Introduction to
Discrete Convex Analysis

Akiyoshi Shioura
(Tohoku University)



Discrete Convex Analysis

[Discrete Convex Analysis [Murota 1996]

J

-

--- theoretical framework for discrete o:timization problems

discrete analogue of
Convex Analysis

~

Wil continuous optimization )

g

generalization of Theory of o
Matroid/Submodular Function
in discrete opitmization )

key concept: two discrete convexity: L-convexity & M-convexity

— generalization of Submodular Set Function & Matroid

various nice properties

— local optimal €=>»global optimal

— duality theorem, separation theorem, conjugacy relation

* set/function are discrete convex =2 problem is tractable



Applications

Combinatorial Optimization

— matching, min-cost flow, shortest path, min-cost tension
Math economics / Game theory

— allocation of indivisible goods, stable marriage
Operations research

— inventory system, queueing, resource allocation
Discrete structures

— finite metric space
Algebra

— polynomial matrix, tropical geometry



History of Discrete Convex Analysis

1935: Matroid Whitney
1965: Polymatroid, Submodular Function Edmonds
1983: Submodularity and Convexity
Lovasz, Frank, Fujishige
1992: Valuated Matroid Dress, Wenzel
1996: Discrete Convex Analysis, L-/M-convexity = Murota
1996-2000: variants of L-/M-convexity Fujishige, Murota, Shioura

1971: discretely convex function  Miller
1990: integrally convex function  Favati-Tardella



Today’s Talk

 fundamental properties of M-convex & L-convex functions
* comparison with other discrete convexity

— convex-extensible fn

— Miller’s discretely convex fn
— Favati-Tardella’s integrally convex fn



Outline of Talk

Overview of Discrete Convex Analysis

Desirable Properties of Discrete Convexity
convex-extensible fn

Miller’s discretely convex fn

Favati-Tardella’s integrally convex fn

M-convex & L-convex fns

duality and conjugacy theorems for discrete convex fn



Desirable Properties
of Discrete Convexity



Important Properties of Convex Fn

e optimality condition by local property
x: local minimum in some neighborhood =2 global minimum

e conjugacy relationship
— conjugate of convex fn = convex fn

e duality theorems
— Fenchel duality
— separation theorem




Desirable Properties
of Discrete Convex Fn

discrete convexity = “convexity” for functions f: Z" - R U {40}
— convex extensibility

* can be extended to convex fn on R"
— optimality condition by local property

* local minimum =2 global minimum

— local minimality depends on choice of neighborhood

— duality theorems

e “discrete” Fenchel duality

e “discrete” separation theorem
— conjugacy relationship

* conjugate of “discrete” convex fn = “discrete” convex fn



Classes of Discrete Convex Fns

convex-extensible fn

discretely convex fn (Miller 1971)

integrally convex fn (Favati-Tardella 1990)
M-convex fn, L-convex fn (Murota 1995, 1996)

[ satisfy desirable properties? ]
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Convex-Extensible Function
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Definition of Convex-Extensible Fn

* a natural candidate for “discrete convexity”
o Def: f:Z™ - R U {400} is convex-extensible

€= 3f:R" > RU {400}, convex fns.t. f(x) = f(x) (Vx € Z™)

A

*

A

convex

-extensible

® NOT convex

-extensible
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Definition of Convex-Extensible Set

* Def: S € Z" is convex-extensible
€ =>indicator fn §5: Z™ — {0, +00} is convex-extensible

€= conv(S) NZ" = S (“no-hole” condition)

convex
-extensible

=~

SN

=~

SN

NOT convex
-extensible
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Properties of Convex-Extensible Fn

* if n=1, satisfies various nice properties
— convex-extensible €= f(x — 1)+ f(x+ 1) = 2f(x)
— local min=global min, conjugacy, duality, etc.
=>» desirable concept as discrete convexity

. .

¢ ifn=2,
— convex-extensible (by definition)
— what else?
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Bad Results of Conv.-Extensible Fn

* any function f with dom f = {0,1}" is convex-extensible

=» no good structure

* local opt # global opt: Vk € Z,,3f: convex-extensible fn s.t.
x:local minin {z € Z™ | “Z — xl‘oo < k} but NOT global min

Example: dom f = Z2, f(xq,x,) = max{x; — 3x,, —2x; + 3x,}
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x=(0,0): local minin {z € Z™ | HZ — xl‘oo < 1}, f(0,0)>f(2,1)
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Separable-Convex Function

o Def: f:Z™ > R U {40} is separable-convex €=»
f) =Y, 0i(x(0)), each ¢;: Z - R U {+0} is discrete convex
— examples: Y1, x()?%, =X, logx(i), etc.
— satisfy various nice properties
* convex-extensible

* local min w.r.t. {z | “Z — xH1 < 1} = global min
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— but, function class is too small

e e.g.,, dom fis integer interval
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Miller’s Discretely Convex Fn
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Definition of Discretely Convex Fn

» defined by discretized version of convex inequality
o Def: f:Z™ -» R U {400} is discretely convex (Miller 1971)
€DVx,yeZ, a€|01l], s=ax+(1—a)y
=== <af(x)+ A -a)f(y)
min{f(z) | z(i) = [s(@] or [s(D] (Vi) }

Prop: SEL"s f(s)<af(x)+ (1 —-a)f(y)

‘ ‘ Y axl —la —7—}]
ax—l—l(l —la)y / ta
O /%/Q /m/é{
//‘ @ X1/

¢
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Definition of Discretely Convex Set

o Def: S € Z" is discretely convex
€ =>indicator fn §5: Z™ — {0, +0} is discretely convex
€Dvx,yeES, ac|0l],s=ax+(1—a)y

dz € Ss.t. z(i) = |s(i)] or [s(i)] (Vi)

o0
9—0 0 0 ¢
O—0 0 0 0

> o

discretely convex

-

®
°
®
L

°
®

NOT discretely convex



Property of Discretely Convex Fn

 Thm: [local min = global min]
x € argmin{f (z) | ||z —x||o < 1}

o—0—®
€= x cargmin{f(z) | z € 7"} X

o & 0

O—0 0O

=» validity of descent alg for minimization

repeat: (i) find z € N, (x) with f(z) < f(x)
(ii) update x:= z

X size of neighborhood {z | ||z — x]||, < 1} is 3" --- exponential
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Bad Result of Discretely Convex Fn

e Fact: discretely conv fn is NOT convex-extensible
discretely conv set is NOT convex-extensible
(not satisfy “no-hole” condition)

e Example:S ={x € Z3|x; + x, + x3 < 2,x; = 0(i = 1,2,3)}
U {(1,2,0),(0,1,2),(2,0,1)} X2

/.
X3 /.;i
=>» S is discretely convex, but has a “hole”
((1,2,0)+ (0,1,2) + (20,1)}/3 = (L) ¢S
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f:Z" - R U {400}

ﬁnvex-extensible fn

-

[

separable-
conv. fn

/

discretely convex frJ
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Integrally Convex Function
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Convex Closure of Discrete Fn

* Def: convex closure f: R" - R U {+0o0} of f: Z" - R U {+0}
--- point-wise maximal convex fn satisfying f (y) < f(y) (Vy € Z")
flx) = min{zyedomf ay f(y)

|a, =20 (y €domf),Yya, =1,2,a,y =x}
— convex closure is convex fn
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Local Convex Closure of Discrete Fn

* Def: local convex closure f: R® = R U {400} of f: Z" - R U {+0}
€= collection of conv. closure on each hypercube f(x) =
min{zyeHc(x) ay f(y)
| ay, = 0(y € HC(x)), Xy ay = 1,2y a,y = x}
HC(x) =ty € Z" | y(©) = [x(@)]or[x(D)] (Vi)}
- f() = f(x) (vx € ZY)

— local convex closure f is not convex




Definition of Integrally Convex Fn

o Def: fiZ" - R U {400} is integrally convex (Favati-Tardella 1990)
€= local conv. closure f is convexfn €= f = f

2 1 0 2 0 1

0 0 2

convex-extensible convex-extensible
but NOT integrally convex & integrally convex
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Properties of Integrally Convex Fn

* by definition, integrally convex fn is
— convex-extensible
— discretely convex

=>» local min w.r.t. {z | “Z — xHOo < 1} = global min
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Bad Results of Integrally Convex Fn

* by definition, integrally convex fn is
— convex-extensible
— discretely convex

=>» local min w.r.t. {z | “Z — xHOo < 1} = global min

but, neighborhood contains 3" vectors (exponential)

 any function f with dom f = {0,1}" is integrally convex
=» no good structure

e failure of “discrete” separation theorem
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Separation Theorem for Convex Fn

 Separation Theorem:
f:convex fn, g: concave fn, f(x) = g(x) (Vx € R")

= Jaffinefnplx+ast. f(x) =plx+a=glk) (Vx € RY)
A

~ f(x)

Ty +
g(x) P

>
| \ >

e equivalent to Duality Theorem for nonlinear programming
=>» efficient primal-dual-type algorithm




Discrete Separation Thm
for Discrete Convex Fn

* “Discrete” Separation Theorem:

f: “discrete convex” fn, g: “discrete concave” fn,

f(x) = g(x) (Vx € Z")
= Jaffinefnax + bst. f(x) =ax+b = g(x) (Vx € Z")

pIx +«a

f(x) \\ /

52

N g®)

e equivalent to Duality Theorem for combinatorial optimization
=>» efficient primal-dual-type algorithm
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Failure of Discrete Separation for
Integrally Convex/Concave Fns

* df:integrally convex, g: integrally concave s.t.

fx) = g(x) (vx € Z™)
but 74 affine fnp’'x + a with  f(x) = plx + a = g(x) (Vx € ZM)

f(xq,x5) = max{0, x; + x, — 1} --- integrally convex,

g(x1,x,) = min{x4, x,} --- integrally concave,

f(xy,x0) = g(xg, x3) (V(xqy,x5) € Z?), but £(0.5,0.5) < g(0.5,0.5)
= no affine fn with f(x) = p'x + a = g(x) (Vx € Z?)
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f:Z" - R U {400}

ﬁnvex-extensible fn

% ntegrally convex fn

[

separable-
conv. fn

J

AR

/

discretely convex frJ
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L-convex Function
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Definition of LB-convex Fn

e L§--L-natural, L=Lattice
« Def: g:Z™ - R U {40} is L*-convex (Fujishige-Murota 2000)
€= [discrete mid-point convexity]

gp) +9(@) =g ([? ) t+g ({? ) (Vp.q € Z")
€= integrally convex + submodular (Favati-Tardella 1990)

gp)t+9(q@ =gpveg +glprgq) (Vp,q€Z)

[ | 1 4‘ #
p pra p
4\\\ | 2 W VG
q\‘\
pPt4q \\ pA(g
| 2 q —@ | qo—

¢ LB-convex = int. convex = conv.-extensible & discr. convex



Examples of Li-convex Fn

univariate convex @:Z > R €= p(t— 1)+ @(t+1) = 2¢(t)
separable-convex fn
submodular set fn €=» L8-conv fn with dom g = {0,1}"

4 -1

quadratic fn g(p) = p' Ap is LB-convex 3 -2
L -2 3 -1
€« ClijSO(l:F]), Z]CLUZO 1 1 5.

Range: g(p) = max{py, ps, .., Pn} — mMin{py, 3, ..., Pn}

min-cost tension problem
9g() = X190 () + 2 ;¥ij(pi — ;)
(@i, Y;j: univariate discrete conv fn)
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Optimality Condition by Local Property

e Thm: [local min = global min]

g(p) <min{g(p + xx), 9(p — xx)} (VX € {1,2,...,n})
€>g9(p) <9 (Vqgez")

L (1 (ex)
o—@ )
Qp. @
@

> local minimality check can be done efficiently

p(X) =g+ xx), uX) = g(p — xx)
=>» p, U : submodular set fns, minimization in poly-time



M-convex Function

41
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Characterization of Convex Function

* Prop: [“equi-distant” convexity]
f:R"™ > RU {+}is convex €= Vx,y € R"?, 3§ > 0,
fO+fQ) = fx—alx—y)+f+ (alx—y))
(0 <Va <90)
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Definition of Mi-convex Function
M=Matroid

Def: f:Z" - RU {4000} is M-convex (Murota-Shioura99)

€D Vx,yeZ"Vi:x(i) > y(i):

)+ =fx—x)+f+x), or

(i3j:x() <yD st f+ ) = f(x —xi +xj) + O+ xi = X))

i <
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Examples of M"-convex Functions

* Univariateconvex :Z > R €= p(t—1)+ p(t+1) = 2¢(t)
e Separable convex fn on polymatroid:

For integral polymatroid P € Z% and univariate convex ¢;

f() =3, oi(x(D) if x€P
* Matroid rank function [Fujishige05]
f(X) = max{|Y| | Y:independent set,Y S X} is M*-concave
* Weighted rank function [Shioura09] (w = 0)
f(X) = max{w(Y)| Y:independent set,Y € X} is M"-concave
e Gross substitutes utility in math economics/game theory
€= M°-concave fn on {0,1}" [Fujishige-Yang03]
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Properties of M&-convex Fn

 Thm: [local min = global min]

f) < flxxx;) (),

f(x)Sf(X‘FXj_Xk) (Vj, k), | _{1 (=)
€D f(x) < f(y) (Vy € Z") O 0 (%))
% size of neighborhood = 0(n?) &6
@ p. @
o—0

e MB-convex = int. convex = conv.-extensible & discr. convex
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f:Z" - R U {400}

ﬁnvex-extensible fn

ﬁ ntegrally convex fn \ \
4 ME-convex fn A
fsepa rable )
\_ -convex fn )
\_ L5-convex fn

discretely convex frJ
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Conjugacy and Duality
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Conjugacy for Convex Functions

* Legendre transformation for f: R"™ - R U {40o0}:
fO @) = sup{{p,x) = f(x)| x eR"} (p €R™)

convex fn is closed under Legendre transformation
e Thm:

f: convex = f®:convex, (f'). = f (if f is closed)
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Conjugacy for L-/M-Convex Functions

* integer-valued fn f:Z"™ — Z U {400}
e discrete Legendre transformation:

fO®®) = sup{(p,x) = f(x)| x € Z"} (p € Z™)
L5-convex fn and MBE-convex fn are conjugate

e Thm: 4
MB-convex fn

(i) f: MB-conv = f®: La-cony, (f‘). =f -

(i) f: La-conv = f®: M&-cony, (f.). =7 L <

\_ LB-convexfn /

e generalization of relations in comb. opt.:
— matroid €—2 rank fn [Whitney 35]
— polymatroid € -2 submodular fn [Edmonds 70]
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Fenchel Duality Theorem for Convex Fn

* Legendre transformation:

f® () = sup{{p,x) — f(x)| x € R™}
f°(p) = inf{{p, x) — f(x)| x € R"}

* Fenchel Duality Thm:
f: convex, g: concave =>»

inf {f(x) — g(x)} = sup {g°(p) — f®(P)}

(f®: convex, g°:concave)

* Fenchel duality thm € =» separation theorem



Fenchel-Type Duality Theorem
for L-/M-Convex Fn

e discrete Legendre transformation:

f® ) = sup{{p,x) — fF(x)| x € Z"}
f°() = inf{{p,x) — f(x)| x € Z"}

* Fenchel-type Duality Thm: [Murota 96,98]

f: MB-convex, g: MB-concave=>
inf {f(x) — g(x)} = sup{g°(p) — f* ()}

(f®: Li-convex, g°: LE-concave)
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Discrete Separation Thm for L5 Convex Fn

* LB Separation Theorem: [Murota 96,98]
f:L8-convex fn, g: Li-concave fn, f(p) = g(p) (Vp € ZM)
=> J affinefnst. f(p) = x"p+ B = g(p) (Vp € Z™)

f (%) \\ / x'p+p

52

N g®)
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Discrete Separation Thm for M Convex Fn

* M¢t Separation Theorem: [Murota 96,98]
f: MB&-convex fn, g: Mi-concave fn, f(x) = g(x) (Vx € Z™)
=> J affinefnst. f(x) =plx +a=>gx) (Vx €ZM)

f(x) ’\\ / pix+a

52

N g®)
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Relation among Duality Thms

Mb& Separation Thm

weight splitting thm for

fx)=plx+a=g(x) ©=—=> weighted matroid intersection

$

Fenchel-type Duality Thm

inf{f (p) — g(p)} -
= sup{g°(x) — f®(x)}

|

L5 Separation Thm
@ =2x"p+B=29°(p) =

[Iri-Tomizawa 76, Frank 81]

(poly)matroid
intersection thm [Edmonds 70]

—— weighted matroid intersection

thm [Iri-Tomizawa 76, Frank 81]

Fenchel-type duality thm
for subm. fn [Fujishige 84]

—— discrete separation for

subm. fn [Frank 82]



