Introduction to Discrete Convex Analysis

Akiyoshi Shioura (Tohoku University)

Discrete Convex Analysis

Discrete Convex Analysis [Murota 1996]

--- theoretical framework for discrete optimization problems

discrete analogue of
Convex Analysis
in continuous optimization

generalization of Theory of Matroid/Submodular Function in discrete opitmization

- key concept: two discrete convexity: L-convexity & M-convexity
 - generalization of Submodular Set Function & Matroid
- various nice properties
 - local optimal
 →global optimal
 - duality theorem, separation theorem, conjugacy relation
- set/function are discrete convex → problem is tractable

Applications

- Combinatorial Optimization
 - matching, min-cost flow, shortest path, min-cost tension
- Math economics / Game theory
 - allocation of indivisible goods, stable marriage
- Operations research
 - inventory system, queueing, resource allocation
- Discrete structures
 - finite metric space
- Algebra
 - polynomial matrix, tropical geometry

History of Discrete Convex Analysis

1935: Matroid Whitney

1965: Polymatroid, Submodular Function Edmonds

1983: Submodularity and Convexity

Lovász, Frank, Fujishige

1992: Valuated Matroid Dress, Wenzel

1996: Discrete Convex Analysis, L-/M-convexity Murota

1996-2000: variants of L-/M-convexity Fujishige, Murota, Shioura

1971: discretely convex function Miller

1990: integrally convex function Favati-Tardella

Today's Talk

- fundamental properties of M-convex & L-convex functions
- comparison with other discrete convexity
 - convex-extensible fn
 - Miller's discretely convex fn
 - Favati-Tardella's integrally convex fn

Outline of Talk

- Overview of Discrete Convex Analysis
- Desirable Properties of Discrete Convexity
- convex-extensible fn
- Miller's discretely convex fn
- Favati-Tardella's integrally convex fn
- M-convex & L-convex fns
- duality and conjugacy theorems for discrete convex fn

Desirable Properties of Discrete Convexity

Important Properties of Convex Fn

- optimality condition by local property
 - x: local minimum in some neighborhood \rightarrow global minimum
- conjugacy relationship
 - conjugate of convex fn \rightarrow convex fn
- duality theorems
 - Fenchel duality
 - separation theorem

Desirable Properties of Discrete Convex Fn

- discrete convexity = "convexity" for functions $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$
 - convex extensibility
 - can be extended to convex fn on \mathbb{R}^n
 - optimality condition by local property
 - local minimum → global minimum
 - local minimality depends on choice of neighborhood
 - duality theorems
 - "discrete" Fenchel duality
 - "discrete" separation theorem
 - conjugacy relationship
 - conjugate of "discrete" convex fn → "discrete" convex fn

Classes of Discrete Convex Fns

- convex-extensible fn
- discretely convex fn (Miller 1971)
- integrally convex fn (Favati-Tardella 1990)
- M-convex fn, L-convex fn (Murota 1995, 1996)

satisfy desirable properties?

Outline of Talk

- Overview of Discrete Convex Analysis
- Desirable Properties of Discrete Convexity
- convex-extensible fn
- Miller's discretely convex fn
- Favati-Tardella's integrally convex fn
- M-convex & L-convex fns
- duality and conjugacy theorems for discrete convex fn

Convex-Extensible Function

Definition of Convex-Extensible Fn

- a natural candidate for "discrete convexity"
- Def: $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is convex-extensible

 $\bullet \Rightarrow \exists \tilde{f} : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, convex fn s.t. $\tilde{f}(x) = f(x) \ (\forall x \in \mathbb{Z}^n)$

Definition of Convex-Extensible Set

• Def: $S \subseteq \mathbb{Z}^n$ is convex-extensible

 \bullet indicator fn $\delta_S: \mathbb{Z}^n \to \{0, +\infty\}$ is convex-extensible

 $\leftarrow \rightarrow \operatorname{conv}(S) \cap \mathbb{Z}^n = S$ ("no-hole" condition)

convex -extensible

NOT convex -extensible

Properties of Convex-Extensible Fn

- if n=1, satisfies various nice properties
 - convex-extensible ← → $f(x-1) + f(x+1) \ge 2f(x)$
 - local min=global min, conjugacy, duality, etc.
 - desirable concept as discrete convexity

- if $n \ge 2$,
 - convex-extensible (by definition)
 - what else?

Bad Results of Conv.-Extensible Fn

- any function f with dom $f = \{0,1\}^n$ is convex-extensible
 - → no good structure
- local opt \neq global opt: $\forall k \in \mathbb{Z}_+, \exists f$: convex-extensible fn s.t.

x: local min in $\{z \in \mathbb{Z}^n \mid ||z - x||_{\infty} \le k\}$ but NOT global min

Example: dom $f = \mathbb{Z}_+^2$, $f(x_1, x_2) = \max\{x_1 - 3x_2, -2x_1 + 3x_2\}$

x=(0,0): local min in $\{z \in \mathbb{Z}^n \mid ||z-x||_{\infty} \le 1\}$, f(0,0)>f(2,1)

Separable-Convex Function

- Def: $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is separable-convex \longleftarrow
- $f(x) = \sum_{i=1}^{n} \varphi_i(x(i))$, each $\varphi_i: \mathbb{Z} \to \mathbb{R} \cup \{+\infty\}$ is discrete convex
 - examples: $\sum_{i=1}^{n} x(i)^2$, $-\sum_{i=1}^{n} \log x(i)$, etc.
 - satisfy various nice properties
 - convex-extensible
 - local min w.r.t. $\{z \mid ||z x||_1 \le 1\}$ = global min
 - but, function class is too small
 - e.g., dom f is integer interval

Outline of Talk

- Overview of Discrete Convex Analysis
- Desirable Properties of Discrete Convexity
- convex-extensible fn
- Miller's discretely convex fn
- Favati-Tardella's integrally convex fn
- M-convex & L-convex fns
- duality and conjugacy theorems for discrete convex fn

Miller's Discretely Convex Fn

Definition of Discretely Convex Fn

- defined by discretized version of convex inequality
- Def: $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is discretely convex (Miller 1971)

Prop: $s \in \mathbb{Z}^n \Rightarrow f(s) \le \alpha f(x) + (1 - \alpha)f(y)$

Definition of Discretely Convex Set

• Def: $S \subseteq \mathbb{Z}^n$ is discretely convex

 \bullet indicator fn $\delta_S: \mathbb{Z}^n \to \{0, +\infty\}$ is discretely convex

$$\forall x, y \in S, \ \alpha \in [0,1], s \equiv \alpha x + (1-\alpha)y$$

 $\exists z \in S \text{ s.t. } z(i) = \lfloor s(i) \rfloor \text{ or } \lceil s(i) \rceil \text{ } (\forall i)$

Property of Discretely Convex Fn

Thm: [local min = global min]

$$x \in \arg\min\{f(z) \mid ||z - x||_{\infty} \le 1\}$$

$$\longleftrightarrow x \in \arg\min\{f(z) \mid z \in \mathbb{Z}^n\}$$

validity of descent alg for minimization

```
repeat: (i) find z \in N_{\infty}(x) with f(z) < f(x) (ii) update x := z
```

X size of neighborhood $\{z \mid ||z-x||_{\infty} \leq 1\}$ is 3^n --- exponential

Bad Result of Discretely Convex Fn

 Fact: discretely conv fn is NOT convex-extensible discretely conv set is NOT convex-extensible

(not satisfy "no-hole" condition)

Example: $S = \{x \in \mathbb{Z}^3 | x_1 + x_2 + x_3 \le 2, x_i \ge 0 (i = 1,2,3)\}$ $\cup \{(1,2,0), (0,1,2), (2,0,1)\}$ $\uparrow x^2$

→ S is discretely convex, but has a "hole"

$$\{(1,2,0) + (0,1,2) + (2,0,1)\} / 3 = (1,1,1) \notin S$$

Outline of Talk

- Overview of Discrete Convex Analysis
- Desirable Properties of Discrete Convexity
- convex-extensible fn
- Miller's discretely convex fn
- Favati-Tardella's integrally convex fn
- M-convex & L-convex fns
- duality and conjugacy theorems for discrete convex fn

Integrally Convex Function

Convex Closure of Discrete Fn

• Def: convex closure $\bar{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ of $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ --- point-wise maximal convex fn satisfying $\bar{f}(y) \leq f(y)$ ($\forall y \in \mathbb{Z}^n$) $\bar{f}(x) = \min\{\sum_{v \in \text{dom } f} \alpha_v f(y)$

$$| \alpha_y \ge 0 \ (y \in \text{dom } f), \sum_y \alpha_y = 1, \sum_y \alpha_y y = x$$

convex closure is convex fn

Local Convex Closure of Discrete Fn

- Def: local convex closure $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ of $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$
- ←→ collection of conv. closure on each hypercube $\tilde{f}(x) = \min\{\sum_{y \in HC(x)} \alpha_y f(y)\}$

$$|\alpha_{y} \ge 0 \ (y \in HC(x)), \sum_{y} \alpha_{y} = 1, \sum_{y} \alpha_{y} \ y = x \}$$

$$HC(x) = \{ y \in \mathbb{Z}^{n} \ | \ y(i) = [x(i)]or[x(i)] \ (\forall i) \}$$

- $-\tilde{f}(x) = f(x) \ (\forall x \in \mathbb{Z}^n)$
- local convex closure \tilde{f} is not convex

Definition of Integrally Convex Fn

- Def: $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is integrally convex (Favati-Tardella 1990)
- $\bullet \rightarrow$ local conv. closure \tilde{f} is convex fn $\bullet \rightarrow \tilde{f} = \bar{f}$

convex-extensible but NOT integrally convex

convex-extensible & integrally convex

Properties of Integrally Convex Fn

- by definition, integrally convex fn is
 - convex-extensible
 - discretely convex
 - \rightarrow local min w.r.t. $\{z \mid ||z x||_{\infty} \le 1\}$ = global min

Bad Results of Integrally Convex Fn

- by definition, integrally convex fn is
 - convex-extensible
 - discretely convex
 - → local min w.r.t. $\{z \mid ||z x||_{\infty} \le 1\}$ = global min but, neighborhood contains 3^n vectors (exponential)
- any function f with dom $f = \{0,1\}^n$ is integrally convex
 - → no good structure
- failure of "discrete" separation theorem

Separation Theorem for Convex Fn

Separation Theorem:

f: convex fn, g: concave fn, $f(x) \ge g(x) \ (\forall x \in \mathbb{R}^n)$

 \Rightarrow \exists affine fn $p^Tx + \alpha$ s.t. $f(x) \ge p^Tx + \alpha \ge g(x)$ ($\forall x \in \mathbb{R}^n$)

- equivalent to Duality Theorem for nonlinear programming
 - → efficient primal-dual-type algorithm

Discrete Separation Thm for Discrete Convex Fn

"Discrete" Separation Theorem:

$$f$$
: "discrete convex" fn, g : "discrete concave" fn, $f(x) \ge g(x) \ (\forall x \in \mathbb{Z}^n)$

 \Rightarrow \exists affine fn ax + b s.t. $f(x) \ge ax + b \ge g(x)$ $(\forall x \in \mathbb{Z}^n)$

- equivalent to Duality Theorem for combinatorial optimization
 - → efficient primal-dual-type algorithm

Failure of Discrete Separation for Integrally Convex/Concave Fns

• $\exists f$: integrally convex, g: integrally concave s.t.

$$f(x) \ge g(x) \ (\forall x \in \mathbb{Z}^n)$$

but \nexists affine fn $p^Tx + \alpha$ with $f(x) \ge p^Tx + \alpha \ge g(x) \ (\forall x \in \mathbb{Z}^n)$

$$f(x_1, x_2) = \max\{0, x_1 + x_2 - 1\}$$
 --- integrally convex,
 $g(x_1, x_2) = \min\{x_1, x_2\}$ --- integrally concave,
 $f(x_1, x_2) \ge g(x_1, x_2) \ (\forall (x_1, x_2) \in \mathbb{Z}^2), \text{ but } f(0.5, 0.5) < g(0.5, 0.5)$

 \rightarrow no affine fn with $f(x) \ge p^T x + \alpha \ge g(x) \ (\forall x \in \mathbb{Z}^2)$

Outline of Talk

- Overview of Discrete Convex Analysis
- Desirable Properties of Discrete Convexity
- convex-extensible fn
- Miller's discretely convex fn
- Favati-Tardella's integrally convex fn
- M-convex & L-convex fns
- duality and conjugacy theorems for discrete convex fn

L-convex Function

Definition of L4-convex Fn

- L\(\beta\) -- L-natural, L=Lattice
- Def: $g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L⁴-convex (Fujishige-Murota 2000)
- ←→ integrally convex + submodular (Favati-Tardella 1990)

$$g(p) + g(q) \ge g(p \lor q) + g(p \land q) \quad (\forall p, q \in \mathbb{Z}^n)$$

★ L¹-convex → int. convex → conv.-extensible & discr. convex

Examples of L4-convex Fn

- univariate convex $\varphi: \mathbb{Z} \to \mathbb{R} \quad \longleftarrow \quad \varphi(t-1) + \varphi(t+1) \ge 2\varphi(t)$
- separable-convex fn
- submodular set fn $\leftarrow \rightarrow$ L\(\beta\)-conv fn with dom $g = \{0,1\}^n$
- Range: $g(p) = \max\{p_1, p_2, ..., p_n\} \min\{p_1, p_2, ..., p_n\}$
- min-cost tension problem

$$g(p) = \sum_{i=1}^{n} \varphi_i (p_i) + \sum_{i,j} \psi_{ij} (p_i - p_j)$$
$$(\varphi_i, \psi_{ij}: \text{ univariate discrete conv fn})$$

Optimality Condition by Local Property

Thm: [local min = global min]

$$g(p) \le \min\{g(p + \chi_X), g(p - \chi_X)\}\ (\forall X \subseteq \{1, 2, ..., n\})$$

$$\chi_X(i) = \begin{cases} 1 & (i \in X) \\ 0 & (i \notin X) \end{cases}$$

X local minimality check can be done efficiently

$$\rho(X) \equiv g(p + \chi_X), \mu(X) \equiv g(p - \chi_X)$$

 $\rightarrow \rho, \mu$: submodular set fns, minimization in poly-time

M-convex Function

Characterization of Convex Function

Prop: ["equi-distant" convexity]

$$f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \text{ is convex } \longleftarrow \rightarrow \forall x, y \in \mathbb{R}^n, \ \exists \delta > 0,$$

$$f(x) + f(y) \ge f(x - \alpha(x - y)) + f(y + (\alpha(x - y)))$$

$$(0 \le \forall \alpha \le \delta)$$

Definition of M¹-convex Function

M=Matroid

Def: $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is \mathbb{M}^{\natural} -convex (Murota-Shioura99)

 $\longleftrightarrow \forall x, y \in \mathbb{Z}^n, \forall i: x(i) > y(i):$

(i)
$$f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} - \chi_i) + f(\mathbf{y} + \chi_i)$$
, or

(ii)
$$\exists j: x(j) < y(j) \text{ s.t. } f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} - \chi_i + \chi_j) + f(\mathbf{y} + \chi_i - \chi_j)$$

Examples of M⁴-convex Functions

- Univariate convex $\varphi: \mathbb{Z} \to \mathbb{R} \quad \longleftarrow \quad \varphi(t-1) + \varphi(t+1) \ge 2\varphi(t)$
- Separable convex fn on polymatroid:

For integral polymatroid $P \subseteq \mathbb{Z}_+^n$ and univariate convex φ_i

$$f(x) = \sum_{i=1}^{n} \varphi_i(x(i))$$
 if $x \in P$

Matroid rank function [Fujishige05]

$$f(X) = \max\{|Y| \mid Y : \text{independent set}, Y \subseteq X\} \text{ is } M^{\natural}\text{-concave}$$

• Weighted rank function [Shioura09] ($w \ge 0$)

$$f(X) = \max\{w(Y) | Y : \text{ independent set, } Y \subseteq X\} \text{ is } M^{\natural}\text{-concave}$$

Gross substitutes utility in math economics/game theory

$$\leftarrow \rightarrow M^{\natural}$$
-concave fn on $\{0,1\}^n$ [Fujishige-Yang03]

Properties of M¹-convex Fn

Thm: [local min = global min]

$$f(x) \le f(x \pm \chi_j) \ (\forall j),$$

$$f(x) \le f(x + \chi_j - \chi_k) \ (\forall j, k),$$

$$\longleftarrow f(x) \le f(y) \ (\forall y \in \mathbb{Z}^n)$$

X size of neighborhood = $O(n^2)$

$$\chi_j(i) = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$$

Outline of Talk

- Overview of Discrete Convex Analysis
- Desirable Properties of Discrete Convexity
- convex-extensible fn
- Miller's discretely convex fn
- Favati-Tardella's integrally convex fn
- M-convex & L-convex fns
- duality and conjugacy theorems for discrete convex fn

Conjugacy and Duality

Conjugacy for Convex Functions

• Legendre transformation for $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$: $f^{\bullet}(p) = \sup\{\langle p, x \rangle - f(x) | x \in \mathbb{R}^n\} \quad (p \in \mathbb{R}^n)$

convex fn is closed under Legendre transformation

Thm:

```
f: convex \rightarrow f^{\bullet}:convex, (f^{\bullet})^{\bullet} = f (if f is closed)
```

Conjugacy for L-/M-Convex Functions

- integer-valued fn $f: \mathbb{Z}^n \to \mathbb{Z} \cup \{+\infty\}$
- discrete Legendre transformation:

$$f^{\bullet}(p) = \sup\{\langle p, x \rangle - f(x) | x \in \mathbb{Z}^n\} \quad (p \in \mathbb{Z}^n)$$

L\(\beta\)-convex fn and M\(\beta\)-convex fn are conjugate

Thm:

(i)
$$f: M \dashv -conv \rightarrow f^{\bullet}: L \dashv -conv, (f^{\bullet})^{\bullet} = f$$

(ii)
$$f: L \dashv -conv \rightarrow f^{\bullet}: M \dashv -conv, (f^{\bullet})^{\bullet} = f$$

- generalization of relations in comb. opt.:
 - matroid ← → rank fn [Whitney 35]
 - polymatroid ← → submodular fn [Edmonds 70]

Fenchel Duality Theorem for Convex Fn

Legendre transformation:

$$f^{\bullet}(p) = \sup\{\langle p, x \rangle - f(x) | x \in \mathbb{R}^n\}$$
$$f^{\circ}(p) = \inf\{\langle p, x \rangle - f(x) | x \in \mathbb{R}^n\}$$

Fenchel Duality Thm:

```
f: \text{convex}, g: \text{concave} \rightarrow
\inf_{x \in \mathbb{R}^n} \{ f(x) - g(x) \} = \sup_{p \in \mathbb{R}^n} \{ g^{\circ}(p) - f^{\bullet}(p) \}
(f^{\bullet}: \text{convex}, g^{\circ}: \text{concave})
```

Fenchel duality thm ←→ separation theorem

Fenchel-Type Duality Theorem for L-/M-Convex Fn

discrete Legendre transformation:

$$f^{\bullet}(p) = \sup\{\langle p, x \rangle - f(x) | x \in \mathbb{Z}^n\}$$
$$f^{\circ}(p) = \inf\{\langle p, x \rangle - f(x) | x \in \mathbb{Z}^n\}$$

Fenchel-type Duality Thm: [Murota 96,98]

```
f: M
atural - convex, g: M
atural - concave - <math display="block"> \inf_{x \in \mathbb{Z}^n} \{ f(x) - g(x) \} = \sup_{p \in \mathbb{Z}^n} \{ g^{\circ}(p) - f^{\bullet}(p) \}   (f^{\bullet}: L
atural - convex, g^{\circ}: L
atural - convex)
```

Discrete Separation Thm for L¹ Convex Fn

• La Separation Theorem: [Murota 96,98]

 $f: \mathsf{L}^{\natural}\text{-}\mathsf{convex} \text{ fn, } g: \mathsf{L}^{\natural}\text{-}\mathsf{concave} \text{ fn, } f(p) \geq g(p) \ \ (\forall p \in \mathbb{Z}^n)$

 \Rightarrow \exists affine fn s.t. $f(p) \ge x^T p + \beta \ge g(p) \ (\forall p \in \mathbb{Z}^n)$

Discrete Separation Thm for M\(\beta\) Convex Fn

• M\(\begin{align*} Separation Theorem: [Murota 96,98] \)

 $f: \mathsf{M} \dashv \mathsf{-convex} \ \mathsf{fn}, \ g: \mathsf{M} \dashv \mathsf{-concave} \ \mathsf{fn}, \ f(x) \geq g(x) \ (\forall x \in \mathbb{Z}^n)$

 \Rightarrow \exists affine fn s.t. $f(x) \ge p^T x + \alpha \ge g(x) \ (\forall x \in \mathbb{Z}^n)$

Relation among Duality Thms

M^{\(\beta\)} Separation Thm

$$f(x) \ge p^T x + \alpha \ge g(x)$$

Fenchel-type Duality Thm

$$\inf\{f(p) - g(p)\}\$$

$$= \sup\{g^{\circ}(x) - f^{\bullet}(x)\}\$$

L^{\(\pi\)} Separation Thm

$$f^{\bullet}(p) \ge x^T p + \beta \ge g^{\circ}(p)$$

(poly)matroidintersection thm [Edmonds 70]weighted matroid intersectionthm [Iri-Tomizawa 76, Frank 81]Fenchel-type duality thm

discrete separation for subm. fn [Frank 82]

for subm. fn [Fujishige 84]