, u < v} ∪ {(s, u) | u ∈ V } ∪ {(v, t) | v ∈ V }.

For each edge (u, v) ∈ E, its weight w(u, v) is defined as follows:

w(s, u) = b2(u) +
X

v∈V,v>u
a2(u, v), w(v, t) = b1(v) +

X
u∈V,u<v

a1(u, v) (v ∈ V),

w(v, u) = −a1(u, v)− a2(u, v) (u, v ∈ V, u < v).

Theorem 2.1 (i) implies w(u, v) ≥ 0, while (ii) implies w(s, u) ≥ 0 and w(v, t) ≥ 0. Hence,
all of edge weights are nonnegative.
Let (S, T) be an s-t cut, i.e., a partition of the vertex set V ∪{s, t} satisfying s ∈ S, t ∈ T .

Then, the weight of the cut (S, T) is equal toX
v∈S∩V

w(v, t) +
X
u∈T∩V

w(s, u) +
X
v∈S∩V

u∈T∩V,u<v

w(v, u)

=
X
v∈S∩V

b1(v) +
X

u,v∈S∩V,u<v
a1(u, v) +

X
v∈T∩V

b2(v) +
X

u,v∈T∩V,u<v
a2(u, v)

= f1(S ∩ V) + f2(T ∩ V),

where we use the fact that S∩V = V \T and T ∩V = V \S. Hence, (SUB|m=2) is reduced
to the max s-t cut problem in G, and this reduction preserves approximation ratio. It is
shown by Lewin et al. [24] that a 0.874-approximate solution of the max s-t cut problem
can be computed in polynomial time. Therefore, we obtain the following result:

Theorem 3.2. A 0.874-approximate solution of the problem (SUB|m=2) can be computed
in polynomial time.

3.3. Fast exact algorithm for special case

We consider a special case where utility functions satisfy the gross substitutes condition,
and show that the optimal allocation problem in this case can be reduced to the minimum
quadratic-cost flow problem. The reduction is based on the following property of gross-
substitutes quadratic utility functions. A set family F ⊆ 2V is said to be laminar if it
satisfies X ⊆ Y , X ⊇ Y , or X ∩ Y = ∅ holds for every X,Y ∈ F .
Lemma 3.3 (cf. [14]). A quadratic utility function f : 2V → R of the form (1.1) satisfies
the gross substitutes condition if and only if it is represented as

f(X) = −
X
S∈F

cS|X ∩ S|2 (3.1)

by using a laminar family F ⊆ 2V and real numbers cS (S ∈ F) satisfying {v} ∈ F (v ∈ V)
and cS ≥ 0 (S ∈ F , |S| ≥ 2). Moreover, given a gross-substitutes quadratic utility function
f of the form (1.1), we can compute the representation (3.1) in O(n2) time.

This lemma implies that the function value of a gross-substitutes quadratic utility function
can be represented as the (quadratic) flow cost on a tree network.
We now explain the reduction to the minimum quadratic-cost flow problem. Suppose

that a utility function fi of bidder i is of the form fi(X) = −
P

S∈Fi c
i
S|X ∩ S|2, where

Fi ⊆ 2
V is a laminar family and ciS (S ∈ Fi) are real numbers satisfying the conditions in

Lemma 3.3. Note that such representations can be computed in O(mn2) time by Lemma
3.3. We construct a graph Ĝ = (V̂ , Ê) as follows.
Define V̂ = {r} ∪ V ∪

Sm
i=1 Vi, where Vi (i ∈ M) is given as Vi = {v

i
S | S ∈ Fi}. Note

that vi{u} ∈ Vi for each i ∈ M and u ∈ V . Vertices in V are source vertices, while r is the
unique sink vertex.
We also define Ê = E0 ∪

Sm
i=1Ei, where

E0 = {(u, v
i
{u}) | u ∈ V, i ∈M},

Ei = {(viX , r) | X ∈ F ,maximal in F} ∪ {(viX , v
i
ρ(X)) | X ∈ Fi, not maximal in Fi},

where for every non-maximal set X ∈ Fi, we denote by ρ(X) the unique minimal set Y ∈ Fi
with Y ⊃ X. Note that edge set Ei for i ∈M constitutes a rooted tree with root r.
For each edge in E0, its flow capacity is given by the interval [0, 1], and its flow cost

is 0. For each edge (viX , r) or (v
i
X , v

i
ρ(X)) in Ei, its flow capacity is [0,+∞], and its flow

cost function is given by ciXϕ
2, where ϕ is the flow value on the edge. We also define

supply/demand values of source/sink vertices to be 1 for each u ∈ V and −n for r.
We consider the minimum (quadratic-)cost flow problem on the network Ĝ under the

capacity constraint and the supply/demand constraint. It is not difficult to see that integral
feasible flows on the network have one-to-one correspondence to partitions of the set V ,
and the cost of the flow is equal to the negative of the total utilities for the corresponding
partition. Hence, we can obtain an optimal allocation by solving the minimum cost flow
problem.

The minimum quadratic-cost flow problem can be solved by iteratively augmenting flows
along a shortest path in the so-called “auxiliary network,” and the number of iterations is
n (see, e.g., [1]). Since the graph Ĝ has O(mn) vertices and O(mn) edges, the minimum
cost flow problem can be solved in O(mn log(mn)) × n = O(mn2 log(mn)) time by using
the shortest-path algorithm of Fredman and Tarjan [8] as a subroutine.

Theorem 3.4. The optimal allocation problem with gross-substitutes quadratic utility func-
tions can be solved in O(mn2 log(mn)) time.

4. Results for Supermodular Utility Functions

4.1. Polynomial-time solvable case

We firstly show that the problem (SUP|m=2) can be reduced to the minimum s-t cut
problem in a directed graph.

Lemma 4.1 ([13, Theorem 1], [20, Theorem 4.1]). Given an instance of (SUP|m=2), we
can construct in O(n2) time an edge-weighted directed graph G = (V ∪ {s, t}, E) such that
for every X ⊆ V , the cut value of (X ∪ {s}, (V \X) ∪ {t}) is equal to f1(X) + f2(V \X).
This lemma shows that (SUP|m=2) can be reduced to the minimum s-t cut problem in

G. Note that the graph G has O(n) vertices and O(n2) edges. Hence, the minimum s-t cut
problem can be solved in O(n3/ log n) time by the algorithm of Cheriyan et al. [4].

Theorem 4.2. The problem (SUP|m=2) can be solved in O(n3/ log n) time.

4.2. Hardness

To show the NP-hardness of the problem (SUP|m>2), we show that the multiway (un)cut
problem on undirected graphs [7, 21] can be reduced to (SUP|m>2).
Input of the multiway (un)cut problem is an undirected graph G = (V,E) with distinct

terminals s1, s2, . . . , sk ∈ V (k ≥ 2) and edge weight w(u, v) ≥ 0 ((u, v) ∈ E). In the
multiway cut problem, we find a partition (V1, V2, . . . , Vk) of V with si ∈ Vi (i = 1, 2, . . . , k)
minimizing the total weight of cut edges given asX

{w(u, v) | (u, v) ∈ E, u ∈ Vi, , v ∈ Vj, i 6= j},

while in the multiway uncut problem, we want to maximize the total weight of uncut edges.
The multiway (un)cut problem is known to be NP-hard, even when k = 3 [7].
Given an instance of the multiway (un)cut problem, we define an instance of (SUP|m>2)

by regarding V as the item set and by

ai(u, v) =

½
w(u, v) ((u, v) ∈ E),
0 (otherwise),

bi(v) =

½
Γ (v = si),
0 (otherwise),

where Γ is a sufficiently large positive number. Let (V1, V2, . . . , Vk) be a partition of V which
is an optimal solution of this instance. Then, each Vi contains the vertex si since b

i(si) is a
sufficiently large number. Moreover, the objective function value is given as

kX
i=1

X
(u,v)∈E,u,v∈Vi

w(u, v),

which we want to maximize. Hence, an optimal solution for (SUP|m>2) is an optimal
solution for the multiway (un)cut problem, and vice versa.

Theorem 4.3. The problem (SUP|m>2) is NP-hard, even when m = 3.

4.3. Approximation algorithm by LP rounding

We propose a 0.5-approximation algorithm for the problem (SUP|m>2). Our algorithm is
based on a natural linear programming (LP) relaxation:

Maximize

mX
i=1

X
u,v∈V,u<v

ai(u, v)yi(u, v) +

mX
i=1

X
v∈V

bi(v)xi(v)

subject to

mX
i=1

xi(v) = 1 (v ∈ V),

yi(u, v) ≤ xi(u), yi(u, v) ≤ xi(v) (u, v ∈ V, u < v),
xi(v) ≥ 0 (v ∈ V), yi(u, v) ≥ 0 (u, v ∈ V, u < v).

It should be noted that a pair of inequalities yi(u, v) ≤ xi(u), yi(u, v) ≤ xi(v) can be replaced
with an equation yi(u, v) = min{xi(u), xi(v)} without loss of generality since ai(u, v) ≥ 0
holds.
The algorithm firstly computes an optimal solution of the LP relaxation. Then, the

algorithm chooses a bidder i ∈ {1, 2, . . . ,m} and a value ρ ∈ [0, 1] uniformly at random,
and assigns each item v ∈ V to the bidder i if xi(v) ≥ ρ. The algorithm repeats this step
until all items are assigned to one of the bidders. Although this algorithm is randomized,
it can be derandomized by using the technique in Kleinberg and Tardos [19].
We analyze the performance of the algorithm. For v ∈ V and i ∈M , let X i(v) ∈ {0, 1}

be a random variable such that

X i(v) =

½
1 (if the item v is assigned to the bidder i),
0 (otherwise).

Similarly, for distinct u, v ∈ V and i ∈ M , let Y i(u, v) ∈ {0, 1} be a random variable such
that

Y i(u, v) =

½
1 (if both of the items u and v are assigned to the bidder i),
0 (otherwise).

We denote y(u, v) =
Pm

i=1 y
i(u, v) for u, v ∈ V with u < v.

Lemma 4.4 ([21, Fact 3.1]). Let v ∈ V and i ∈M . Assume that item v is not assigned to
any bidder before some iteration. Then, the probability that v is assigned to bidder i in the
iteration is (1/m)xi(v).
Lemma 4.5 ([21, Claim 3.2]). For v ∈ V and i ∈M , we have Pr[X i(v) = 1] = xi(v).
Lemma 4.6. For distinct u, v ∈ V and i ∈M , we have

Pr[Y i(u, v) = 1] ≥
yi(u, v)

2− y(u, v)
.

Proof. Let Ψ ∈ [0, 1] be the probability that both of u and v are assigned to the bidder i
in the same iteration. Then, Pr[Y i(u, v) = 1] ≥ Ψ holds. In the following, we show the
equation Ψ = yi(u, v)/{2− y(u, v)}.
The probability that u and v is assigned to a bidder i ∈ M in some iteration is

(1/m)min{xi(u), xi(v)} = (1/m)yi(u, v). Similarly, the probability that at least one of
u and v is assigned to any bidder in some iteration is

1

m

mX
i=1

max{xi(u), xi(v)} =
1

m

"
mX
i=1

{xi(u) + xi(v)}−
mX
i=1

min{xi(u), xi(v)}

#
=

1

m
{2− y(u, v)}.

Hence, the probability that u and v are assigned to a bidder i ∈M in the k-th iteration is·
1−

1

m
{2− y(u, v)}

¸k−1
×
1

m
· yi(u, v).

Hence,

Ψ =

∞X
k=1

·
1−

1

m
{2− y(u, v)}

¸k−1
×
1

m
· yi(u, v)

=
m

2− y(u, v)
·
1

m
· yi(u, v) =

yi(u, v)

2− y(u, v)
.

This implies the claim of the lemma.

We calculate the expectation of the objective function value of an approximate solution
obtained by the algorithm. By Lemmas 4.5 and 4.6, it holds that

mX
i=1

X
u,v∈V,u<v

ai(u, v) Pr[Y i(u, v) = 1] +

mX
i=1

X
v∈V

bi(v) Pr[X i(v) = 1]

≥
mX
i=1

X
u,v∈V,u<v

ai(u, v) ·
yi(u, v)

2− y(u, v)
+

mX
i=1

X
v∈V

bi(v)xi(v)

≥ 0.5 ·OPTLP, (4.1)

where OPTLP denotes the optimal value of the LP relaxation. Since OPTLP is an upper
bound of the optimal value of (SUP|m>2), we obtain the following result.
Theorem 4.7. A 0.5-approximate solution of the problem (SUP|m>2) can be computed in
polynomial time.

With a more careful analysis, we can show that the approximation ratio is 1/(2−ε) (> 0.5),
where ε = min{y(u, v) | (u, v) ∈ E, y(u, v) > 0}; this bound is obtained by analyzing the
cases y(u, v) = 0 and y(u, v) > 0 separately in the inequality (4.1).
Our analysis shows that the integrality gap of the LP relaxation is at least 0.5. On the

other hand, an instance with integrality gap 2/3 can be easily constructed, as follows. Let
us consider an instance of the problem with V = {a, b, c}, m = 3, and

a1(a, b) = 1, a1(b, c) = 0, a1(a, c) = 0,
a2(a, b) = 0, a2(b, c) = 1, a2(a, c) = 0,
a3(a, b) = 0, a3(b, c) = 0, a3(a, c) = 1,
bi(v) = 0 (i = 1, 2, 3, v = a, b, c).

For this instance, the optimal value of the original problem is 1, while the optimal value of
the LP relaxation is 3/2, implying that the integrality gap is equal to 2/3. An open problem
is to close the gap between 0.5 and 2/3. A possible approach for a better approximation
algorithm is to construct a new LP formulation which has a larger value of min{y(u, v) |
(u, v) ∈ E, y(u, v) > 0}.

4.4. Other approximation algorithms

We then consider alternative approximation algorithms by using the fact that (SUP|m=2)
can be solved in polynomial time.

If m = 3, then we can obtain a 2/3-approximate solution easily as follows. We compute

an optimal allocation (V
(12)
1 , V

(12)
2 , ∅) of items to bidders 1 and 2, where bidder 3 is ignored.

In the same way, we compute optimal allocations (V
(13)
1 , ∅, V (13)3) for bidders 1 and 3 and

(∅, V (23)2 , V
(23)
3) for bidders 2 and 3. Then, we choose the best allocation among the three,

which is a 2/3-approximate solution of the original problem.
Theorem 4.8. A 2/3-approximate solution of the problem (SUP|m>2) with m = 3 can be
computed in polynomial time.
For the general case with m ≥ 3, it is natural to consider the following heuristic based

on local search. Given a partition (V1, V2, . . . , Vm) of V and bidders i, j ∈ M , we denote
by realloc(i, j) an operation which optimally re-allocates items in Vi ∪ Vj to bidders i
and j. Our heuristic is as follows: start with an arbitrarily chosen initial partition, and
repeatedly apply the operation realloc(i, j) to arbitrarily chosen two bidders i, j ∈ M
until no improvement is possible by this operation.
Although our preliminary computational experiment shows that the local-search heuris-

tic always outputs a near-optimal solution, we can construct a family of instances for which
the approximation ratio can be arbitrarily close to 0. Let us consider an instance of the
problem with V = {a, b, c}, m = 3, and

ai(u, v) =

⎧⎨⎩
ε (if i = 1, (u, v) = (a, b)),
1 (if i = 3, (u, v) = (b, c)),
0 (otherwise),

bi(v) =

½
ε (if i = 2, v = c),
0 (otherwise),

where ε is a sufficiently small positive number. Suppose that the initial partition is ({a, b, c}, ∅, ∅).
By applying the operation realloc(1, 2), the partition becomes ({a, b}, {c}, ∅). Then, the
partition never changes even if we apply the operation realloc(i, j) for any i, j ∈ {1, 2, 3}.
The objective function value of the partition ({a, b}, {c}, ∅) is 2ε, while the optimal value is
1, implying that the approximation ratio is 2ε.

Acknowledgement

An extended abstract of this paper is appeared in Proceedings of the 8th Annual Conference
on Theory and Applications of Models of Computation (TAMC 2011), Lecture Notes in
Computer Science (Vol. 6648), Springer 2011. This work is partially supported by a Grant-
in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin: Network Flows: Theory, Algorithms, and
Applications (Prentice Hall, Upper Saddle River, NJ, 1993).

[2] L. Blumrosen and N. Nisan: Combinatorial auction. In N. Nisan, T. Roughgarden, É.
Tardos, and V.V. Vazirani (eds.): Algorithmic Game Theory (Cambridge University
Press, New York, NY, 2007), 267—299.

[3] P. Cramton, Y. Shoham, and R. Steinberg: Combinatorial Auctions (MIT Press,
Boston, MA, 2006).

[4] J. Cheriyan, T. Hagerup, and K. Mehlhorn: An o(n)-time maximum-flow algorithm.
SIAM Journal on Computing, 25 (1996), 1144—1170.

[5] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet: Multiagent resource allocation
in k-additive domains: preference representation and complexity. Annals of Operations
Research, 163 (2008), 49—62.

[6] V. Conitzer, T. Sandholm, and P. Santi: Combinatorial auctions with k-wise dependent
valuations. Proceedings of 20th National Conference on Artificial Intelligence (AAAI),
(2005), 248—254.

[7] E. Dahlhaus, D. S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis:
The complexity of multiterminal cuts. SIAM Journal on Computing, 23 (1994), 864—
894.

[8] M.L. Fredman and R.E. Tarjan: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of ACM, 34 (1987), 596—615.

[9] S. Fujishige: Submodular Function and Optimization, 2nd Edition (Elsevier, Amster-
dam, 2005).

[10] S. Fujishige and Z. Yang: A note on Kelso and Crawford’s gross substitutes condition.
Mathematics of Operations Research, 28 (2003), 463—469.

[11] M. Grötschel, L. Lovász, and A. Schrijver: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1 (1984), 169—197.

[12] F. Gul and E. Stacchetti: Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87 (1999), 95—124.

[13] P.L. Hammer: Some network flow problems solved with pseudo-Boolean programming.
Operations Research, 13 (1965), 388—399.

[14] H. Hirai and K. Murota: M-convex functions and tree metrics. Japan Journal of In-
dustrial and Applied Mathematics, 21 (2004), 391—403.

[15] R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz: Bundling equilibrium
in combinatorial auctions. Games and Economic Behavior, 47 (2004), 104—123.

[16] A.S. Kelso and V.P. Crawford. Job matching, coalition formation and gross substitutes.
Econometrica, 50 (1982), 1483—1504.

[17] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell: Optimal inapproximability results
for max-cut and other 2-variable CSPs. Proceedings of 45th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), (2004), 146—154.

[18] S. Khot, R.J. Lipton, E. Markakis, and A. Mehta: Inapproximability results for com-
binatorial auctions with submodular utility functions. Algorithmica, 52 (2008), 3—18.

[19] J. Kleinberg and É. Tardos: Approximation algorithms for classification problems with
pairwise relationships: metric labeling and Markov random fields. Journal of ACM, 49
(2002), 616—639.

[20] V. Kolmogorov: What energy functions can be minimized via graph cuts? IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26 (2004), 147—159.

[21] M. Langberg, Y. Rabani, and C. Swamy: Approximation algorithms for graph ho-
momorphism problems. Proceedings of 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems & 10th International Workshop
on Randomization and Computation (APPROX & RANDOM), (2006), 176—187.

[22] B. Lehmann, D. Lehmann, and N. Nisan: Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55 (2006), 270—296.

[23] D. Lehmann, L. O’Callaghan, and Y. Shoham: Truth revelation in approximately effi-
cient combinatorial auctions. Proceedings of 1st ACM Conference on Electronic Com-
merce (EC), (1999), 96—102.

[24] M. Lewin, D. Livnat, and U. Zwick: Improved rounding techniques for the MAX 2-SAT
and MAX DI-CUT problems. Proceedings of 9th Conference on Integer Programming
and Combinatorial Optimization (IPCO), (2002), 67—82.

[25] V. Mirrokni, M. Schapira, and J. Vondrák: Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions. Proceedings of 7th ACM Conference
on Electronic Commerce (EC), (2008), 70—77.

[26] H. Reijniese, A. van Gellekom, and J.A.M. Potters: Verifying gross substitutability.
Economic Theory, 20 (2002), 767—776.

[27] T. Sandholm: Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135 (2002), 1—54.

[28] J. Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. Proceedings of 40th Annual ACM Symposium on Theory of Computing
(STOC), (2008), 67—74.

Akiyoshi Shioura
Graduate School of Information Sciences
Tohoku University
Aramaki aza Aoba 6-3-09, Aoba-ku
Sendai 980-8579, Japan
E-mail: shioura@dais.is.tohoku.ac.jp

