数理手法

(数理最適化)第13回

非線形計画

ニュートン法

塩浦昭義

東京工業大学 経営工学系 准教授

shioura.a.aa@m.titech.ac.jp

http://www.me.titech.ac.jp/~shioura/shioura/teaching/TUmp17/index.html

期末試験について

- 日時:1月17日(水)13:05~14:35
- ・場所: 工2号館 212講義室(授業の部屋)
- ・手書きのA4用紙一枚のみ持ち込み可(印刷やコピーは不可)
 - ・これも採点の対象、試験終了後に回収します
- 教科書、ノート等の持ち込みは不可
- ・座席はこちらで指定
- ・試験内容:第8回~第13回の講義で教えたところ
 - ネットワーク最適化
 - 非線形計画
- ・50点満点, 20点以下は不合格
- ・中間と合わせて51点以上は合格, 50点以下は単位不可

2次の最適性条件(必要条件)証明

定理(2次の必要条件):

x*: 制約なし問題の極小解 ⇒ Hf(x*) は半正定値

証明: A=Hf(x*) とおく.

背理法: A は半正定値でないと仮定

→ ||y||=1 なるベクトル y が存在して, yTAy<0

以下に示すように、

ある ε>0 に対して f(x*+ε'y)<f(x*) (0<∀ε'< ε) となり, 矛盾.

x = x* での2次のテイラー展開と∇f(x*) =0 を使うと,

$$f(x^* + \varepsilon y) = f(x^*) + \nabla f(x^*)^T (\varepsilon y) + \frac{1}{2} (\varepsilon y)^T A(\varepsilon y) + \psi(\varepsilon y)$$

$$= f(x^*) + \varepsilon^2 \left(\frac{1}{2} y^T A y + \frac{\psi(\varepsilon y)}{\varepsilon^2} \right)$$

テイラー展開の性質より, ある $\epsilon>0$ が存在して, $0<\forall \epsilon'<\epsilon$ に対して

$$\frac{1}{2}y^TAy + \frac{\psi(\varepsilon'y)}{(\varepsilon')^2} < 0 \quad \text{i. } f(x^* + \varepsilon'y) < f(x^*)$$

2次の最適性条件(十分条件)証明

定理(2次の十分条件):

x* は停留点, Hf(x*) は正定値 ⇒ x*: 制約なし問題の(孤立)極小解

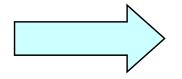
証明の概略:

```
x = x^* での2次のテイラー展開 \tilde{f} を考えると, \tilde{f} は凸関数, x^* が最小解 \therefore x^* は\tilde{f} の極小解 x^* のある近傍において, \tilde{f} と f は十分に近い \therefore x^* は f の極小解
```

極大解に関する性質

- x*は関数fの(孤立)極大解

 ⇔ x*は関数 fの(孤立)極小解
- ➤ x* における関数 f のヘッセ行列は Hf(x)



極大解であるための条件

定理:

x*: 制約なし問題の極大解 ⇒ - Hf(x*) は半正定値

定理:

x* は停留点, - Hf(x*) は正定値

⇒ x*: 制約なし問題の(孤立)極大解

凸関数の特徴付け(その2)

定理: f: 凸関数, 微分可能(へッセ行列が定義可能)

←→ 任意のベクトル x に対して ヘッセ行列 Hf(x) が半正定値

証明は略

一変数凸関数の場合:

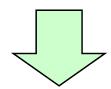
関数 f は凸関数 $\leftarrow \rightarrow$ 任意のx に対して二階微分 $f''(x) \ge 0$

制約なし問題の解法2:ニュートン法

ニュートン法のアイディア

2次関数 $f(x) = \frac{1}{2}x^TVx + cx + c_0$ の係数行列 V が 正定値行列のとき、最小解(最適解)は簡単に求められる!

- $\nabla f(x) = Vx + c \rightarrow$ 停留点は $x^* = -V^{-1}c$ のみ
- ヘッセ行列 = V, 正定値行列 → 停留点は最小解



2次の十分条件より x* は最小解

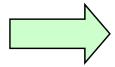
※ 正定値行列は正則行列(逆行列をもつ) 半正定値行列は正則とは限らない

制約なし問題の解法2:ニュートン法

ニュートン法のアイディア:

V が正定値の2次関数に対して最適解は簡単に求められる!

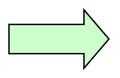
ただし、一般の関数は2次とは限らない



元の関数 f の代わりに、二次のテイラー近似 \tilde{f} を使う

$$\tilde{f}(x) = f(a) + \nabla f(a)^T (x - a) + \frac{1}{2} (x - a)^T H f(a) (x - a)$$

- ヘッセ行列 Hf(a) が正定値のとき, \tilde{f} の最適解は $x = a - Hf(a)^{-1}\nabla f(a)$
- \tilde{f} は f の良い近似



 $a - Hf(a)^{-1}\nabla f(a)$ は f の最適解のより良い近似解 と期待できる

ニュートン法のアルゴリズム

現在の点 x から $x - Hf(x)^{-1}\nabla f(x)$ への移動を繰り返す $(-Hf(x)^{-1}\nabla f(x)$ を, xにおけるニュートン方向と呼ぶ)

入力:関数 f,勾配ベクトル ∇f ,へッセ行列Hf 初期点 x^0

ステップ0: k = 0とする

ステップ1: x^k が最適解に十分近ければ終了

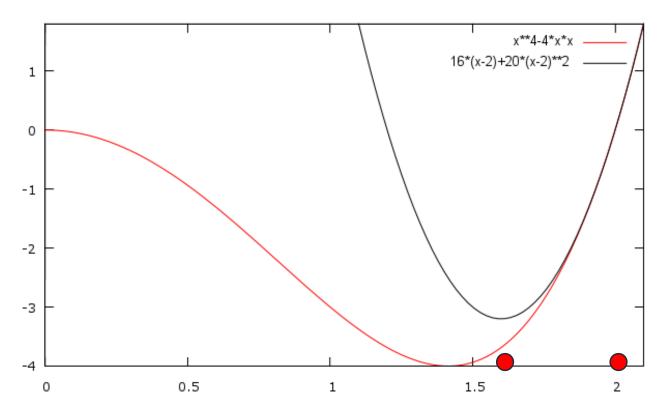
ステップ2:ニュートン方向 $-Hf(x^k)^{-1}\nabla f(x^k)$ を計算

ステップ3: $x^{k+1} = x^k - Hf(x^k)^{-1}\nabla f(x^k)$ とおく

ステップ4: k = k + 1として、ステップ1に戻る

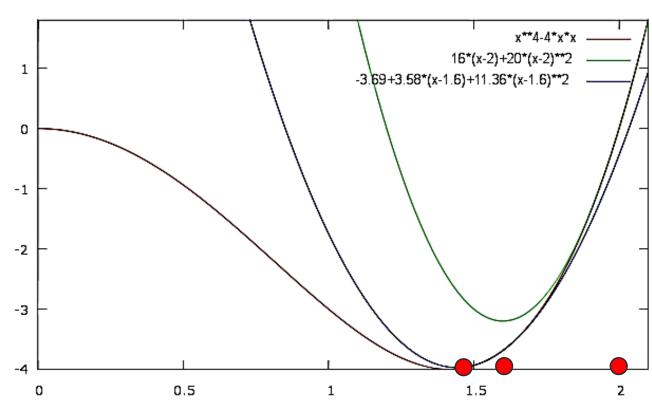
ニュートン法の実行例その1

- 一変数関数 $f(x) = x^4 4x^2$
- 初期点 $x^{(0)} = 2$
- テイラー近似は $\tilde{f}(x) = 16(x-2) + 20(x-2)^2$
- ・これが最小になるのはx = 2 0.4 = 1.6のとき
- $x^{(1)} := 1.6$ とおく



ニュートン法の実行例その1

- 一変数関数 $f(x) = x^4 4x^2$
- 点 $x^{(1)} = 1.6$
- テイラー近似は $\tilde{f}(x) = -3.69 + 3.58(x 1.6) + 11.36(x 1.6)^2$
- ・これが最小になるのはx = 1.6 0.11 = 1.49のとき
- $x^{(2)} := 1.49$ とおく



ニュートン法の特徴 [p.107]

長所:

- 最急降下法より反復回数が少ない
 - 狭義2次凸関数に対しては一反復で終了
- 直線探索が不要

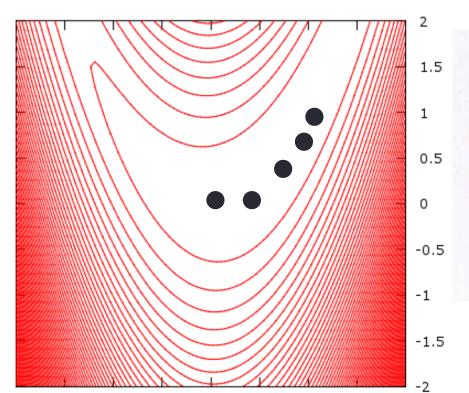
短所:

- ヘッセ行列の逆行列の計算が必要
 - ヘッセ行列の計算ができないと破綻
 - ヘッセ行列が正則でないと破綻
- ヘッセ行列が正定値でない場合には

目的関数値が増加する可能性あり

ニュートン法の例2

- 関数 $f(x) = (x_1 1)^2 + 10(x_1^2 x_2)^2$ に適用
 - 初期解(0,0), 最適解は(1,1)
 - ・6回の反復で最適解に到達
 - ・最急降下法では100回反復後でも(0.91, 0.82)



0.5

1.5

-0.5

表 4.2	関数	(4.19)	に対する	ニュー	10	法の計算結果
-------	----	--------	------	-----	----	--------

反復 k	$oldsymbol{x}^{(k)}$	$f(x^{(k)})$	$\ \nabla f(\boldsymbol{x}^{(k)})\ $
0	(0.00000, 0.00000)	0.10000×10^{1}	0.20000×10^{1}
1	(0.32341, 0.00000)	0.56717×10^{0}	0.20919×10^{1}
2	(0.73455, 0.46247)	0.12990×10^{0}	0.23209×10^{1}
3	(0.91297, 0.85632)	0.12775×10^{-1}	0.11054×10^{1}
4	(1.00450, 1.01041)	0.39429×10^{-4}	0.54177×10^{-1}
5	(0.99997, 0.99995)	0.16624×10^{-8}	0.46482×10^{-3}
6	(1.00000, 1.00000)	0.39340×10^{-17}	0.17062×10^{-7}

福島雅夫 「新版 数理計画入門」 (朝倉書店)より

ニュートン法の問題点

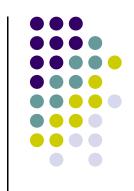
■ ヘッセ行列が正則でないと破綻

例1(続き):一変数関数 f(x) = x⁴ - 4x²

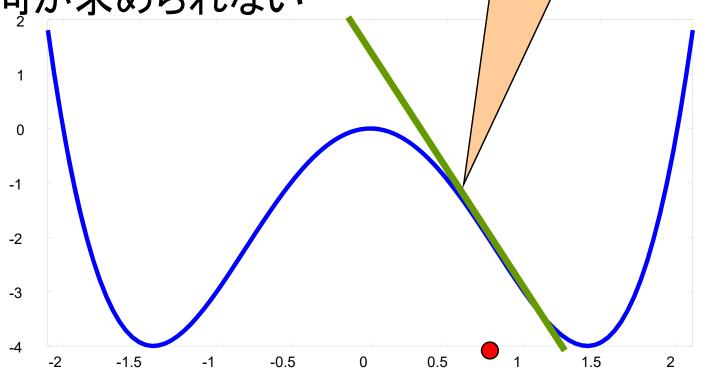
初期点 $x = \sqrt{2/3}$ のとき

→ へッセ行列は Hf(x) = 0 (正則でない)

⇒ ニュートン方向が求められない

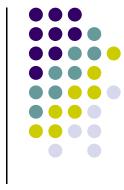


f を2次近似 すると直線 になる



ニュートン法の問題点

● ヘッセ行列が正定値でない場合には 目的関数値が増加する可能性あり



初期点 x = 1/2 のとき

- → へッセ行列は Hf(x) = -5(正定値でない)
- ⇒ ニュートン方向に進むと関数値が増加する

